-
National Multi-Scenario Simulation of Low-Carbon Land Use to Achieve the Carbon-Neutrality Target in China
-
Anisotropy-Based Estimation of Land–Atmosphere Turbulent Transport
-
A Lens on Fire Risk Drivers: The Role of Climate and Vegetation Index Anomalies in the May 2025 Manitoba Wildfires
-
Modelling Human-Nature Relationships from 1800 to 2020 and Beyond
-
Water Sensitive Urban Design in Wet Tropics under Climate Change
Journal Description
Earth
Earth
is an international, peer-reviewed, open access journal on earth science, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, GeoRef, AGRIS, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 19.4 days after submission; acceptance to publication is undertaken in 4.3 days (median values for papers published in this journal in the first half of 2025).
- Journal Rank: JCR - Q2 (Geosciences, Multidisciplinary) / CiteScore - Q1 (Earth and Planetary Sciences (miscellaneous))
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Journal Cluster of Geospatial and Earth Sciences: Remote Sensing, Geosciences, Quaternary, Earth, Geographies, Geomatics and Fossil Studies.
Impact Factor:
3.4 (2024);
5-Year Impact Factor:
3.0 (2024)
Latest Articles
Impact of Climate Change on the Spatio-Temporal Groundwater Recharge Using WetSpass-M Model in the Weyib Watershed, Ethiopia
Earth 2025, 6(4), 118; https://doi.org/10.3390/earth6040118 - 28 Sep 2025
Abstract
►
Show Figures
Comprehension of spatio-temporal groundwater recharge (GWR) under climate change is imperative to enhance water resources availability and management. The main aim of this study is to examine climate change’s effects on spatio-temporal GWR. This study was done by ensembling five climate models and
[...] Read more.
Comprehension of spatio-temporal groundwater recharge (GWR) under climate change is imperative to enhance water resources availability and management. The main aim of this study is to examine climate change’s effects on spatio-temporal GWR. This study was done by ensembling five climate models and the physically-based WetSpass-M model to estimate GWR during baseline (1986 to 2015), mid-term (2031 to 2060), and long-term (2071 to 2100) periods for the Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. In comparison to the Identification of unit Hydrographs and Component flows from Rainfall, Evaporation, and Streamflow (IHACRES)’s baseflow and direct runoff with corresponding WetSpass-M model outputs, the statistical indices showed good performance in simulating water balance components. Projected future temperature and rainfall will likely increase dramatically compared to the baseline period for RCP4.5 and RCP8.5. In comparison to the baseline period, the annual GWR had been projected to increase by 4.28 mm for RCP4.5 for the mid-term (MidT4.5), 15.27 mm for the long-term (LongT4.5), 2.38 mm for the mid-term (MidT8.5), and 13.11 mm for the long-term for RCP8.5 (LongT8.5), respectively. The seasonal GWR findings showed an increasing pattern during winter and spring, whereas it declined in autumn and summer. The mean monthly GWR for MidT4.5, LongT4.5, MidT8.5, and LongT8.5 will increase by 0.34, 1.26, 0.18, and 1.07 mm, respectively. The watershed’s downstream areas were receiving the lowest amount of GWR, and prone to drought. Therefore, this study advocates and recommends that stakeholders participate intensively in developing and implementing climate change resilience initiatives and water resources management strategies to offset the detrimental effects in the downstream areas.
Full article
Open AccessArticle
A Fresh Look at Freshwaters—River Literacy Principles for the Environmental Education of Riverside Communities Affected by Water Scarcity, Desertification and Transboundary River Pollution
by
Attila D. Molnár, Gudrun Obersteiner, Sabine Lenz, Uroš Robič, Tine Bizjak, Stefan Trdan, Dejan Ubavin, Dusan Milovanovic, Violin S. Raykov, Martin Kováč, Michal Kravčík, Helene Masliah-Gilkarov, Fruzsina Kardoss, Gergely Hankó, Zsuzsanna Bitter and Tímea Kiss
Earth 2025, 6(4), 117; https://doi.org/10.3390/earth6040117 - 27 Sep 2025
Abstract
►▼
Show Figures
The sustainable management of water resources requires experts and also citizens who understand the hydrosphere and its key functions. To educate the public about water-related issues, various water literacy concepts have been developed. However, many of these concepts are too complex for people
[...] Read more.
The sustainable management of water resources requires experts and also citizens who understand the hydrosphere and its key functions. To educate the public about water-related issues, various water literacy concepts have been developed. However, many of these concepts are too complex for people to understand. In contrast, the ocean literacy framework effectively translates knowledge into behavioral changes and actions. The Danube River, known as the world’s most international river, has a catchment area shared by 19 countries. This river basin has experienced unprecedented landscape alterations, floods, droughts, and pollution events, highlighting the need for a new approach to environmental education. Additionally, globally, more people live near rivers than by the ocean. To empower members of riverside communities with water literacy, we aimed to adapt the ocean literacy principles into river literacy principles. In this study, we introduce a novel concept of river literacy, consisting of seven principles. This framework aims to support sustainable development goals through education and to restore and revive damaged freshwater habitats more effectively. The principles were tested in formal education across five countries. The results indicate that participants in river literacy programs became more motivated to protect rivers, and their understanding of fluvial geography and riverine pollution improved.
Full article

