Next Article in Journal
Event-Driven Shoreline Dynamics of the Nile, Indus, and Yellow River Deltas: A 50-Year Analysis of Trends and Responses
Previous Article in Journal
Impact of Climate Change on the Spatio-Temporal Groundwater Recharge Using WetSpass-M Model in the Weyib Watershed, Ethiopia
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Feed Values for Grassland Species and Method for Assessing the Quantitative and Qualitative Characteristics of Grasslands

by
Szilárd Szentes
1,
Ildikó Turcsányi-Járdi
2,
László Sipos
3,4,
Károly Penksza
2,*,
Zoltán Kende
5,
Eszter Saláta-Falusi
2,*,
Tünde Szabó-Szöllösi
2,
Andrea Kevi
2,
Dániel Balogh
2,
Márta Bajnok
1 and
Zsombor Wagenhoffer
1
1
Department of Animal Nutrition and Clinical Dietetics, University of Veterinary Medicine Budapest, Rottenbiller Str. 50, 1077 Budapest, Hungary
2
Department of Botany, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Gödöllő, Hungary
3
Department of Postharvest, Commercial and Sensory Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út. 35-43, 1118 Budapest, Hungary
4
Centre for Economic and Regional Studies (ELTE CERS), Eötvös Loránd University, Tóth Kálmán utca 4., 1097 Budapest, Hungary
5
Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Gödöllő, Hungary
*
Authors to whom correspondence should be addressed.
Earth 2025, 6(4), 119; https://doi.org/10.3390/earth6040119
Submission received: 6 August 2025 / Revised: 24 September 2025 / Accepted: 30 September 2025 / Published: 8 October 2025

Abstract

The tasks and objectives of grassland management have changed significantly in recent decades. One of the key elements of adapting to climatic and economic challenges is the optimal use and future sustainability of grasslands. Ferenc Balázs’s plant stand assessment method is a fast, efficient and widely applicable method for evaluating the quantitative and qualitative characteristics of forage in grasslands, as well as the economic value of pastures. This study is based on a three-dimensional coenological survey which is low-cost, does not require technical infrastructure, and empirically considers the species’ preference by livestock. As a result of our extended criteria approach, we assigned modified forage value (k-value) categories to 2310 vascular plant species. Based on our investigations in the presented case study, the Balázs method was proven to be well suited for estimating the yield of grasslands and determining the relative forage value of grasslands with a high degree of confidence in practice. As this method is non-destructive and involves little trampling, it is particularly suitable for monitoring grassland habitats with a high density of protected plant and animal species.

