Journal Description
Earth
Earth
is an international, peer-reviewed, open access journal on earth science, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, GeoRef, AGRIS, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 19.4 days after submission; acceptance to publication is undertaken in 4.3 days (median values for papers published in this journal in the first half of 2025).
- Journal Rank: JCR - Q2 (Geosciences, Multidisciplinary) / CiteScore - Q1 (Earth and Planetary Sciences (miscellaneous))
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Journal Cluster of Geospatial and Earth Sciences: Remote Sensing, Geosciences, Quaternary, Earth, Geographies, Geomatics and Fossil Studies.
Impact Factor:
3.4 (2024);
5-Year Impact Factor:
3.0 (2024)
Latest Articles
Machine Learning Approaches for Soil Moisture Prediction Using Ground Penetrating Radar: A Comparative Study of Tree-Based Algorithms
Earth 2025, 6(3), 98; https://doi.org/10.3390/earth6030098 (registering DOI) - 16 Aug 2025
Abstract
►
Show Figures
Accurate soil moisture estimation is critical for precision agriculture and water resource management, yet traditional sampling methods are time-consuming, destructive, and provide limited spatial coverage. Ground Penetrating Radar (GPR) offers a promising non-destructive alternative, but optimal machine learning approaches for GPR-based soil moisture
[...] Read more.
Accurate soil moisture estimation is critical for precision agriculture and water resource management, yet traditional sampling methods are time-consuming, destructive, and provide limited spatial coverage. Ground Penetrating Radar (GPR) offers a promising non-destructive alternative, but optimal machine learning approaches for GPR-based soil moisture prediction remain unclear. This study presents a comparative analysis of regression tree and boosted tree algorithms for predicting soil moisture content from Ground Penetrating Radar (GPR) histogram features across 21 sites in Eastern Thailand. Soil moisture content was measured at multiple depths (0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 m) using samples collected during Standard Penetration Test procedures. Feature extraction was performed using 16-bin histograms from processed GPR radargrams. A single regression tree achieved a cross-validation RMSE of 5.082 and an R2 of 0.761, demonstrating superior training accuracy and interpretability. In contrast, the boosted tree ensemble achieved significantly better generalization performance, with a cross-validation RMSE of 4.7915 and an R2 of 0.708, representing a 5.7% improvement in predictive performance. Feature importance analysis revealed that specific histogram bins effectively captured moisture-related variations in GPR signal amplitude distributions. A comparative evaluation demonstrates that while single regression trees offer superior interpretability for research applications, boosted tree ensembles provide enhanced predictive performance that is essential for operational deployment in precision agriculture and hydrological monitoring systems.
Full article
Open AccessReview
The Evolution of Landscape Ecology in the Democratic Republic of the Congo (2005–2025): Scientific Advances, Methodological Challenges, and Future Directions
by
Yannick Useni Sikuzani and Jan Bogaert
Earth 2025, 6(3), 97; https://doi.org/10.3390/earth6030097 - 13 Aug 2025
Abstract
►▼
Show Figures
Since 2005, landscape ecology has emerged as a structured scientific field in the Democratic Republic of Congo, notably shaped by the contributions of Professor Jan Bogaert. The evolution of research in this field can be divided into three main phases. The first phase
[...] Read more.
Since 2005, landscape ecology has emerged as a structured scientific field in the Democratic Republic of Congo, notably shaped by the contributions of Professor Jan Bogaert. The evolution of research in this field can be divided into three main phases. The first phase (2005–2012) focused on the quantitative analysis of forest fragmentation using Geographic Information Systems and landscape metrics. From 2013 to 2019, research approaches broadened to include the social sciences, marking a shift toward a socio-ecological perspective on landscapes. Since 2020, the field has increasingly adopted holistic frameworks that integrate climatic factors and forward-looking modeling. Key research themes now include ecological flows across landscape mosaics, land-use dynamics, and the anthropogenic transformation of ecosystems. However, several challenges persist, including the lack of long-term temporal datasets, uneven geographic coverage, and limited integration of local knowledge systems. Notable advances have been made through high-resolution remote sensing and participatory methods, although their application is still limited by technical and financial constraints. This manuscript advocates for stronger interdisciplinary collaboration, improved field methodologies, and the development of context-appropriate tools to support sustainable and locally grounded landscape management in the Congolese context.
Full article