Figure 1
Open AccessReview
Miyawaki and Urban Tiny Forests in Italy
by
Bartolomeo Schirone, Antonio Pica, Fabiola Fratini, Patrizia Menegoni and Kevin Cianfaglione
Earth 2025, 6(4), 116; https://doi.org/10.3390/earth6040116 - 26 Sep 2025
Abstract
►▼
Show Figures
Rapid urbanization and climate change demand innovative green solutions in city planning. Tiny forests—small artificial wooded areas in urban or peri-urban settings—are gaining attention. This paper explores the use of the Miyawaki method to establish such forests in Italy, highlighting their environmental and
[...] Read more.
Rapid urbanization and climate change demand innovative green solutions in city planning. Tiny forests—small artificial wooded areas in urban or peri-urban settings—are gaining attention. This paper explores the use of the Miyawaki method to establish such forests in Italy, highlighting their environmental and educational benefits. The study defines micro-forests (100–200 m2) and mini-forests (200–2000 m2) per legislative standards and describes the qualitative features needed for self-sustaining ecosystems. Mimicking natural succession, these forests support biodiversity, reduce urban heat, improve air quality, and act as carbon sinks. Beyond ecological functions, they offer strong pedagogical value, fostering naturalistic intelligence and reconnecting people with natural rhythms and ecosystems. Case studies from Vigevano and Rome show practical applications, demonstrating how tiny forests can enhance sustainability, community well-being, and environmental awareness in cities.
Full article

Figure 1
Open AccessArticle
Evaluating the Performance of MODIS and MERRA-2 AOD Retrievals Using AERONET Observations in the Dust Belt Region
by
Ahmad E. Samman and Mohsin Jamil Butt
Earth 2025, 6(4), 115; https://doi.org/10.3390/earth6040115 - 26 Sep 2025
Abstract
►▼
Show Figures
Aerosols from natural and anthropogenic sources exert significant yet highly variable influences on the Earth’s radiative balance characterized by pronounced spatial and temporal heterogeneity. Accurate quantification of these effects is crucial for enhancing climate projections and informing effective mitigation strategies. In this study,
[...] Read more.
Aerosols from natural and anthropogenic sources exert significant yet highly variable influences on the Earth’s radiative balance characterized by pronounced spatial and temporal heterogeneity. Accurate quantification of these effects is crucial for enhancing climate projections and informing effective mitigation strategies. In this study, we evaluated the performance of three widely used aerosol optical depth (AOD) datasets—MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2), MODIS Aqua, and MODIS Terra—by comparing them against ground-based AERONET observations from ten stations located within the dust belt region. Statistical assessments included coefficient of determination (R2), correlation coefficient (R), Index of Agreement (IOA), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Relative Mean Bias (RMB), and standard deviation (SD). The results indicate that MERRA-2 showed the highest agreement (R = 0.76), followed by MODIS Aqua (R = 0.75) and MODIS Terra (R = 0.73). Seasonal and annual AOD climatology maps revealed comparable spatial patterns across datasets, although MODIS Terra consistently reported slightly higher AOD values. These findings provide a robust assessment and reanalysis of satellite AOD products over arid regions, offering critical guidance for aerosol modeling, data assimilation, and climate impact studies.
Full article

Graphical abstract
Open AccessReview
Water and Waste Water Treatment Research in Mexico and Its Occurrence in Relation to Sustainable Development Goal 6
by
Liliana Reynoso-Cuevas, Adriana Robledo-Peralta, Naghelli Ortega-Avila and Norma A. Rodríguez-Muñoz
Earth 2025, 6(4), 114; https://doi.org/10.3390/earth6040114 - 25 Sep 2025
Abstract
In Mexico, 95% of the population has access to drinking water sources, but only about 65% of domestic waste water is treated to safe levels. This study analyzes forty years of Mexican scientific production on water and waste water treatment through a bibliometric
[...] Read more.
In Mexico, 95% of the population has access to drinking water sources, but only about 65% of domestic waste water is treated to safe levels. This study analyzes forty years of Mexican scientific production on water and waste water treatment through a bibliometric and conceptual approach, evaluating its contribution Sustainable Development Goal (SDG) 6. The analysis identified three major research clusters: (1) biological processes for water treatment, (2) development and optimization of physical–chemical processes, and (3) water quality and management. These themes reflect the evolution of biological approaches for identifying and removing organic contaminants, the application of advanced techniques for improving water quality, and the promotion of sustainable water use. The study also highlights the growing attention to emerging contaminants, nanotechnology, integrated water resource management, and persistent challenges in sanitation. With respect to SDG 6, Mexican research has mainly focused on targets 6.1 (universal and equitable access to drinking water), 6.3 (water quality), and 6.5 (water resources management), while targets 6.2 (sanitation), 6.a (international cooperation), and 6.b (community participation) remain underrepresented compared with the international benchmarks, where the research trend is on water management, resources, and the water–food–energy nexus. Finally, the findings also show synergies with SDGs 11 (sustainable cities and communities), 9 (industry, innovation, and infrastructure), and 3 (good health and well-being), although gaps persist in addressing equitable access to water and society participation.
Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluation of Geogenic Enrichment Using Satellite, Geochemical, and Aeromagnetic Data in the Central Anti-Atlas (Morocco): Implications for Soil Enrichment
by
Mouna Id-Belqas, Said Boutaleb, Fatima Zahra Echogdali, Mustapha Ikirri, Hasna El Ayady and Mohamed Abioui
Earth 2025, 6(4), 113; https://doi.org/10.3390/earth6040113 - 25 Sep 2025
Abstract
►▼
Show Figures
Natural geogenic effects lead to alterations in soil heavy metal concentrations. This study assesses the presence of elevated trace-element concentrations in the Oued Irriri watershed in southeastern Morocco. ASTER satellite imagery, geochemical, and aeromagnetic data are combined to determine the origin of these
[...] Read more.
Natural geogenic effects lead to alterations in soil heavy metal concentrations. This study assesses the presence of elevated trace-element concentrations in the Oued Irriri watershed in southeastern Morocco. ASTER satellite imagery, geochemical, and aeromagnetic data are combined to determine the origin of these anomalies. Processing of ASTER images delineated alteration zones coinciding with areas of high heavy metal anomalies by detecting hydrothermal alteration minerals, including muscovite, montmorillonite, illite, hematite, jarosite, chlorite, and epidote. Principal Component Analysis (PCA) of geochemical data distribution in soils enabled the characterization of variations in trace-element concentrations, the extraction of geochemical anomalies, and the identification of potential sources of contamination. Comparing satellite image processing results with geochemical analyses facilitated the production of a geogenic enrichment map. The study results indicate high enrichment levels of zinc, Molybdenum, and bismuth in the western basin, of purely lithological origin. Hydrothermal alteration surfaces intersect geochemical anomaly zones in the north and northeast, primarily showing the impact of fault rooting on the surface deposition of Cu, Ba, Hg, and Pb-rich deposits. This study developed a geogenic enrichment map indicating naturally affected areas, identifying potential risks to eco-environmental systems, and better preventing the effects of geogenic enrichment.
Full article