1. Introduction

Maintaining grasslands is crucial for nature conservation, effective grassland management, and the provision of ecosystem services [1,2,3]. It is therefore essential to determine how many animals can be supported on our grasslands in the most sustainable way possible [4]. To this end, the biomass and yield of grasslands must be determined and estimated as accurately as possible.
The amount and quality of biomass produced and its species composition are closely related to grassland management practices too [5,6]. Numerous studies have found that different grazing intensities and their frequency can influence the quantity, composition and quality of herbaceous biomass available to livestock [7,8,9]. Additionally, the quality of forage is closely related to species composition [10,11]. Diverse grassland plant communities often provide better quality forage due to the diversity of nutrient profiles offered by different species [12]. Mowing influences the vegetative structure and growth cycle of plant species, thus also affecting the palatability and nutritional value of forage. Early mowing tends to reduce the flowering of some key forage species, affecting the availability of good-quality forage later in the growing season [13,14].
According to recent research, environmental stress factors, particularly drought and climate change, are garnering increasing attention due to their impact on biomass production. For example, it has been shown that an increase in the frequency and intensity of drought periods significantly reduces biomass production in Festuca arundinacea-dominated grasslands [15,16,17]. Studies have shown that different management practices can significantly influence biomass yield and nutritional value. For example, fertilisation of grasslands is associated with improved biomass production, which highlights the importance of nutrient management in improving feed quality [18,19].
In addition to the quantity of biomass, its quality is also essential. Therefore, successful management requires maximising biomass while harvesting at the optimum point of quality indicators and, among other things, applying rotational grazing strategies [20,21]. Research has also shown that the feed value of Festuca arundinacea varies depending on maturity and growth stage, particularly in terms of crude protein and digestibility. Early harvesting generally results in a higher protein content, while late harvesting can increase fibre content, which reduces digestibility [22,23]. The use of specific cultivation techniques to enhance digestibility and disease resistance further amplifies the potential of this grass species [24]. Laboratory testing of the feed value of grass involves various mechanical and chemical analyses. The most commonly used techniques include the determination of crude protein, fibre and mineral content. However, hyperspectral techniques are becoming more widespread, which can be used to identify different plant species and, with promising results, to determine specific feed quality indicators such as cellulose and lignin content [25]. These analyses provide important information on feed value and help to improve feed quality and optimise animal husbandry practices [25]. In addition, air pollutants, especially ozone, have been documented to adversely affect the quality of grass feed value, potentially reducing it [26].
Various methods are used to estimate the quantity and quality of pasture biomass. These methods for measuring and assessing the forage value of grasslands cover a broad spectrum, from laboratory analysis to remote sensing techniques, which fundamentally shape the future of forage production and evaluation. Several methods are available to assess biomass by mowing [27], but this is often not feasible in protected areas or when assessing protected species. In detail, for a given sampling area (typically 1 m2), it is necessary to obtain multiple replicate biomass samples to obtain a more accurate estimate of the grassland yield, which can be used to estimate it per hectare and even to collect information on the biomass quality of the area by sorting the cut biomass by grassland components. However, their drawbacks (different stubble heights, high manual labour and equipment requirements, small sample size, inaccurate sampling due to inflexing grasses, etc.) make their application difficult [28].
The practice of estimating the feeding value of grasslands based on the plant species that make up the grassland began in the mid-20th century and was primarily driven by economic interests. Ernst Ludwig Klapp [29] (Germany) and Ferenc Balázs [30] (Hungary) developed seemingly similar evaluation systems, but based on partially different principles [30]. Klapp et al. [29] published the relative forage value of about 350 grassland species. Species were ranked on a 10-point scale, with the most valuable species assigned a value of +8, sturgeon and other species not grazed by animals assigned a value of 0, and toxic species assigned a value of −1. The forage quality of the plant species was determined based on the following criteria:
-
Protein, fibre and mineral content, as determined by chemical analysis.
-
Tastiness and palatability to livestock.
-
Valuable plant parts (leaf, stem, flower, fruit).
-
Duration of the full value (as feed).
-
Usefulness and harvestability of the species.
-
Harmful and toxic properties.
-
Allowable proportion in the plant population (e.g., for toxic plants).
If worthless and toxic species are present in high proportions in the plant population, the overall value of the population will decrease accordingly. To quantify this, Klapp et al. [29] considered the following:
  • Forage value of toxic plants up to 3% cover—1, between 3 and 10%—2, above 10% cover—3.
  • The number of dicotyledonous species that contaminate hay is reduced by 1–2 values for cover greater than 10%.
  • A separate assessment applies to grasses and weeds that are highly detrimental to feed value.
Some authors (like [29,31,32,33]) consider grasses more valuable forage than legumes (although their protein content is much lower) and apply only one negative category to all harmful species from the forage point of view. It is also unacceptable that the quality score for a species should decrease as its cover increases, because as the cover of the species increases, the species does not become more toxic or thorny. This distorts the estimated feed value of the species and thus also the value of the grassland. The main flaw of these methods is that they ignore the height difference between species. However, this has a significant impact on the quality of grassland forage. Thus, they can only perform the feed value estimation function with a strong bias, since they do not take into account the effect of the height difference of plant species on the relative mass of each species, from which we learn the contribution of each species to the feed value of grassland.
Similar errors have been found in, among others, the technique developed by Nitsche [34] and modified by Briemle [33,35] and Briemle and Ellenberg [36], using a 9-value scale (1–9), which has become known as “Futterwert (FW)”. During the development of the method of Briemle [31,32], in addition to 4 additional 9-valued scales (mowability, grazability, trampling tolerance and fallow deer), a functional trait was added, comprising sedges, other dicotyledonous species, herbaceous legumes, woody legumes, and woody shrubs. A habitat rating (extensive grassland, economic grassland, arable and garden, fallow, woodland edge species) was also made. This method was developed for 680 species. Although this method generally (and according to more recent scientific results) provides a good species relationship [37,38], ignoring the height of plant species may still strongly distort the results obtained.
Our study aims to review the process of forage value determination of species and to provide a dataset of 2310 vascular plant species in the Pannonian biogeographical region. Our approach joins the collection of a series of comparative European indicator values [39,40] with a section on grassland management.

2. Materials and Methods

2.1. Method for Estimating Production and Forage Value of Grasslands

During our revisional work, we went through Balázs’s [30] method step by step. Some parts were fully adopted, while others were supplemented and developed to obtain as accurate a picture as possible of the feed value of grasslands.
The first step is to employed the three-dimensional recording method developed by Balázs [30,41] to determine the amount of hay produced. This method is based on a coenological recording but the average height of the plant species is taken into consideration in addition to their cover. It is therefore a suitable method for estimating the relative yield of each species. The relative yield can be converted to an absolute value and dimension by multiplying by a mass coefficient. This method meets the needs of practical grassland farmers and grassland management specialists in determining the amount of green yield (aboveground biomass) or hay produced by the plant community. Using a classical 4 × 4 m quadrat method, we created coenological records to identify species and estimate their cover as accurately as possible, using DB values. These were obtained by dividing the quadrat area once or several times. 1 DB value as a unit is 1/32 of the quadrat area (3.125% cover). One record can have a maximum of 32 DB values, unless the association is multi-level, in each case each level must be recorded separately. The smallest DB value is 0.2, which represents 0.625% coverage.
The first step of the method is to calculate each plant species’ relative green mass.
t = DB × m
t: relative green mass of the plant species, DB: cover of the species, m: average height of the plant species [cm].
The m value is usually species-specific, but (because of the different growing conditions and weather conditions) it is always advisable to measure it in the field when recording. 1 ‘m’ corresponds to 0.01 m of plant height. Measuring the average height of the shoots (stem + leaf) is essential—protruding stems should be excluded.
Relative green mass of quadrats representing the grassland (T): sum of the relative green mass (t) of each plant species (T = ∑t).
The average height of the grassland (M) is obtained by dividing the sum of the relative green mass of the species in the grassland by the total cover expressed as DB.
M = T/DB
M: average height of the grassland [cm], T: relative green mass of the grassland, which is the sum of the species relative green mass meaning yield, DB: total cover of the grassland [DB].
In pastures, we have the opportunity to solely determine the cover values of each species as it is continuously grazed. In this case, we can only choose the average height of ungrazed plant individuals (e.g., outside the grazed paddock) as a control.
The B numbers are used to convert the relative yields into absolute quantities. B numbers express the real green mass of a t-value, and BM expresses the real green mass of a 0.01 m high section of 100% total cover grassland per hectare. Therefore, when using the B numbers, the DB values of the records must be converted to % cover (b).
Balázs (1951) [42] suggests the following values for Carpathian Basin pannonic grasslands:
Bt: for grasses: 0.125 t ha−1
for Medicago sativa: 0.147 t ha−1
BM: for grass: 0.400 t ha−1
for Medicago sativa: 0.470 t ha−1
There are two methods for calculating the yield.
  • The average height of the grassland (M) is multiplied by BM and then multiplied by the actual cover [DB].
  • The grassland’s relative green mass (T-value) is multiplied by [Bt].
The grassland yield cannot be fully utilised, so the stubble height (s) must be subtracted from the average height. Suppose the yield is to be converted into hay value. In that case, the resulting value must be divided by the drying factor (E), which typically ranges from 2.5 and 3.5, depending on the weather, plant species and state of development. For optimum utilisation time, this value is 2.5 for dry grassland, 3 for mesophilic grassland and alfalfa and 3.5 for red clover.
P = [(Ms) × BM × b] ×100−1 × E
P: amount of grass yield [kg × ha−1]
M: grassland height [cm]
s: stubble height [cm]
BM: weight of a 1 cm high grass section at 100% total cover; maturity: 0.4 [t × ha−1]
b: DB values in cover %
E: drying factor
The productivity of a grassland can only be accurately determined if the yields of all utilisation periods are added together. However, only the quantities calculated for the first growth are also suitable for comparing the yields of several grassland areas. The method used by Balázs (1960) [30] classifies pannonic grasslands into five classes of productivity:
I.
Class I: grassland producing > 6.0 t dry matter × ha−1
II.
Class II: grassland producing between 4.5 and 6.0 t dry matter × ha−1
III.
Class III: grassland producing between 3.0 and 4.5 t dry matter × ha−1
IV.
Class IV grassland producing between 1.5 and 3.0 t dry matter × ha−1
V.
Class V grassland producing between 0.0 and 1.5 t dry matter × ha−1