Figure 1
Open AccessArticle
Revealing Unproductive Areas in the Caatinga Biome: A Remote Sensing Approach to Monitoring Land Degradation in Drylands
by
Diêgo P. Costa, Rodrigo N. Vasconcelos, Soltan Galano Duverger, Stefanie M. Herrmann, Washington J. S. Franca Rocha, Nerivaldo Afonso Santos, Deorgia T. M. Souza, André T. Cunha Lima and Carlos A. D. Lentini
Earth 2025, 6(3), 96; https://doi.org/10.3390/earth6030096 (registering DOI) - 11 Aug 2025
Abstract
►▼
Show Figures
Land degradation in drylands represents a critical environmental challenge, with persistent bare soil serving as a key indicator of ecosystem vulnerability, including in the Caatinga biome. This study maps and analyzes the spatial and temporal dynamics of persistent bare soils over three decades
[...] Read more.
Land degradation in drylands represents a critical environmental challenge, with persistent bare soil serving as a key indicator of ecosystem vulnerability, including in the Caatinga biome. This study maps and analyzes the spatial and temporal dynamics of persistent bare soils over three decades using multi-temporal remote sensing data. We applied Spectral Mixture Analysis (SMA), temporal metrics, and machine learning classifiers within Google Earth Engine to process long-term Landsat datasets and to derive the Normalized Difference Fraction Index Adjusted (NDFIa). The results indicate a widespread increase in bare soil, with over 63% of mapped hexagons showing expansion, particularly in the São Francisco Basin. Peaks in soil exposure coincided with severe drought events, highlighting the link between climate variability and land degradation. Moreover, abandoned agricultural lands and pasturelands emerged as the dominant contributors to persistent bare soils. These findings reinforce the need for targeted policies to mitigate land degradation and to promote sustainable land management in semi-arid ecosystems. This research provides a robust framework for long-term environmental monitoring in drylands by integrating satellite data with advanced analytical techniques. These advancements support more effective land management and conservation strategies in semi-arid ecosystems.
Full article

Figure 1
Open AccessArticle
Enhancing Resilience and Self-Sufficiency in the Water–Energy–Food Nexus: A Case Study of Hydroponic Greenhouse Systems in Central Greece
by
G.-Fivos Sargentis, Errikos Markatos, Nikolaos Malamos and Theano Iliopoulou
Earth 2025, 6(3), 95; https://doi.org/10.3390/earth6030095 - 11 Aug 2025
Abstract
►▼
Show Figures
The water–energy–food (WEF) nexus provides a critical framework for addressing the interconnected challenges of resource scarcity and sustainability in the face of global population growth and climate variability. This study investigates the application of a WEF nexus approach within the operation and management
[...] Read more.
The water–energy–food (WEF) nexus provides a critical framework for addressing the interconnected challenges of resource scarcity and sustainability in the face of global population growth and climate variability. This study investigates the application of a WEF nexus approach within the operation and management of a hydroponic greenhouse unit in Central Greece, with the aim of enhancing the unit’s energy autonomy and resource sufficiency. Hydroponics, a soilless cultivation method, optimizes water and land use but relies heavily on energy inputs, necessitating integrated solutions. Through the case study approach, we analyze the unit’s resource dynamics per hectare of water (68 MWh equivalent from desalination), energy (125 MWh or 321 GJ/ha plus 74.5 GJ/ha for fertigation), and food production (~295 tons, which contains 50,250,000 kcal and corresponds to 210 GJ) and propose technical solutions: photovoltaic panels as greenhouse coverings and water rain harvesting regulated with a small reservoir. These innovations could reduce external energy dependency by 90–95% and water use by 25–35%. Energy efficiency is quantified using the energy ratio (ER) and net energy gain (NEG), while resilience is assessed via system reliability under resource variability. Conclusively, this study illustrates how a nexus-based approach can effectively upgrade systems into climate-resilient, resource-efficient models as the abundance or scarcity of one source affects the availability or limitation of the others. Overall, the approach presented in this study could also be used to safeguard the supply chains in megacities.
Full article