Figure 1
Open AccessArticle
Observational Evidence of Intensified Extreme Seasonal Climate Events in a Conurbation Area Within the Eastern Amazon
by
Everaldo Barreiros de Souza, Douglas Batista da Silva Ferreira, Ana Paula Paes dos Santos, Alan Cavalcanti da Cunha, João de Athaydes Silva Junior, Alexandre Melo Casseb do Carmo, Victor Hugo da Motta Paca, Thaiane Soeiro da Silva Dias, Waleria Pereira Monteiro Correa and Tercio Ambrizzi
Earth 2025, 6(4), 112; https://doi.org/10.3390/earth6040112 - 25 Sep 2025
Abstract
►▼
Show Figures
This study presents an integrated assessment of four decades (1985–2023) of environmental and climate alterations in the principal metropolitan conurbation of the eastern Brazilian Amazon, encompassing Belém and its adjacent municipalities. By combining high-resolution land use/land cover (LULC) dynamics with in situ meteorological
[...] Read more.
This study presents an integrated assessment of four decades (1985–2023) of environmental and climate alterations in the principal metropolitan conurbation of the eastern Brazilian Amazon, encompassing Belém and its adjacent municipalities. By combining high-resolution land use/land cover (LULC) dynamics with in situ meteorological data, including understudied elements, such as relative humidity (RH) and wind speed, and satellite-derived precipitation estimates (CHIRPS v3), we advance the scientific understanding of regional climate trends. Our results document significant climate shifts, including pronounced dry-season warming (+1.5 °C), atmospheric drying (−4% in RH), attenuated wind patterns (−0.4 m s−1), and altered precipitation regimes, which exhibit strong spatiotemporal coupling with extensive forest loss (−20%) and rapid urban expansion (+84%) between 1985 and 2023. Multivariate analyses reveal that these land–climate interactions are strongest during the dry regime, underscoring the role of surface–atmosphere feedbacks in amplifying regional changes. Comparative analysis of past (1980–1999) and present (2005–2024) decades demonstrates a marked intensification in the frequency and magnitude of extreme seasonal climate events. These findings elucidate a critical feedback mechanism that exacerbates climate risks in tropical urban areas. Consequently, we argue that mitigation public policies must prioritize the strict conservation of peri-urban forest fragments (vital for moisture recycling and local climate regulation) and the strategic implementation of green infrastructure aligned with prevailing wind patterns to enhance thermal comfort and resilience to hydrological extremes.
Full article