2.2. Forage Value of Species (k)

The forage value of grassland is determined by the proportion of grassland components (from the most valuable species of legumes and grasses to weed species that threaten animal health) present in it [10,43]. Therefore, each grassland species should be assessed separately for accurate evaluation, and grasslands should be managed as a mixture of these species. Classification should be carried out for both beneficial and harmful species. It is essential to highlight the latter species, as most methods [29,31,32] do not assign more than one quality category to them, despite the significant differences in the harmful effects of these species. Balázs [30,41,42] established the basis for a system to characterise the qualitative differences between different grass species and between different plant communities. The seasonal variations of these are also significant [44,45], and can be influenced by the nutrient supply of the plants [46] as well as by the palatability of the different plant groups [47,48,49,50], which can also be investigated using this method. The species quality value (k) is a relative score that indicates the relative role of plant species in forage production.
The forage value categories were developed based on the following criteria. The forage value of the best quality species is similar to that of the abstract feeds, and therefore, they were given a separate category. These species (+6 and +7) improve the forage value of the grassland. All species eaten by the livestock (regardless of taxonomic affiliation) and whose consumption does not have any detrimental consequences are classified on a scale of 1 to 5. Species that the animal does not eat or whose consumption may have harmful repercussions are considered dangerous. These species are given a negative sign and are scored on a scale of 1 to 3. Neutral species that cannot be classified in either group are assigned a value of 0.
Forage value (k-value) categories by Balázs:
Species of value +7: their presence improves the quality of grass fodder. They are high in protein, have high nutritional value, rich foliage, excellent digestibility (over 75% digestible organic matter in the last 10 days of May), slow senescence, rapid growth, are palatable to animals, very well adapted to different habitats, and are trampling-tolerant.
Species of value +6: Also species with excellent nutritional value (65–75% digestible organic matter in the last 10 days of May), slow to senesce, good yielding, but less adapted to the site (possibly shorter life).
Species of value +5: grassland plants that still provide excellent quality forage (but may contain more firming tissue), with a good leaf-stem ratio and 55–65% digestible organic matter in the last 10 days of May. They are not rough, contain little silica, have excellent palatability, are not flaky and do not contain unpleasant odours and flavours. They are suitable for rough grazing and mowing and can be used to make good-quality hay. They are good post-emergence species, but may have a shorter life span.
Species of value +4: also provides good-quality forage, but their leaf-to-stem ratio is worse than the previous group’s. They contain more solidifying tissue and yield less after grazing and mowing. Legume species which are of minor importance from a forage perspective are also included.
Species of value +3: They have a reduced forage value, but if used at the right time, they provide good-quality forage. They are usually slightly rough, flaky, or leathery, have a lot of firming tissue or are less palatable to animals. This category also includes other dicotyledonous species of the highest forage quality.
Species of value +2: At best forage straw quality, when mown young, they can be used as ballast fodder to “dilute” better-quality forage. The livestock usually grazes on them when young. Their nutritional value is relatively low. They have a relatively poor germination rate and tend to go stunted quickly. Most are rough, flaky, or hairy but lack strong, bulging stems. This group includes many dicotyledonous species that the livestock readily eat when young. In small quantities, they improve the palatability of the feed.
Species of value +1: They provide forage of litter quality at most. They are not grazed when young, senesce quickly and lose their foliage rapidly. They may contain silicic acid or other slightly harmful substances, but in small quantities, they do not cause any harm to the livestock. Their nutrient content is very low.
Species of value 0: These species are suitable for foraging at a particular stage of their development, but do not become particularly damaging later on. They are usually small species and are insignificant from a forage point of view.
Species of value −1: Unpleasant smelling, rough or hairy, stalky species, which multiply rapidly and take up a lot of space in front of valuable species. The livestock never eats them, but their possible consumption is not harmful. They are also only suitable for bedding out of necessity.
Species of value −2: These plants are already highly damaging in sward and forage. They usually also contain toxic substances that cause damage when added to fodder, or they are large, thorny plants that occupy a significant portion of the grassland.
Species of value −3: The most forage-poor plants in our grasslands. They are particularly dangerous in pastures because, unlike species favoured by animals, they can reproduce undisturbed without weed control mowing or due to the lack of grazing.
The following criteria were taken into account by Balázs [30] when determining the k-values of plant species:
-
Proportion of valuable plant parts (leaf, stem, flower, fruit).
-
The duration of wholesomeness (as feed).
-
Usefulness and harvestability of the species.
-
Pests and toxicity.
-
Permissible proportion in the plant population (e.g., for poisonous plants).
-
Grazability and regeneration time.
In addition to the above-mentioned features, during the refinement we also took into account the following characteristics, thereby extending the accuracy:
-
Protein, fibre, mineral content and protein/fibre ratio.
-
Digestibility of the main species and its variation in the first growth.
-
Palatability and preference by livestock.
The digestible organic matter (DOM) content of the samples taken from the trimmings of the plots was determined in vitro using rumen fluid digestion according to the method of Tilley and Terry [51].
As a result of our survey, we assigned modified k-values to 2310 species (Appendix A).