Figure 1
Open AccessArticle
Identification of Non-Turbulent Motions for Enhanced Estimation of Land–Atmosphere Transport Through the Anisotropy of Turbulence
by
Zihan Liu, Hongsheng Zhang, Xuhui Cai and Yu Song
Earth 2025, 6(3), 94; https://doi.org/10.3390/earth6030094 - 10 Aug 2025
Abstract
►▼
Show Figures
Quantifying land–atmosphere transport remains crucial for advancing climate prediction and weather forecasting efforts. To improve turbulent flux estimation, the anisotropy of turbulence is taken into consideration. The parameters and , which quantify anisotropy degrees across motion scales, form trajectories
[...] Read more.
Quantifying land–atmosphere transport remains crucial for advancing climate prediction and weather forecasting efforts. To improve turbulent flux estimation, the anisotropy of turbulence is taken into consideration. The parameters and , which quantify anisotropy degrees across motion scales, form trajectories in the barycentric map. Using the Hilbert–Huang transform, the scale-dependent properties of anisotropy in observational data from multiple sites are investigated. Analysis reveals consistent patterns in the average trajectories across stratification conditions: as scale increases, increases from 0.4 to 0.9, while initially climbs from 0.5 to 0.7 before declining to 0. Meanwhile, individual case trajectories sometimes deviate from this pattern, indicating contamination by non-turbulent motions that typically cause turbulent flux overestimation. Crucially, identifying the scale at which deviations occur allows effective separation of atmospheric turbulence from non-turbulent motions, which enables the reconstruction of turbulence data. Results demonstrate that corrected fluxes reduce overestimation inherent in traditional eddy covariance systems by approximately 30%, with enhancements for CO2 and air pollutants reaching 45–83%. Furthermore, the correlation between anisotropy and stratification suggests potential for refining similarity theories into a broader scope, such as carbon cycle assessment and pollution control. Therefore, anisotropy shows promise in quantifying the land–atmosphere transport.
Full article

Figure 1
Open AccessArticle
Local Perspectives on the Role of Dams in Altering River Ecosystem Services in West Africa
by
Jean Hounkpe, Yaovi Aymar Bossa, Félicien Djigbo Badou, Flaurine Nouasse, Koupamba Gisèle Sanni Sinasson, Issoufou Yangouliba, Afissétou L. D. Bio Salifou, Irette Kodjogbe, Yacouba Yira, Ozias Hounkpatin, Luc O. C. Sintondji and Daouda Mama
Earth 2025, 6(3), 93; https://doi.org/10.3390/earth6030093 - 7 Aug 2025
Abstract
Water-related ecosystem services provide a broad range of benefits, including the mitigation of extreme hydrometeorological events, the provision of water for various uses, the support of tourism, and the provision of cultural services. This study assesses the perceptions and accessibility of these services
[...] Read more.
Water-related ecosystem services provide a broad range of benefits, including the mitigation of extreme hydrometeorological events, the provision of water for various uses, the support of tourism, and the provision of cultural services. This study assesses the perceptions and accessibility of these services among communities located near the Alafiarou and Okpara dams in Benin and the Bagré dam in Burkina Faso. The methodology involved designing and implementing a questionnaire in KoboCollect, with trained agents deployed to conduct data collection at each of the three sites. Data analysis indicates that respondents identified biodiversity conservation and the provision of drinking water as the most crucial ecosystem services. Over two-thirds of participants reported observing both positive and negative changes in the services provided by rivers and in socio-economic activities since the construction of the dams. While the majority noted improvements in agriculture, irrigation, water quality, fisheries, and flow rates, other changes included biodiversity loss, a decrease in vegetation cover (notably trees and shrubs), an increase in the population of mosquitoes and other insects, and a decline in fishery resources downstream. Despite these challenges, local communities were strongly willing to participate in initiatives aimed at protecting and restoring river ecosystems and their related services.
Full article
(This article belongs to the Topic Global Ecology Culture and Environmental Management for Rural Revitalization and Dual Carbon Strategy)
►▼
Show Figures

Figure 1
Open AccessArticle
Altitude and Temperature Drive Spatial and Temporal Changes in Vegetation Cover on the Eastern Tibetan Plateau
by
Yu Feng, Hongjin Zhu, Xiaojuan Zhang, Feilong Qin, Peng Ye, Pengtao Niu, Xueman Wang and Songlin Shi
Earth 2025, 6(3), 92; https://doi.org/10.3390/earth6030092 - 6 Aug 2025
Abstract
►▼
Show Figures
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and
[...] Read more.
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and topography on vegetation cover. In this research, we selected the Shaluli Mountains (SLLM) in the ETP as the study area, monitored the spatial and temporal dynamics of the regional vegetation cover using remote sensing methods, and quantified the drivers of vegetation change using Geodetector (GD). The results showed a decreasing trend in annual precipitation (PRE) (−2.4054 mm/year) and the Palmer Drought Severity Index (PDSI) (−0.1813/year) in the SLLM. Annual maximum temperature (TMX) on the spatial and temporal scales showed an overall increasing trend, and the regional climate tended to become warmer and drier. Since 2000, fractional vegetation cover (FVC) has shown a fluctuating upward trend, with an average value of 0.6710, and FVC has spatially shown a pattern of “low in the middle and high in the surroundings”. The areas with non-significant increases (p > 0.05) and significant increases (p < 0.05) in FVC accounted for 46.03% and 5.76% of the SLLM. Altitude (q = 0.3517) and TMX (q = 0.3158) were the main drivers of FVC changes. As altitude and TMX increased, FVC showed a trend of increasing and then decreasing. The results of this study help us to clarify the influence of climate and topography on the vegetation ecosystem of the ETP and provide a scientific basis for regional biodiversity conservation and sustainable development.
Full article