Figure 1
Open AccessArticle
Strengthening Ecosystem Sustainability and Climate Resilience Through Integrative Nature-Based Solutions in Bontioli Natural Reserve, West African Drylands
by
Issaka Abdou Razakou Kiribou, Kangbéni Dimobe and Sintayehu W. Dejene
Earth 2025, 6(3), 111; https://doi.org/10.3390/earth6030111 - 18 Sep 2025
Abstract
►▼
Show Figures
Natural reserves in the West African drylands play a critical role in sustaining livelihoods and preserving ecological integrity. However, these ecosystems face growing threats from climate variability and anthropogenic pressure. This study assesses the potential of Nature-based Solutions (NbSs) to enhance climate resilience
[...] Read more.
Natural reserves in the West African drylands play a critical role in sustaining livelihoods and preserving ecological integrity. However, these ecosystems face growing threats from climate variability and anthropogenic pressure. This study assesses the potential of Nature-based Solutions (NbSs) to enhance climate resilience and mitigate human-induced degradation in Bontioli Natural Reserve (BNR), one of the region’s key biodiversity hotspots. We employed an integrated approach combining ecological assessments, climate and anthropogenic pressures analysis, and participatory governance framework. Generalized additive modeling (GAM) is applied to assess the long-term vegetation response to climate stressors. A conceptual framework that integrates climate resilience with socio-ecological systems is developed for synergies conservation. Our findings indicate a consistent vegetation decline at a rate of 0.051 ± 0.043/year, driven by rising temperatures, and declining rainfall, which is exacerbated by anthropogenic land use pressure since 2000. Human population growth is strongly correlated with cropland expansion (R2 = 0.903) and vegetation loss (R2 = 0.793). As a result, 53.85% of species populations are declining, with 30.77% classified as endangered or vulnerable. Based on the scientific evidence, NbSs have emerged as cost-effective and sustainable strategies to restore ecological function and strengthen communities-based conservation. The proposed NbS framework offers a holistic pathway for safeguarding long-term ecosystem resilience in dryland reserves, directly contributing to Sustainable Development Goals (SDGs) 13 and 15.
Full article

Figure 1
Open AccessArticle
Comprehensive Assessment of Mercury Contamination and Health Risks from Artisanal and Small-Scale Gold Mining (ASGM) in Sukabumi, Indonesia
by
Tia Agustiani, Susi Sulistia, Fuzi Suciati, Agus Sudaryanto, Fitri Yola Amandita, Efadeswarni, Rendi Handika, Patrick Adu Poku, Margaret Boohene, Jun Kobayashi, Yasuhiro Ishibashi, Jeffrey Stewart Morrow, Yasumi Anan and Tetsuro Agusa
Earth 2025, 6(3), 110; https://doi.org/10.3390/earth6030110 - 13 Sep 2025
Abstract
►▼
Show Figures
Mercury (Hg) pollution from artisanal and small-scale gold mining (ASGM) is a global environmental and public health concern. In Indonesia, ASGM remains widespread, yet assessments of multimedia contamination and health risks are limited. This study quantified Hg concentration in water, sediment, soil, fish,
[...] Read more.
Mercury (Hg) pollution from artisanal and small-scale gold mining (ASGM) is a global environmental and public health concern. In Indonesia, ASGM remains widespread, yet assessments of multimedia contamination and health risks are limited. This study quantified Hg concentration in water, sediment, soil, fish, and cassava to evaluate environmental pollution and potential health risks in Waluran, Sukabumi, Indonesia. Mercury concentration in ASGM was higher than in the reference area, especially in fish (median: 4.76 mg/kg dw), cassava leaves (median: 15.7 mg/kg dw), and tailing sediments (median: 171 mg/kg dw). A remarkably high Hg concentration (9760 mg/kg dw) was detected in soil from amalgam-burning spots. An elevated Hg concentration was observed in the reference area, suggesting widespread contamination and potential for long-range dispersion. Over 85% of ASGM samples were categorized as heavily to extremely contaminated by the geo-accumulation index (Igeo). Bioaccumulation assessment indicated a high bioconcentration factor (BCF) in fish and moderate bioaccumulation factor (BAF) in cassava roots. Hazard Quotients (HQ) were greater than 1 for most exposure pathways in both adults and children, with the greatest risk deriving from cassava leaf consumption. These findings indicate severe Hg contamination within ASGM-affected communities and underscore the urgent need for public health interventions, environmental monitoring, and strengthened regulations to reduce Hg exposure in Indonesia.
Full article

Figure 1
Open AccessArticle
Impact of Petroleum Coke (Petcoke) PM10 on the Urban Environment of the Port Terminals of Veracruz, Mexico
by
Xóchitl Citlalli Hernández-Silva, Maria del Refugio Castañeda-Chávez, Mario Diaz González, Ángel Morán-Silva, Fabiola Lango-Reynoso and Olaya Pirene Castellanos-Onorio
Earth 2025, 6(3), 109; https://doi.org/10.3390/earth6030109 - 11 Sep 2025
Abstract
►▼
Show Figures
The Port of Veracruz, the main port in the Gulf of Mexico, has experienced a significant increase in its import and export operations, such as petroleum coke (Petcoke), a solid waste, mainly used in the steel industry. During the period of 2010–2023, approximately
[...] Read more.
The Port of Veracruz, the main port in the Gulf of Mexico, has experienced a significant increase in its import and export operations, such as petroleum coke (Petcoke), a solid waste, mainly used in the steel industry. During the period of 2010–2023, approximately 7,401,594 tons of coke were stored outdoors, generating PM10 particulate emissions due to wind erosion. These particles were dispersed to urban areas, reaching an estimated total emission of 5077 tons. The study used geospatial analysis and environmental modeling tools (ALOHA®) to evaluate the dispersion and concentration of PM10 in the atmosphere, comparing them with the limits established by the Mexican Official Standard NOM-025-SSA1-2021. The results indicate that in years with high port activity, such as 2014, PM10 concentrations exceeded the normative values, representing a potential risk to public health and urban infrastructure. This study provides critical evidence on the environmental impacts of coke handling in ports and suggests mitigation strategies, including processes for the confinement of materials and the implementation of advanced emissions monitoring systems.
Full article