2.3. Relative Economic Value of Species (kt)

If the relative green yield (t) of a species is multiplied by the species-specific quality score, the relative economic value of the species in the grassland is obtained:
kt = k × t
The sign of the kt-value of a species can be + or −, depending on the forage value of the species. Species with a k-value of 0 will have a kt-value of 0. Subtracting the negative kt values from the positive kt values (∑kt+ −∑kt) will give the difference in the relative kt value of the grassland (∑kt). If ∑kt is greater than ∑kt+, then the grassland has no forage value. The grassland quality (K) is obtained from the value ∑kt by dividing by the average T-sum.
K = (∑kt × T−1)
Semi-natural species rich grasslands always have a K-value below 5 because even if the dominant species has a K value of 5, the other, sub-ordinated species in the plant community will degrade the K value of the grassland. The quality of the green grass or hay produced can be determined regardless of quantity. Balázs [30] classifies grasslands into the following five classes according to their quality:
I.
Class: very good, high-quality grassland, K-value: >4.
II.
Class: good, quality grassland, K-value: 3–4.
III.
Class: medium, quality grassland, K-value: 2–3.
IV.
Class: poor, poor-quality grassland, K-value: 1–2.
V.
Class: bad, poor-quality grassland, K-value: 0–1.
The value of grass productivity (P)—based on the method of Balázs (1960)
The value of a grassland’s productivity is the grassland’s value-producing capacity divided by 100. This gives the point value of the economic value of the grassland.
P = kt ×100−1
Multiplying this by a given value in a given currency at current feed prices, the economic value produced by the grassland can be calculated.

2.4. Sample Area and Field Survey

In this study, we investigate various habitats where environmental factors differ significantly. One study site is a dry grassland where the thin-leaved Festuca pseudovina is the dominant species, and the other is a wet grassland where the broad-leaved Festuca arundinacea is the dominant species. Festuca pseudovina is a less-studied species, but Festuca arundinacea is a well-studied species due to their widespread use, which is attributed to their adaptability, drought tolerance, and high biomass production potential in temperate grassland ecosystems [52,53]. Festuca arundinacea-dominated grasslands make significant contributions to biodiversity and ecosystem stability. These grasslands are home to a diverse array of herbaceous species and contribute to soil organic carbon sequestration, thereby enhancing the overall ecosystem performance [15,16,17]. This species can improve forage quality in mixed pastures [54,55].
To test the method in our thesis, we selected two study sites (Figure 1):
-
A wetland dominated by Festuca arundinacea (Agrostio-Deschampsietum caesitosae Ujvárosi 1941) (Mende, Hungary).
-
A dry grassland dominated by Festuca pseudovina (Achilleo-Festucetum pseudovinae Soó (1933) 1947 corr. Borhidi 1996 (Bösztör, Hungary).
The 4 × 4 m sample quadrats were set up in a 7 × 7 Latin square layout. The quadrats were harvested by mowing the grass with separate mowing frequencies with a mower, leaving 0.04 m of stubble. Plots mowed 2 times a year were harvested on 30 June and 10 October; plots mowed 3 times a year were harvested on 18 May, 30 June and 10 October; and plots mowed 4 times a year were harvested on 18 May, 30 June, 5 August and 10 October. The test years were from 2016 to 2019.

2.5. Statistics

A non-parametric statistical method was used to analyse the cover value of species across different groups of complementary materials. According to the Shapiro–Wilk test, these variables were not normally distributed (p < 0.05). Therefore, the non-parametric Spearman test was used. All statistical analyses were performed using the XLSTAT statistical and data analysis software version 2024.4.1 [56].

3. Results

3.1. Case Study

The wet grassland dominated by Festuca arundinacea was investigated at the Mende sample site. The average cover was as follows: 55.5% grasses, 17.3% legumes, 18.7% forbs, 5.7% toxic species and 0.4% other species (Figure 2)
Festuca pseudovina is the main constituent of the population in the other sample area in Bösztör. Grasses cover 55.7%, legumes cover 5.7%, forbs cover 13.8%, toxic species cover 6.6%, thorny species cover 0.2%, and other species cover 1.0%. Botriochloa ischaemum, a typical C4 grass species found in arid ecological sites, is often observed in drier years.