Figure 1
Open AccessEssay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by
Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of
[...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications.
Full article
(This article belongs to the Topic Global Farmland Protection, Food Security and Land Use Planning)
►▼
Show Figures

Figure 1
Open AccessArticle
Flood Hazard Assessment and Monitoring in Bangladesh: An Integrated Approach for Disaster Risk Mitigation
by
Kashfia Nowrin Choudhury and Helmut Yabar
Earth 2025, 6(3), 90; https://doi.org/10.3390/earth6030090 - 5 Aug 2025
Abstract
►▼
Show Figures
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate
[...] Read more.
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate an effective disaster management policy. Nevertheless, the nation confronts considerable obstacles due to insufficient historical flood damage data and the underdevelopment of near-real-time (NRT) flood monitoring systems. This study addresses this issue by developing a replicable methodology for flood damage assessment and NRT monitoring systems. Using the Google Earth Engine (GEE) platform, we analyzed flood events from 2019 to 2023, integrating geospatial layers such as roads, cropland, etc. Analysis of flood events over the five-year period revealed substantial impacts, with 21.60% of the total area experiencing inundation. This flooding affected 6.92% of cropland and 4.16% of the population. Furthermore, 18.10% of the road network, spanning over 21,000 km within the study area, was also affected. This system has the potential to enhance emergency response capabilities during flood events and inform more effective disaster mitigation policies.
Full article

Figure 1
Open AccessArticle
Predictive Analysis of Hydrological Variables in the Cahaba Watershed: Enhancing Forecasting Accuracy for Water Resource Management Using Time-Series and Machine Learning Models
by
Sai Kumar Dasari, Pooja Preetha and Hari Manikanta Ghantasala
Earth 2025, 6(3), 89; https://doi.org/10.3390/earth6030089 - 4 Aug 2025
Abstract
►▼
Show Figures
This study presents a hybrid approach to hydrological forecasting by integrating the physically based Soil and Water Assessment Tool (SWAT) model with Prophet time-series modeling and machine learning–based multi-output regression. Applied to the Cahaba watershed, the objective is to predict key environmental variables
[...] Read more.
This study presents a hybrid approach to hydrological forecasting by integrating the physically based Soil and Water Assessment Tool (SWAT) model with Prophet time-series modeling and machine learning–based multi-output regression. Applied to the Cahaba watershed, the objective is to predict key environmental variables (precipitation, evapotranspiration (ET), potential evapotranspiration (PET), and snowmelt) and their influence on hydrological responses (surface runoff, groundwater flow, soil water, sediment yield, and water yield) under present (2010–2022) and future (2030–2042) climate scenarios. Using SWAT outputs for calibration, the integrated SWAT-Prophet-ML model predicted ET and PET with RMSE values between 10 and 20 mm. Performance was lower for high-variability events such as precipitation (RMSE = 30–50 mm). Under current climate conditions, R2 values of 0.75 (water yield) and 0.70 (surface runoff) were achieved. Groundwater and sediment yields were underpredicted, particularly during peak years. The model’s limitations relate to its dependence on historical trends and its limited representation of physical processes, which constrain its performance under future climate scenarios. Suggested improvements include scenario-based training and integration of physical constraints. The approach offers a scalable, data-driven method for enhancing monthly water balance prediction and supports applications in watershed planning.
Full article

Figure 1
Open AccessCommentary
A Lens on Fire Risk Drivers: The Role of Climate and Vegetation Index Anomalies in the May 2025 Manitoba Wildfires
by
Afshin Amiri, Silvio Gumiere and Hossein Bonakdari
Earth 2025, 6(3), 88; https://doi.org/10.3390/earth6030088 - 1 Aug 2025
Abstract
►▼
Show Figures
In early May 2025, extreme wildfires swept across Manitoba, Canada, fueled by unseasonably warm temperatures, prolonged drought, and stressed vegetation. We explore how multi-source satellite indicators—such as anomalies in snow cover, precipitation, temperature, vegetation indices, and soil moisture in April–May—jointly signal landscape preconditioning
[...] Read more.
In early May 2025, extreme wildfires swept across Manitoba, Canada, fueled by unseasonably warm temperatures, prolonged drought, and stressed vegetation. We explore how multi-source satellite indicators—such as anomalies in snow cover, precipitation, temperature, vegetation indices, and soil moisture in April–May—jointly signal landscape preconditioning for fire, highlighting the potential of these compound anomalies to inform fire risk awareness in boreal regions. Results indicate that rainfall deficits and diminished snowpack significantly reduced soil moisture, which subsequently decreased vegetative greenness and created a flammable environment prior to ignition. This concept captures how multiple moderate anomalies, when occurring simultaneously, can converge to create high-impact fire conditions that would not be flagged by individual thresholds alone. These findings underscore the importance of integrating climate and biosphere anomalies into wildfire risk monitoring to enhance preparedness in boreal regions under accelerating climate change.
Full article