Figure 1
Open AccessArticle
Water Surface Loss and Deforestation in the Brazilian Amazon Biome by Farming Expansion and Weak Legislation
by
Anderson Targino da Silva Ferreira, Maria Carolina Hernandez Ribeiro, Regina Célia de Oliveira, Maurício Lamano Ferreira and Cassiano Gustavo Messias
Earth 2025, 6(3), 108; https://doi.org/10.3390/earth6030108 - 10 Sep 2025
Abstract
►▼
Show Figures
The study examines the relationship between water surface loss and deforestation in the Brazilian Amazon, focusing on the expansion of farming (crops and agriculture, as well as pasture and livestock) and the impact of inadequate legislation from 1985 to 2023. The Amazon biome
[...] Read more.
The study examines the relationship between water surface loss and deforestation in the Brazilian Amazon, focusing on the expansion of farming (crops and agriculture, as well as pasture and livestock) and the impact of inadequate legislation from 1985 to 2023. The Amazon biome is vital for the global hydrological cycle and is home to about 10% of the known species. Data from MapBiomas and multivariate statistical techniques revealed that forest and water surface areas decreased significantly while pasture and agricultural regions increased. Environmental legislation has shown progress, with Center and Left-leaning governments implementing environmental protection measures. In contrast, Center–Right and Right-leaning governments prioritized economic interests, resulting in significant setbacks in forest protection and increased deforestation. The study further highlights the importance of developing integrated and sustainable strategies that balance economic development and environmental conservation in the Amazon biome.
Full article

Figure 1
Open AccessArticle
Lavender Field Detection via Remote Sensing and Machine Learning for Optimal Hive Placement to Maximize Lavender Honey Production
by
Fatih Sari and Filippo Sarvia
Earth 2025, 6(3), 107; https://doi.org/10.3390/earth6030107 - 9 Sep 2025
Abstract
►▼
Show Figures
Lavender is a plant widely used in the cosmetic, pharmaceutical, and food industries, and it is also well known for producing nectar and pollen that bees use to make honey. However, due to increasingly adverse atmospheric conditions in recent years, characterized by prolonged
[...] Read more.
Lavender is a plant widely used in the cosmetic, pharmaceutical, and food industries, and it is also well known for producing nectar and pollen that bees use to make honey. However, due to increasingly adverse atmospheric conditions in recent years, characterized by prolonged dry spells or intense rainfall focused in short periods, the production of monofloral honey, such as lavender honey, has become increasingly challenging. Therefore, accurate mapping of monofloral zones in order to support beekeepers in placing their beehives in the best location is required. In this context, the town of Kuyucak in Isparta Province (Turkey), renowned for its extensive lavender fields, was selected. Using true orthophoto images from 2020 with a ground sampling distance (GSD) of 30 cm, machine learning classification methods and deep learning techniques were applied to identify and map the correspondent lavender fields. Lavender plants within the region were detected using Maximum Likelihood (ML), Support Vector Machine (SVM), and Random Forest (RF) classifiers, as well as the Mask R-CNN deep learning method. The classification achieved an overall accuracy of 95% and a kappa coefficient of 0.94. Subsequently, assuming a bee foraging range of 3 km, a moving squared window (sizing 3 × 3 km) was used to estimate local areas with potential forage resources and the corresponding honey production potential. The resulting honey potential production maps then used to identify optimal location for beekeepers’ hives in order to maximize lavender honey production.
Full article

Figure 1
Open AccessArticle
Soil Organic Carbon Storage in Different Land Uses in Tropical Andean Ecosystems and the Socio-Ecological Environment
by
Víctor Alfonso Mondragón Valencia, Apolinar Figueroa Casas, Diego Jesús Macias Pinto and Rigoberto Rosas-Luis
Earth 2025, 6(3), 106; https://doi.org/10.3390/earth6030106 - 8 Sep 2025
Abstract
►▼
Show Figures
This study investigates the relationship between land use and soil organic carbon (SOC) storage in tropical Andean ecosystems, introducing a socio-ecological perspective to assess how community conservation perceptions influence SOC storage and contribute to climate change mitigation strategies. Background and Objectives: Land-use change
[...] Read more.
This study investigates the relationship between land use and soil organic carbon (SOC) storage in tropical Andean ecosystems, introducing a socio-ecological perspective to assess how community conservation perceptions influence SOC storage and contribute to climate change mitigation strategies. Background and Objectives: Land-use change reduces carbon stocks in tropical ecosystems. Focusing on the Las Piedras River basin (Popayan, Colombia), we evaluated SOC storage under four plant cover types—riparian forests (RFs), ecological restoration (ER), natural regeneration (NR), and livestock pastures (LSs)—and examined its association with local conservation perceptions. Materials and Methods: SOC storage at 30 cm depth, carbon inputs and outputs, and soil physicochemical properties were measured across land-use types. Conservation perceptions were assessed through 65 community surveys. Data analyses included ANOVA, principal component analysis, and multinomial logistic regression. Results: SOC storage was highest in RFs (148.68 Mg ha−1), followed by ER and LSs, and lowest in NR (97.30 Mg ha−1). A positive relationship was observed between high conservation perception and greater SOC content. Conclusions: SOC storage is strongly influenced by land use and community conservation values. Active restoration efforts, coupled with environmental education, are essential for enhancing the socio-ecological resilience of these ecosystems.
Full article