3.2. Result of the Yield Estimates

The Spearman correlation value of the green mass estimated by the Balázs method in the dry grassland at Bösztör was 0.44, indicating a moderately strong correlation with the values of the mown biomass samples. The wet meadow records at Mende had a Spearman correlation value of 0.96, indicating a robust correlation with the biomass sample data (Figure 3).
When examining the digestible organic matter yield, similar results were obtained, but the difference between treatments was even greater (Table 1). The productivity (P) in the table combines qualitative and quantitative indicators of the grassland yield in one number, allowing the quantitative and qualitative values of the yield of different grasslands to be standardised, and thus making it suitable for comparing grass or hay from different grasslands.
Table 1 shows the biomass estimation process. If the organic matter digestibility of the grassland is known, this method can also be used to calculate the yield of digestible organic matter per hectare of grassland. Our results showed that among the treatments tested, the 4 × mowed plots gave the highest production, while the 2 × mowed plots gave the lowest production.

3.3. Estimation of Forage Value of the Grassland

Table 2 shows the procedure for calculating the forage value of the grassland. The relative yield (t) obtained by multiplying the species cover (b) by its average height (m) is multiplied by the relative forage value (k) of the species. This is done for each species and the sum of the obtained values (Σkt) is divided by the sum of the relative yields (T) to obtain the average forage value (K) of the grassland, which in this case is 4.3, corresponding to a very good quality. Dividing Σkt (5752.7) by 100 gives the productivity of the grassland, which for the grassland under study was 57.5.

4. Discussion

Determining the forage value of a grassland is a difficult task because, in addition to objective factors, it is also influenced by many subjective factors, such as habituation. Among the objective indicators, Balázs [30] considers the following to be the most important: the degree of development (age), nutritive value, protein content, starch value, fibre and silica content, digestibility, pungency, roughness, fluffiness, hardness, taste, odour, acidity, bitterness, toxicity, etc. The above characteristics indicate that the quality of grassland plants can significantly vary over a broad range. It is also clear that purely chemical analysis alone is insufficient to determine the value of forage, since, for example, species with negative morphological characteristics (e.g., stinginess) are not consumed by livestock even if they have excellent nutritional properties.
Our results demonstrate that the Balázs method is suitable with a high degree of confidence in practice. By changing the minimum DB value from 0.2 to 0.05 (0.156%). The process can be used to estimate the cover of rare, small species more accurately, which is particularly important in conservation and diversity studies. The method outlined above can also be used in conjunction with % cover estimation and altimetry. However, for those less experienced in cover estimation, DB value-based estimation is recommended for greater accuracy. During the course of our work, we have modified the Balázs k-values for several species based on recent results and have also significantly expanded the list of species with k-values based on this criterion to 2310 species (Appendix A) (Balázs reported 401 values).
The corrected Balázs three-dimensional recording method is well suited for estimating yield and grassland quality, as verified by direct yield estimation and the laboratory tests described above. The process requires virtually no equipment and is inexpensive to implement. The calculated productivity values represent the economic production of the studied grassland, providing a valuable tool for agricultural planning and management. Thanks to its quick and straightforward application, it can also be used for grassland mapping. It enables the monitoring of the temporal and spatial variation in stands as well as the effects of various treatments. In the future, the plan is to develop indicators that will allow for the expression of more accurate grasslands’ economic and forage value than hitherto. The method is also helpful for conservation purposes, as the three-dimensional coenological releves make it suitable for monitoring the management of protected areas [57]. The technique can measure the proportion of aboveground species production, which is an essential indicator of the carbon balance in grassland ecosystems, especially in lush grasslands [58,59,60]. It can therefore be used effectively in carbon balance studies without damaging the grasslands.
Natural grasslands, particularly in temperate and semi-arid regions, exhibit significant seasonality in biomass production, which can vary substantially due to climatic factors such as temperature and rainfall, as confirmed by our experiment.
The productivity of grassland is also closely related to the frequency of mowing. While increased mowing can increase direct biomass production by minimising interspecific competition, it can also reduce the overall long-term productivity of the grassland by depleting the necessary resources stored in the root system. In our study, 4 × mowing gave the highest productivity and the best forage quality. Regular mowing has been shown to minimise biomass accumulation due to the continuous removal of green tissue, which is essential for photosynthesis and energy storage [61]. Research also shows that optimal productivity can be achieved at specific mowing frequencies, such as every two years, which allows for the maintenance of adequate herbaceous cover while promoting biodiversity [62,63]. The correlation follows a bell curve where very low and very high mowing frequencies can reduce productivity, suggesting a “sweet spot” that balances the competitive dynamics between grassland species [64].
The frequency of mowing has a direct impact on the species richness and composition of grasslands. Studies show that higher mowing frequency is often associated with decreased species richness. In particular, grasslands subjected to intensive and frequent mowing may have reduced plant species abundance and diversity. This occurs because frequent mowing tends to favour disturbance-tolerant species over species less resistant to regular mowing, resulting in a homogenised plant community dominated by a few species [65,66]. For example, Socher et al. (2012) [67] found that more frequently mowed grasslands had lower species richness than those that were mowed less often, confirming a consistent trend observed in different studies [67]. Furthermore, Binder et al. 2018 [66] reported that while mowing intensity was positively correlated with species richness in controlled experiments, more frequent mowing tended to reduce overall diversity [66]. The interaction between mowing frequency and plant diversity is complex, and an intermediate approach, such as mowing every other year, has been proposed to maintain a richer plant community [62,68].
Natural arid grasslands, such as those found in semi-arid regions, typically show a high allocation of belowground biomass, and studies suggest that root mass accounts for 67% of total plant biomass in these ecosystems [69]. Belowground biomass is vital for drought resilience and resource acquisition, thereby increasing the overall resilience of the grassland [70]. For example, in alpine regions, aboveground biomass (AGB) averages around 68.8 g/m2, which varies with annual rainfall, suggesting that drier years result in decreased AGB due to limited water availability [71]. Furthermore, the dynamics of aboveground and belowground biomass production can be significantly influenced by climate, especially precipitation, which plays a crucial role in shaping productivity levels [71,72]. In a study of a northern dry grassland ecosystem, water availability was the primary limiting factor in dry years, reducing net primary productivity (NPP) under these conditions [73]. Dry grassland productivity is often resilient to short-term changes in precipitation, highlighting the importance of moisture patterns in determining biomass output [74,75].