Figure 1
Open AccessArticle
Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census
by
Cássio Filipe Vieira Martins, Franciele Caroline Guerra, Anderson Targino da Silva Ferreira and Roger Dias Gonçalves
Earth 2025, 6(3), 87; https://doi.org/10.3390/earth6030087 - 1 Aug 2025
Abstract
►▼
Show Figures
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a
[...] Read more.
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a spatially explicit and low-cost proxy for urban tree census data. CBERS-4A provides medium-resolution multispectral data freely accessible across South America, yet remains underutilized in urban environmental applications. Focusing on Aracaju, a metropolitan region in northeastern Brazil, we compared NDVI-based classification results with official municipal tree census data from 2022. The analysis revealed a strong spatial correlation, supporting the use of NDVI as a reliable indicator of canopy presence at the urban block scale. In addition to mapping vegetation distribution, the NDVI results identified areas with insufficient canopy coverage, directly informing urban greening priorities. By validating remote sensing data against field inventories, this study demonstrates how CBERS-4A imagery and vegetation indices can support municipal tree management and serve as scalable tools for environmental planning and policy.
Full article

Graphical abstract
Open AccessArticle
The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques
by
Pedro Vicente Vaca-Cárdenas, Eduardo Antonio Muñoz-Jácome, Maritza Lucia Vaca-Cárdenas, Diego Francisco Cushquicullma-Colcha and José Guerrero-Casado
Earth 2025, 6(3), 86; https://doi.org/10.3390/earth6030086 - 1 Aug 2025
Abstract
►▼
Show Figures
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in
[...] Read more.
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in January 2024, its thickness (from 2.5 m to 0.71 m), and its volume (from 2638.85 m3 to 457.18 m3), before its complete deglaciation in February 2024; this rapid melting and its small size classify it as a glacierette. Multivariate analyses (PCA and biclustering) were performed to correlate climatic variables (temperature, solar radiation, precipitation, relative humidity, vapor pressure, and wind) with glacier surface and thickness. The PCA explained 70.26% of the total variance, with Axis 1 (28.01%) associated with extreme thermal conditions (temperatures up to 8.18 °C and radiation up to 16.14 kJ m−2 day−1), which probably drove its disappearance. Likewise, Axis 2 (21.56%) was related to favorable hydric conditions (precipitation between 39 and 94 mm) during the initial phase of glacier monitoring. Biclustering identified three groups of variables: Group 1 (temperature, solar radiation, and vapor pressure) contributed most to deglaciation; Group 2 (precipitation, humidity) apparently benefited initial stability; and Group 3 (wind) played a secondary role. These results, validated through in situ measurements, provide scientific evidence of the disappearance of the Carihuairazo volcano glacier by February 2024. They also corroborate earlier projections that anticipated its extinction by the middle of this decade. The early disappearance of this glacier highlights the vulnerability of small tropical Andean glaciers and underscores the urgent need for water security strategies focused on management, adaptation, and resilience.
Full article