Figure 1
Open AccessArticle
An Alternative Concentration Estimator for Backward Lagrangian Stochastic Dispersion Models
by
Biao Wang, Caiping Sun, Wei Wang, Xingyue Tu and Shuming Du
Earth 2025, 6(3), 105; https://doi.org/10.3390/earth6030105 - 5 Sep 2025
Abstract
►▼
Show Figures
Backward Lagrangian stochastic modeling is widely used to estimate emission rates from land surfaces to the atmosphere. It is also applied to calculate concentrations of pollutants due to known emission sources. A key component of this modeling technique is the concentration estimator, which
[...] Read more.
Backward Lagrangian stochastic modeling is widely used to estimate emission rates from land surfaces to the atmosphere. It is also applied to calculate concentrations of pollutants due to known emission sources. A key component of this modeling technique is the concentration estimator, which relies on tracer particle trajectories to establish the relationship between concentration, emission rate, and meteorological condition. A commonly used concentration estimator is closely examined and shown to have potential inaccuracies. An alternative estimator is derived and compared with the existing one. The new estimator is tested using backward Lagrangian stochastic modeling in both Gaussian and non-Gaussian turbulence. The results demonstrate that, in many cases, the two estimators are equivalent, which explains the general success of the popular estimator. However, if the vertical velocities of some tracer particles are extremely slow when hitting the source, a significantly higher ratio of concentration to emission rate will be obtained. This spuriously high ratio will result in overestimation of the concentration if the purpose is to calculate concentrations from a known emission rate and underestimation of the emission rate if the model is used to calculate the emission rate from measured concentrations. The new estimator can avoid this unjustifiable behavior and therefore exhibits superior performance.
Full article

Figure 1
Open AccessCorrection
Correction: Couto et al. A Case Study of the Possible Meteorological Causes of Unexpected Fire Behavior in the Pantanal Wetland, Brazil. Earth 2024, 5, 548–563
by
Flavio T. Couto, Filippe L. M. Santos, Cátia Campos, Carolina Purificação, Nuno Andrade, Juan M. López-Vega and Matthieu Lacroix
Earth 2025, 6(3), 104; https://doi.org/10.3390/earth6030104 - 4 Sep 2025
Abstract
In the original publication [...]
Full article
Open AccessArticle
Experimental Study on the Evolution Law of Pb in Soils and Leachate from Rare Earth Mining Areas Under Different Leaching Conditions
by
Zhongqun Guo, Shaojun Xie, Feiyue Luo, Qiangqiang Liu and Jun Zhang
Earth 2025, 6(3), 103; https://doi.org/10.3390/earth6030103 - 3 Sep 2025
Abstract
►▼
Show Figures
In the exploitation of ion-adsorption rare earth ores, the environmental effects of leaching agents are key constraints for green mining. Understanding the release behavior of typical heavy metals from soils under leaching conditions is of great significance. Laboratory column leaching experiments were conducted
[...] Read more.
In the exploitation of ion-adsorption rare earth ores, the environmental effects of leaching agents are key constraints for green mining. Understanding the release behavior of typical heavy metals from soils under leaching conditions is of great significance. Laboratory column leaching experiments were conducted to systematically investigate the effects of three leaching agents—(NH4)2SO4, Al2(SO4)3, and MgSO4—as well as varying concentrations of Al2(SO4)3 on the release and speciation transformation of heavy metal Pb in mining-affected soils. The results revealed a three-stage pattern in Pb release—characterized by slow release, a sharp increase, and eventual stabilization—with environmental risks predominantly concentrated in the middle to late stages of leaching. Under 3% (NH4)2SO4 and 3% Al2(SO4)3 leaching conditions, Pb concentrations in soil increased significantly, with a higher proportion of labile fractions, indicating pronounced activation and risk accumulation. Due to its relatively weak ion-exchange capacity, MgSO4 exhibited a lower and more gradual Pb release profile, posing substantially lower pollution risks compared to (NH4)2SO4 and Al2(SO4)3. Pb release under varying Al2(SO4)3 concentrations showed a nonlinear response. At 3% Al2(SO4)3, both the proportion of bioavailable Pb and the Risk Assessment Code (RAC) peaked, while the residual fraction declined sharply, suggesting a threshold effect in risk induction. All three leaching agents promoted the transformation of Pb in soil from stable to more labile forms, including acid-soluble, reducible, and oxidizable fractions, thereby increasing the overall proportion of active Pb (F1 + F2 + F3). A combined analysis of RAC values and the proportion of active Pb provides a comprehensive framework for assessing Pb mobility and ecological risk under different leaching conditions. These findings offer a theoretical basis for the prevention and control of heavy metal risks in the green mining of ion-adsorption rare earth ores.
Full article