Author Contributions

Conceptualisation, K.P., S.S. and Z.W.; methodology, K.P., Z.K. and S.S.; software, L.S. (László Sipos) and Z.W.; formal analysis, A.K., T.S.-S., I.T.-J. and E.S.-F.; investigation, K.P., E.S.-F., S.S. and I.T.-J.; writing—original draft preparation, K.P., M.B., E.S.-F., I.T.-J., D.B. and Z.K.; writing—review and editing, I.T.-J., K.P., L.S. (Leonárd Sári) and E.S.-F.; supervision, S.S. and K.P.; funding acquisition, K.P. and Z.W. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the strategic research fund of the University of Veterinary Medicine Budapest (Grant No. SRF-002), was supported by the Research Excellence Program of the Hungarian University of Agriculture and Life Sciences and OTKA K-147342.

Data Availability Statement

The data presented in this study are available on request from the corresponding author due the data are part of an ongoing investigation.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

Table A1. Forage values (k-values) of species.
Table A1. Forage values (k-values) of species.
Speciesk-ValueSpeciesk-Value
Abutilon theophrasti−1Juncus tenageia0
Acer campestre−1Juncus tenuis0
Acer negundo−1Juniperus communis−3
Acer platanoides−1Jurinea mollis−1
Acer pseudo-platanus−1Jurinea glycacantha−1
Acer tataricum−1Kickxia elatine0
Achillea asplenifolia2Kickxia spuria0
Achillea collina2Knautia arvensis1
Achillea crithmifolia2Knautia dipsacifolia1
Achillea distans2Knautia drymeia1
Achillea horanszkyi2Knautia kitaibelii1
Achillea millefolium2Kochia laniflora−1
Achillea nobilis2Kochia prostrata−1
Achillea ochroleuca2Kochia scoparia−1
Achillea pannonica2Koeleria cristata2
Achillea ptarmica1Koeleria glauca2
Achillea setacea2Koeleria grandis2
Achillea tuzsonii2Koeleria javorkae2
Acinos arvensis0Koeleria majoriflora2
Aconitum anthora−3Koeleria pyramidata2
Aconitum moldavicum−3Laburnum anagyroides−3
Aconitum variegatum−3Lactuca perennis−2
Aconitum vulparia−3Lactuca quercina−2
Acorus calamus−1Lactuca saligna−2
Actaea spicata−2Lactuca serriola−2
Adenophora liliifolia0Lactuca viminea−2
Adonis aestivalis−2Lamium album0
Adonis flammea−2Lamium amplexicaule0
Adonis vernalis−2Lamium maculatum0
Adonis x hybrida−2Lamium orvala0
Adoxa moschatellina0Lamium purpureum0
Aegilops cylindrica0Lappula deflexa−1
Aegopodium podagraria−1Lappula heteracantha−1
Aethionema saxatile0Lappula marginata−1
Aethusa cynapium−3Lappula squarrosa−1
Agrimonia eupatoria2Lapsana communis−1
Agrimonia procera1Larix decidua−1
Agropyron cristatum5Laser trilobum−2
Agrostemma githago−3Laserpitium latifolium−2
Agrostis canina3Laserpitium prutenicum−2
Agrostis capillaris2Lathraea squamaria−1
Agrostis stolonifera5Lathyrus aphaca2
Agrostis vinealis3Lathyrus hirsutus2
Ailanthus altissima−3Lathyrus latifolius4
Aira caryophyllea0Lathyrus linifolius3
Aira elegantissima0Lathyrus niger3
Ajuga chamaepitys0Lathyrus nissolia3
Ajuga genevensis0Lathyrus pallescens4
Ajuga laxmannii0Lathyrus palustris4
Ajuga reptans0Lathyrus pannonicus2
Alcea biennis−2Lathyrus pisiformis4
Alcea rosea−2Lathyrus pratensis4
Alchemilla acutiloba2Lathyrus sativus6
Alchemilla crinita2Lathyrus sphaericus2
Alchemilla glabra2Lathyrus sylvestris2
Alchemilla glaucescens2Lathyrus tuberosus2
Alchemilla hungarica2Lathyrus venetus2
Alchemilla micans2Lathyrus vernus2
Alchemilla monticola2Lavandula angustifolia−1
Alchemilla xanthochlora2Lavatera thuringiaca−2
Alisma gramineum−2Lavatera trimestris−2
Alisma lanceolatum−2Leersia oryzoides3
Alisma plantago-aquatica−2Legousia speculum-veneris1
Alkanna tinctoria−2Lembotropis nigricans−2
Alliaria petiolata−2Lens culinaris3
Allium angulosum−2Leontodon autumnalis1
Allium atropurpureum−2Leontodon hispidus2
Allium atroviolaceum−2Leontodon incanus1
Allium carinatum−2Leontodon saxatilis1
Allium flavum−2Leonurus cardiaca−1
Allium lusitanicum−2Leonurus marrubiastrum−1
Allium moschatum−2Lepidium campestre−2
Allium oleraceum−2Lepidium cartilagineum−2
Allium paniculatum−2Lepidium densiflorum−2
Allium rotundum−2Lepidium graminifolium−2
Allium scorodoprasum−2Lepidium perfoliatum−2