Figure 1
Open AccessArticle
National Multi-Scenario Simulation of Low-Carbon Land Use to Achieve the Carbon-Neutrality Target in China
by
Junjun Zhi, Chenxu Han, Qiuchen Yan, Wangbing Liu, Likang Zhang, Zuyuan Wang, Xinwu Fu and Haoshan Zhao
Earth 2025, 6(3), 85; https://doi.org/10.3390/earth6030085 - 1 Aug 2025
Abstract
►▼
Show Figures
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and
[...] Read more.
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and population) affect simulation outcomes and how the land use spatial configuration impacts the attainment of the carbon-neutrality goal. In this research, 1 km spatial resolution LULC products were employed to meticulously simulate multiple land use scenarios across China at the national level from 2030 to 2060. This was performed by taking into account the dynamic changes in driving factors. Subsequently, an analysis was carried out on the low-carbon land use spatial structure required to reach the carbon-neutrality target. The findings are as follows: (1) When employing the PLUS (Patch—based Land Use Simulation) model to conduct simulations of various land use scenarios in China by taking into account the dynamic alterations in driving factors, a high degree of precision was attained across diverse scenarios. The sustainable development scenario demonstrated the best performance, with kappa, OA, and FoM values of 0.9101, 93.15%, and 0.3895, respectively. This implies that the simulation approach based on dynamic factors is highly suitable for national-scale applications. (2) The simulation accuracy of the PLUS and GeoSOS-FLUS (Systems for Geographical Modeling and Optimization, Simulation of Future Land Utilization) models was validated for six scenarios by extrapolating the trends of influencing factors. Moreover, a set of scenarios was added to each model as a control group without extrapolation. The present research demonstrated that projecting the trends of factors having an impact notably improved the simulation precision of both the PLUS and GeoSOS-FLUS models. When contrasted with the GeoSOS-FLUS model, the PLUS model attained superior simulation accuracy across all six scenarios. The highest precision indicators were observed in the sustainable development scenario, with kappa, OA, and FoM values reaching 0.9101, 93.15%, and 0.3895, respectively. The precise simulation method of the PLUS model, which considers the dynamic changes in influencing factors, is highly applicable at the national scale. (3) Under the sustainable development scenario, it is anticipated that China’s land use carbon emissions will reach their peak in 2030 and achieve the carbon-neutrality target by 2060. Net carbon emissions are expected to decline by 14.36% compared to the 2020 levels. From the perspective of dynamic changes in influencing factors, the PLUS model was used to accurately simulate China’s future land use. Based on these simulations, multi-scenario predictions of future carbon emissions were made, and the results uncover the spatiotemporal evolution characteristics of China’s carbon emissions. This study aims to offer a solid scientific basis for policy-making related to China’s low-carbon economy and high-quality development. It also intends to present Chinese solutions and key paths for achieving carbon peak and carbon neutrality.
Full article

Figure 1
Open AccessArticle
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by
Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 - 1 Aug 2025
Abstract
►▼
Show Figures
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and
[...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures.
Full article

Figure 1
Open AccessArticle
Physicochemical and Sediment Characterization of El Conejo Lagoon in Altamira, Tamaulipas, Mexico
by
Sheila Genoveva Pérez-Bravo, Jonathan Soriano-Mar, Ulises Páramo-García, Luciano Aguilera-Vázquez, Leonardo Martínez-Cardenas, Claudia Araceli Dávila-Camacho and María del Refugio Castañeda-Chávez
Earth 2025, 6(3), 83; https://doi.org/10.3390/earth6030083 - 25 Jul 2025
Abstract
►▼
Show Figures
Fresh water is vital for human activities; however, an increase in the contamination of water bodies has been observed, so it is necessary to monitor the degree of contamination and take measures to preserve it. In Altamira, Tamaulipas, the Guayalejo-Tamesí River basin has
[...] Read more.
Fresh water is vital for human activities; however, an increase in the contamination of water bodies has been observed, so it is necessary to monitor the degree of contamination and take measures to preserve it. In Altamira, Tamaulipas, the Guayalejo-Tamesí River basin has three estuaries and seven lagoons, including Laguna El Conejo, of which the National Water Commission only monitors one. The objective of this research is to determine water quality on the basis of the parameters COD, BOD5, T, pH, and sediment characteristics. The open reflux method was used according to NMX-AA-030-SCFI-2012 for COD, BOD Track II, HACH equipment for BOD5, and the granulometric characterization recommended by the Unified Soil Classification System ASTM D-2487-17. The water was found to be uniformly contaminated throughout its length in the range of 117.3–200 mg/L COD, and BOD5 ranged from 15.8–112.75 mg/L throughout the study period, with sediments dominated by poorly graded soil and fine clay. Comprehensive management is needed because the BOD5/COD ratio varies between 0.11and 0.56, indicating that it contains recalcitrant organic matter, which is difficult to biodegrade.
Full article

Figure 1
Open AccessArticle
Modelling Nature Connectedness Within Environmental Systems: Human-Nature Relationships from 1800 to 2020 and Beyond
by
Miles Richardson
Earth 2025, 6(3), 82; https://doi.org/10.3390/earth6030082 - 23 Jul 2025
Abstract
►▼
Show Figures
Amid global environmental changes, urbanisation erodes nature connectedness, an important driver of pro-environmental behaviours and human well-being, exacerbating human-made risks like biodiversity loss and climate change. This study introduces a novel hybrid agent-based model (ABM), calibrated with historical urbanisation data, to explore how
[...] Read more.
Amid global environmental changes, urbanisation erodes nature connectedness, an important driver of pro-environmental behaviours and human well-being, exacerbating human-made risks like biodiversity loss and climate change. This study introduces a novel hybrid agent-based model (ABM), calibrated with historical urbanisation data, to explore how urbanisation, opportunity and orientation to engage with nature, and intergenerational transmission have shaped nature connectedness over time. The model simulates historical trends (1800–2020) against target data, with projections extending to 2125. The ABM revealed a significant nature connectedness decline with excellent fit to the target data, derived from nature word use in cultural products. Although a lifetime ‘extinction of experience’ mechanism refined the fit, intergenerational transmission emerged as the dominant driver—supporting a socio-ecological tipping point in human–nature disconnection. Even with transformative interventions like dramatic urban greening and enhanced nature engagement, projections suggest a persistent disconnection from nature through to 2050, highlighting locked-in risks to environmental stewardship. After 2050, the most transformative interventions trigger a self-sustaining recovery, highlighting the need for sustained, systemic policies that embed nature connectedness into urban planning and education.
Full article