Figure 1
Open AccessArticle
Applying Satellite-Based and Global Atmospheric Reanalysis Datasets to Simulate Sulphur Dioxide Plume Dispersion from Mount Nyamuragira 2006 Volcanic Eruption
by
Thabo Modiba, Moleboheng Molefe and Lerato Shikwambana
Earth 2025, 6(3), 102; https://doi.org/10.3390/earth6030102 - 1 Sep 2025
Abstract
►▼
Show Figures
Understanding the dispersion of volcanic sulphur dioxide (SO2) plumes is crucial for assessing their environmental and climatic impacts. This study integrates satellite-based and reanalysis datasets to simulate as well as visualise the dispersion patterns of volcanic SO2 under diverse atmospheric
[...] Read more.
Understanding the dispersion of volcanic sulphur dioxide (SO2) plumes is crucial for assessing their environmental and climatic impacts. This study integrates satellite-based and reanalysis datasets to simulate as well as visualise the dispersion patterns of volcanic SO2 under diverse atmospheric conditions. By incorporating data from the MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, version 2), CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), and OMI (Ozone Monitoring Instrument) datasets, we are able to provide comprehensive insights into the vertical and horizontal trajectories of SO2 plumes. The methodology involves modelling SO2 dispersion across various atmospheric pressure surfaces, incorporating wind directions, wind speeds, and vertical column mass densities. This approach allows us to trace the evolution of SO2 plumes from their source through varying meteorological conditions, capturing detailed vertical distributions and plume paths. Combining these datasets allows for a comprehensive analysis of both natural and human-induced factors affecting SO2 dispersion. Visual and statistical interpretations in the paper reveal overall SO2 concentrations, first injection dates, and dissipation patterns detected across altitudes of up to ±20 km in the stratosphere. This work highlights the significance of combining satellite-based and global atmospheric reanalysis datasets to validate and enhance the accuracy of plume dispersion models while having a general agreement that OMI daily data and MERRA-2 reanalysis hourly data are capable of accurately accounting for SO2 plume dispersion patterns under varying meteorological conditions.
Full article

Figure 1
Open AccessArticle
Research on Grassland Fire Prevention Capabilities and Influencing Factors in Qinghai Province, China
by
Wenjing Xu, Qiang Zhou, Weidong Ma, Fenggui Liu and Long Li
Earth 2025, 6(3), 101; https://doi.org/10.3390/earth6030101 - 22 Aug 2025
Abstract
►▼
Show Figures
Frequent grassland fires have severely affected regional ecosystems as well as the production and living conditions of local residents. Grassland fire prevention capabilities constitute an integral part of the disaster prevention and mitigation system and play an important role in improving grassroots governance.
[...] Read more.
Frequent grassland fires have severely affected regional ecosystems as well as the production and living conditions of local residents. Grassland fire prevention capabilities constitute an integral part of the disaster prevention and mitigation system and play an important role in improving grassroots governance. To gain a deeper understanding of the practical foundation and influencing mechanisms of grassland fire prevention capabilities, establish an evaluation index system for prevention capabilities covering the four dimensions of disaster prevention, disaster resistance, disaster relief, and recovery. Combining micro-level survey data, a quantile regression model is used to analyze the influencing factors. The research findings indicate that (1) disaster resistance (0.49) plays a prominent role in grassland fire prevention capabilities, with economic foundations and individual disaster relief capabilities being particularly critical for overall improvement. Although residents have strong fire prevention awareness, their organizational collaboration capabilities are relatively weak, and there are significant differences in prevention capabilities across regions, necessitating tailored, precise enhancements. (2) There are significant differences in prevention capabilities among residents of different agricultural and pastoral production types, with semi-agricultural and semi-pastoral areas having the strongest comprehensive capabilities and pastoral areas relatively weaker. (3) A significant analysis of factors influencing grassland fire prevention capabilities: effective and diverse risk communication is a prerequisite for enhancing residents’ prevention capabilities; the level of panic regarding grassland fires and road infrastructure are important influencing factors, but residents’ understanding of climate change and grassroots organizations’ capacity for mechanism construction have insignificant impacts. Therefore, in future grassland fire disaster prevention and mitigation efforts, it is essential to strengthen risk communication, improve infrastructure, monitor environmental changes and the spatiotemporal patterns of grassland fires, enhance residents’ understanding of climate change, reinforce the emergency response capabilities of grassroots organizations, and stimulate public participation awareness to collectively build a multi-tiered grassland fire prevention system.
Full article

Figure 1
Open AccessArticle
Morphodynamics, Genesis, and Anthropogenically Modulated Evolution of the Elfeija Continental Dune Field, Arid Southeastern Morocco
by
Rachid Amiha, Belkacem Kabbachi, Mohamed Ait Haddou, Adolfo Quesada-Román, Youssef Bouchriti and Mohamed Abioui
Earth 2025, 6(3), 100; https://doi.org/10.3390/earth6030100 - 19 Aug 2025
Cited by 1
Abstract
►▼
Show Figures
The Elfeija Dune Field (EDF) is a continental aeolian system in an arid region of southeastern Morocco. Studying this system is critical for understanding the effects of mounting climatic and anthropogenic pressures. This study provides a comprehensive characterization of the EDF’s morphology, sedimentology,
[...] Read more.
The Elfeija Dune Field (EDF) is a continental aeolian system in an arid region of southeastern Morocco. Studying this system is critical for understanding the effects of mounting climatic and anthropogenic pressures. This study provides a comprehensive characterization of the EDF’s morphology, sedimentology, aeolian dynamics, genesis, and recent evolution. A multi-scale, multidisciplinary approach was adopted, integrating field observations, sedimentological analyses, MERRA-2 reanalysis wind data, cartographic analysis, digital terrain modeling, and morphometric measurements. The results reveal an active 30 km2 dune field, elongated WSW-ENE, which is divisible into three morphodynamic zones with a high dune density (80–90 dunes/km2). The wind regime is predominantly from the W to WSW, driving a net ENE sand transport and creating conditions conducive to barchan formation (RDP/DP > 0.78). Sediments are quartz dominated, with significant calcite and various clay minerals (illite, kaolinite, and smectite). Dune sands are primarily fine- to medium-grained and well sorted, in contrast to the more poorly sorted interdune deposits. The landscape is dominated by barchans (mean height H = 2.5 m; mean length L = 50 m) and their coalescent forms, indicating sustained aeolian activity. The potential sand flux was estimated at 1.7 kg/m/s, with a dune collision probability of 32%. The field’s genesis is hypothesized to be controlled by a topographically induced Venturi effect, with an initiation approximately 1000 years ago, potentially linked to the Medieval Climatic Optimum. Significant anthropogenic impacts from expanding irrigated agriculture are observed at the dune field margins. By providing a detailed characterization of the EDF and its sensitivity to natural and anthropogenic forcings, this study establishes a critical baseline for the sustainable management of arid environments.
Full article