Allium sphaerocephalon−2Lepidium ruderale−2
Allium suaveolens−2Lepidium virginicum−2
Allium ursinum−2Leucanthemella serotinum−2
Allium vineale−2Leucanthemum margaritae−2
Alnus glutinosa−1Leucanthemum vulgare1
Alnus incana−1Leucojum aestivum−3
Alnus viridis−1Leucojum vernum−3
Alopecurus aequalis3Libanotis pyrenaica1
Alopecurus geniculatus3Ligularia sibirica−2
Alopecurus myosuroides3Ligustrum vulgare−3
Alopecurus pratensis4Lilium bulbiferum−2
Althaea cannabina−1Lilium martagon−2
Althaea hirsuta−1Limodorum abortivum−1
Althaea officinalis−1Limonium gmelini1
Alyssum alyssoides0Limosella aquatica0
Alyssum desertorum0Linaria angustissima−1
Alyssum montanum0Linaria arvensis−1
Alyssum tortuosum0Linaria genistifolia−1
Amaranthus albus1Linaria vulgaris−1
Amaranthus blitoides1Linaria x kocianovichii−1
Amaranthus blitum1Lindernia procumbens0
Amaranthus bouchonii1Linum austriacum−1
Amaranthus crispus1Linum catharticum−1
Amaranthus deflexus1Linum dolomiticum−1
Amaranthus graecizans1Linum flavum−1
Amaranthus patulus1Linum hirsutum−1
Amaranthus powellii1Linum perenne−1
Amaranthus retroflexus1Linum tenuifolium−1
Ambrosia artemisiifolia−2Linum trigynum−1
Amelanchier ovalis−1Linum usitatissimum−1
Ammannia verticillata1Liparis loeselii−3
Amorpha fruticosa−3Listera ovata−1
Amygdalus communis−1Lithospermum arvense−1
Amygdalus nana−2Lithospermum officinale−1
Anacamptis pyramidalis−1Lithospermum purpureo-coeruleum−1
Anagallis arvensis1Lolium multiflorum5
Anagallis foemina1Lolium perenne6
Anchusa azurea−1Lolium remotum−1
Anchusa barrelieri−1Lolium temulentum−1
Anchusa ochroleuca−1Lonicera caprifolium−2
Anchusa officinalis−1Lonicera nigra−2
Androsace elongata0Lonicera xylosteum−2
Androsace maxima0Loranthus europaeus−3
Anemone nemorosa−2Lotus angustissimus6
Anemone ranunculoides−2Lotus borbasii7
Anemone sylvestris−2Lotus corniculatus7
Anemone trifolia−2Lotus tenuis6
Anethum graveolens1Lotus uliginosus6
Angelica archangelica−2Ludwigia palustris−2
Angelica palustris−2Lunaria annua−1
Angelica sylvestris−2Lunaria rediviva−1
Antennaria dioica1Lupinus albus−2
Anthemis arvensis−1Lupinus angustifolius−2
Anthemis austriaca−1Lupinus luteus−2
Anthemis cotula−1Lupinus polyphyllus−2
Anthemis ruthenica−1Luzula campestris−1
Anthemis tinctoria−1Luzula divulgata−1
Anthericum liliago−2Luzula forsteri−1
Anthericum ramosum−2Luzula luzuloides−1
Anthoxanthum odoratum2Luzula multiflora−1
Anthriscus caucalis−2Luzula pallidula−1
Anthriscus cerefolium−2Luzula pilosa−1
Anthriscus nitidus−2Lychnis coronaria−1
Anthriscus sylvestris−2Lychnis flos-cuculi1
Anthyllis vulneraria4Lychnis viscaria−1
Apera interrupta1Lycium barbarum−3
Apera spica-venti1Lycium chinense−3
Aphanes arvensis0Lycopodium annotinum−1
Aphanes australis0Lycopodium clavatum−1
Apium graveolens−2Lycopsis arvensis−1
Apium repens−2Lycopus europaeus−1
Aquilegia vulgaris−2Lycopus exaltatus−1
Arabidopsis thaliana0Lysimachia nummularia0
Arabis alpina1Lysimachia punctata−1
Arabis auriculata1Lysimachia thyrsiflora−1
Arabis hirsuta1Lysimachia vulgaris−1
Arabis turrita1Lythrum hyssopifolia−1
Arctium lappa−2Lythrum linifolium−1
Arctium minus−2Lythrum salicaria−2
Arctium nemorosum−2Lythrum thesioides−1
Arctium tomentosum−2Lythrum tribracteatum−1
Aremonia agrimonoides1Lythrum virgatum−1
Arenaria leptoclados0Majanthemum bifolium−1
Arenaria procera0Malcolmia africana1
Arenaria serpyllifolia0Malus domestica−1
Aristolochia clematitis−2Malus sylvestris−1
Armeria elongata0Malva alcea1
Armoracia lapathifolia−2Malva moschata1
Armoracia macrocarpa−2Malva neglecta1
Arnica montana1Malva pusilla1
Arrhenatherum elatius4Malva sylvestris1
Artemisia abrotanum−1Malva verticillata1
Artemisia absinthium−2Marrubium peregrinum−1
Artemisia alba−2Marrubium vulgare−1
Artemisia annua−2Marrubium x paniculatum−1
Artemisia austriaca−1Marsilea quadrifolia−2
Artemisia campestris−1Matricaria chamomilla−1
Artemisia pontica−1Matricaria discoidea−1
Artemisia santonicum−1Matricaria maritima−1
Artemisia scoparia−1Matricaria tenuifolia−1
Artemisia vulgaris−2Matteuccia struthiopteris−2
Arum maculatum−3Medicago arabica3