Figure 1
Open AccessArticle
Evolutionary-Assisted Data-Driven Approach for Dissolved Oxygen Modeling: A Case Study in Kosovo
by
Bruno da S. Macêdo, Larissa Lima, Douglas Lima Fonseca, Tales H. A. Boratto, Camila M. Saporetti, Osman Fetoshi, Edmond Hajrizi, Pajtim Bytyçi, Uilson R. V. Aires, Roland Yonaba, Priscila Capriles and Leonardo Goliatt
Earth 2025, 6(3), 81; https://doi.org/10.3390/earth6030081 - 21 Jul 2025
Abstract
►▼
Show Figures
Dissolved oxygen (DO) is widely recognized as a fundamental parameter in assessing water quality, given its critical role in supporting aquatic ecosystems. Accurate estimation of DO levels is crucial for effective management of riverine environments, especially in anthropogenically stressed regions. In this study,
[...] Read more.
Dissolved oxygen (DO) is widely recognized as a fundamental parameter in assessing water quality, given its critical role in supporting aquatic ecosystems. Accurate estimation of DO levels is crucial for effective management of riverine environments, especially in anthropogenically stressed regions. In this study, a hybrid machine learning (ML) framework is introduced to predict DO concentrations, where optimization is performed through Genetic Algorithm Search with Cross-Validation (GASearchCV). The methodology was applied to a dataset collected from the Sitnica River in Kosovo, comprising more than 18,000 observations of temperature, conductivity, pH, and dissolved oxygen. The ML models Elastic Net (EN), Support Vector Regression (SVR), and Light Gradient Boosting Machine (LGBM) were fine-tuned using cross-validation and assessed using five performance metrics: coefficient of determination ( ), root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error MARE, and mean square error (MSE). Among them, the LGBM model yielded the best predictive results, achieving an of 0.944 and RMSE of 8.430 mg/L on average. A Monte Carlo Simulation-based uncertainty analysis further confirmed the model’s robustness, enabling comparison of the trade-off between uncertainty and predictive precision. Comparison with recent studies confirms the proposed framework’s competitive performance, demonstrating the effectiveness of automated tuning and ensemble learning in achieving reliable and real-time water quality forecasting. The methodology offers a scalable and reliable solution for advancing data-driven water quality forecasting, with direct applicability to real-time environmental monitoring and sustainable resource management.
Full article

Figure 1
Open AccessArticle
Satellite-Based Approach for Crop Type Mapping and Assessment of Irrigation Performance in the Nile Delta
by
Samar Saleh, Saher Ayyad and Lars Ribbe
Earth 2025, 6(3), 80; https://doi.org/10.3390/earth6030080 - 16 Jul 2025
Abstract
►▼
Show Figures
Water scarcity, exacerbated by climate change, population growth, and competing sectoral demands, poses a major threat to agricultural sustainability, particularly in irrigated regions such as the Nile Delta in Egypt. Addressing this challenge requires innovative approaches to evaluate irrigation performance despite the limitations
[...] Read more.
Water scarcity, exacerbated by climate change, population growth, and competing sectoral demands, poses a major threat to agricultural sustainability, particularly in irrigated regions such as the Nile Delta in Egypt. Addressing this challenge requires innovative approaches to evaluate irrigation performance despite the limitations in ground data availability. Traditional assessment methods are often costly, labor-intensive, and reliant on field data, limiting their scalability, especially in data-scarce regions. This paper addresses this gap by presenting a comprehensive and scalable framework that employs publicly accessible satellite data to map crop types and subsequently assess irrigation performance without the need for ground truthing. The framework consists of two parts: First, crop mapping, which was conducted seasonally between 2015 and 2020 for the four primary crops in the Nile Delta (rice, maize, wheat, and clover). The WaPOR v2 Land Cover Classification layer was used as a substitute for ground truth data to label the Landsat-8 images for training the random forest algorithm. The crop maps generated at 30 m resolution had moderate to high accuracy, with overall accuracy ranging from 0.77 to 0.80 in summer and 0.87–0.95 in winter. The estimated crop areas aligned well with national agricultural statistics. Second, based on the mapped crops, three irrigation performance indicators—adequacy, reliability, and equity—were calculated and compared with their established standards. The results reveal a good level of equity, with values consistently below 10%, and a relatively reliable water supply, as indicated by the reliability indicator (0.02–0.08). Average summer adequacy ranged from 0.4 to 0.63, indicating insufficient supply, whereas winter values (1.3 to 1.7) reflected a surplus. A noticeable improvement gradient was observed for all indicators toward the north of the delta, while areas located in the delta’s new lands consistently displayed unfavorable conditions in all indicators. This approach facilitates the identification of regions where agricultural performance falls short of its potential, thereby offering valuable insights into where and how irrigation systems can be strategically improved to enhance overall performance sustainably.
Full article