Figure 1
Open AccessArticle
Impact of Climate Change on Water-Sensitive Urban Design Performances in the Wet Tropical Sub-Catchment
by
Sher Bahadur Gurung, Robert J. Wasson, Michael Bird and Ben Jarihani
Earth 2025, 6(3), 99; https://doi.org/10.3390/earth6030099 - 19 Aug 2025
Abstract
Existing drainage systems have limited capacity to mitigate future climate change-induced flooding problems effectively. However, some studies have evaluated the effectiveness of integrating Water-Sensitive Urban Design (WSUD) with existing drainage systems in mitigating flooding in tropical regions. This study examined the performance of
[...] Read more.
Existing drainage systems have limited capacity to mitigate future climate change-induced flooding problems effectively. However, some studies have evaluated the effectiveness of integrating Water-Sensitive Urban Design (WSUD) with existing drainage systems in mitigating flooding in tropical regions. This study examined the performance of drainage systems and integrated WSUD options under current and future climate scenarios in a sub-catchment of Saltwater Creek, a tropical catchment located in Cairns, Australia. A combination of one-dimensional (1D) and two-dimensional (1D2D) runoff generation and routing models (RORB, storm injector, and MIKE+) is used for simulating runoff and inundation. Several types of WSUDs are tested alongside different climate change scenarios to assess the impact of WSUD in flood mitigation. The results indicate that the existing grey infrastructure is insufficient to address the anticipated increase in precipitation intensity and the resulting flooding caused by climate change in the Engineers Park sub-catchment. Under future climate change scenarios, moderate rainfall events contribute to a 25% increase in peak flow (95% confidence interval = [1.5%, 0.8%]) and total runoff volume (95% confidence interval = [1.05%, 6.5%]), as per the Representative Concentration Pathway 8.5 in the 2090 scenario. Integrating WSUD with existing grey infrastructure positively contributed to reducing the flooded area by 18–54% under RCP 8.5 in 2090. However, the efficiency of these combined systems is governed by several factors such as rainfall characteristics, the climate change scenario, rain barrel and porous pavement systems, and the size and physical characteristics of the study area. In the tropics, the flooding problem is estimated to increase under future climatic conditions, and the integration of WSUD with grey infrastructure can play a positive role in reducing floods and their impacts. However, careful interpretation of results is required with an additional assessment clarifying how these systems perform in large catchments and their economic viability for extensive applications.
Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Animals, Coasts, Diversity, JMSE, Sustainability, Oceans, Earth, Water
Anthropogenic Impacts in Marine Coastal Waters: Assessment, Case Studies and SolutionsTopic Editors: Alberta Mandich, Jessica AlessiDeadline: 30 September 2025
Topic in
Agriculture, Agronomy, Analytica, Horticulturae, IJPB, Plants, Earth, Agrochemicals
Biostimulants in Agriculture—2nd Edition
Topic Editors: Manuel Ângelo Rosa Rodrigues, Paolo Carletti, Domenico RongaDeadline: 30 October 2025
Topic in
Atmosphere, Buildings, Climate, Environments, Sustainability, Earth
Climate, Health and Cities: Building Aspects for a Resilient Future
Topic Editors: Ferdinando Salata, Virgilio Ciancio, Simona MannucciDeadline: 20 November 2025
Topic in
Atmosphere, Economies, Energies, Land, Sustainability, Earth
Digital Intelligence Leads Environmental Regulation: A New Paradigm for Green Sustainable Development
Topic Editors: Da Gao, Kun DuanDeadline: 31 December 2025

Special Issues
Special Issue in
Earth
Effects of Electromagnetic Fields on Ecological Systems
Guest Editors: Daniela Baldantoni, Alessandro BellinoDeadline: 30 September 2025
Special Issue in
Earth
Sustainable Landscapes: Integrating Physical Geography, Ecotourism, and Nature Conservation
Guest Editors: Sanja Obradović Strålman, Nikola Milentijević, Ioannis CharalampopoulosDeadline: 1 February 2026
Special Issue in
Earth
Special Issue Series: Young Investigators in Earth Science
Guest Editor: Charles JonesDeadline: 31 July 2026