Figure 1
Open AccessArticle
Land Use Land Cover (LULC) Mapping for Assessment of Urbanization Impacts on Cropping Patterns and Water Availability in Multan, Pakistan
by
Khawaja Muhammad Zakariya, Tahir Sarwar, Hafiz Umar Farid, Raffaele Albano, Muhammad Azhar Inam, Muhammad Shoaib, Abrar Ahmad and Matlob Ahmad
Earth 2025, 6(3), 79; https://doi.org/10.3390/earth6030079 - 14 Jul 2025
Abstract
►▼
Show Figures
Urbanization is causing a decrease in agricultural land. This leads to changes in cropping patterns, irrigation water availability, and water allowance. Therefore, change in cropping pattern, irrigation water availability, and water allowance were investigated in the Multan region of Pakistan using remote sensing
[...] Read more.
Urbanization is causing a decrease in agricultural land. This leads to changes in cropping patterns, irrigation water availability, and water allowance. Therefore, change in cropping pattern, irrigation water availability, and water allowance were investigated in the Multan region of Pakistan using remote sensing and GIS techniques. The multi-temporal Landsat images with 30 m resolution were acquired for both Rabi (winter) and Kharif (summer) seasons for the years of 1988, 1999 and 2020. The image processing tasks including layer stacking, sub-setting, land use/land cover (LULC) classification, and accuracy assessment were performed using ERDAS Imagine (2015) software. The LULC maps showed a considerable shift of orchard area to urban settlements and other crops. About 82% of orchard areas have shifted to urban settlements and other crops from 1988 to 2020. The LULC maps for Kharif season indicated that cropped areas for cotton have decreased by 42.5% and the cropped areas for rice have increased by 718% in the last 32 years (1988–2020). During the rabi season, the cropped areas for wheat (Triticum aestivum L.) have increased by 27% from 1988 to 2020. The irrigation water availability and water allowance have increased up to 125 and 110% due to decrease in agricultural land, respectively. The overall average accuracies were found as 87 and 89% for Rabi and Kharif crops, respectively. The LULC mapping technique may be used to develop a decision support system for evaluating the changes in cropping pattern and their impacts on net water availability and water allowances.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Climate, Diversity, Forests, Plants, Sustainability, Earth
Responses of Trees and Forests to Climate Change
Topic Editors: Qinglai Dang, Ilona Mészáros, Lei WangDeadline: 30 August 2025
Topic in
Energies, Hydrology, Remote Sensing, Water, Climate, Earth, Sustainability
Climate Change and Human Impact on Freshwater Water Resources: Rivers and Lakes
Topic Editors: Leszek Sobkowiak, Arthur Mynett, David PostDeadline: 30 September 2025
Topic in
Agriculture, Agronomy, Analytica, Horticulturae, IJPB, Plants, Earth, Agrochemicals
Biostimulants in Agriculture—2nd Edition
Topic Editors: Manuel Ângelo Rosa Rodrigues, Paolo Carletti, Domenico RongaDeadline: 30 October 2025
Topic in
Atmosphere, Buildings, Climate, Environments, Sustainability, Earth
Climate, Health and Cities: Building Aspects for a Resilient Future
Topic Editors: Ferdinando Salata, Virgilio Ciancio, Simona MannucciDeadline: 20 November 2025

Special Issues
Special Issue in
Earth
Effects of Electromagnetic Fields on Ecological Systems
Guest Editors: Daniela Baldantoni, Alessandro BellinoDeadline: 30 September 2025
Special Issue in
Earth
Sustainable Landscapes: Integrating Physical Geography, Ecotourism, and Nature Conservation
Guest Editors: Sanja Obradović Strålman, Nikola Milentijević, Ioannis CharalampopoulosDeadline: 1 February 2026
Special Issue in
Earth
Special Issue Series: Young Investigators in Earth Science
Guest Editor: Charles JonesDeadline: 31 July 2026