Arum orientale−3Medicago falcata6
Aruncus sylvestris−1Medicago lupulina5
Asarum europaeum−1Medicago minima4
Asclepias syriaca−3Medicago orbicularis3
Asparagus officinalis1Medicago polymorpha4
Asperugo procumbens−1Medicago prostrata4
Asperula arvensis1Medicago rigidula3
Asperula cynanchica1Medicago sativa7
Asperula orientalis1Medicago x varia7
Asperula taurina1Melampyrum arvense−2
Asperula tinctoria1Melampyrum barbatum−2
Asphodelus albus−1Melampyrum cristatum−2
Asplenium adiantum-nigrum−2Melampyrum nemorosum−2
Asplenium fontanum−2Melampyrum polyphyllus−2
Asplenium lepidum−2Melampyrum pratense−2
Asplenium ruta-muraria−2Melica altissima1
Asplenium septentrionale−2Melica ciliata1
Asplenium trichomanes−2Melica nutans2
Asplenium viride−2Melica picta1
Aster amellus0Melica transsilvanica1
Aster lanceolatus−1Melica uniflora2
Aster linosyris0Melilotus albus2
Aster novae-angliae−1Melilotus altissimus2
Aster novi-belgii−1Melilotus dentatus2
Aster oleifolius−1Melilotus officinalis2
Aster sedifolius−1Melissa officinalis−1
Aster tradescantii−1Melittis carpatica−1
Aster tripolium0Melittis melissophyllum−1
Aster x salignus−1Mentha aquatica−1
Aster x versicolor−1Mentha arvensis−1
Astragalus asper2Mentha longifolia−1
Astragalus austriacus2Mentha pulegium−1
Astragalus cicer2Mentha x carinthiaca−1
Astragalus contortuplicatus2Mentha x dalmatica−1
Astragalus dasyanthus2Mentha x dumetorum−1
Astragalus exscapus3Mentha x gentilis−1
Astragalus glycyphyllos4Mentha x verticillata−1
Astragalus onobrychis2Menyanthes trifoliata−3
Astragalus sulcatus3Mercurialis annua−2
Astragalus varius2Mercurialis ovata−2
Astragalus vesicarius2Mercurialis perennis−2
Astrantia major1Mercurialis x paxii−2
Asyneuma canescens1Mespilus germanica−2
Athyrium filix-femina−2Micropus erectus0
Atriplex hortensis−2Microrrhinum minus0
Atriplex littoralis−2Milium effusum3
Atriplex oblongifolia−2Minuartia fastigiata0
Atriplex patula−2Minuartia frutescens0
Atriplex prostrata−2Minuartia glomerata0
Atriplex rosea−2Minuartia setacea0
Atriplex sagittata−2Minuartia verna0
Atriplex tatarica−2Minuartia viscosa0
Atropa bella-donna−3Misopates orontium0
Aurinia saxatilis1Moehringia muscosa0
Avena barbata1Moehringia trinervia0
Avena fatua1Moenchia mantica0
Avena nuda1Molinia arundinacea1
Avena sativa3Molinia coerulea1
Avena sterilis1Morus alba−1
Avena strigosa1Morus nigra−1
Ballota nigra−2Muscari botryoides−2
Barbarea stricta1Muscari comosum−2
Barbarea verna1Muscari racemosum−2
Barbarea vulgaris1Muscari tenuiflorum−2
Bassia sedoides−1Myagrum perfoliatum−1
Beckmannia eruciformis4Mycelis muralis−2
Bellis perennis2Myosotis arvensis0
Berberis vulgaris−3Myosotis caespitosa0
Berteroa incana−1Myosotis discolor0
Berula erecta−2Myosotis nemorosa0
Betonica officinalis1Myosotis palustris0
Betula pendula−1Myosotis ramosissima0
Betula pubescens−1Myosotis sparsiflora0
Bidens cernua−3Myosotis stenophylla0
Bidens frondosa−3Myosotis stricta0
Bidens tripartita−3Myosotis sylvatica0
Bifora radians−2Myosoton aquaticum1
Biscutella laevigata1Myosurus minimus0
Blackstonia acuminata−2Narcissus angustifolius−2
Blechnum spicant−2Narcissus poëticus−2
Blysmus compressus1Narcissus pseudonarcissus−2
Bolboschoenus maritimus−1Nardus stricta−1
Borago officinalis1Nasturtium officinale−2
Bothriochloa ischaemum1Neottia nidus-avis−1
Botrychium lunaria0Nepeta cataria−1
Botrychium matricariifolium0Nepeta pannonica−1
Botrychium multifidum0Nepeta parviflora−1
Botrychium virginianum−2Neslea paniculata1
Brachypodium pinnatum2Nicandra physalodes−3
Brachypodium sylvaticum2Nicotiana rustica−3
Brassica elongata2Nicotiana tabacum−3
Brassica nigra1Nigella arvensis−1
Brassica oleracea3Nigella damascena−1
Brassica rapa3Nonea pulla1
Brassica x juncea1Odontites lutea−2
Brassica x napus2Odontites vernus subsp. vernus−2
Briza media3Odontites vernus subsp. serotinus−2
Bromus arvensis1Oenanthe aquatica−3
Bromus benekenii1Oenanthe banatica−3
Bromus brachystachys1Oenanthe fistulosa−3
Bromus carinatus1Oenanthe silaifolia−3
Bromus catharticus1Oenothera biennis−1
Bromus commutatus1Oenothera glazioviana−1
Bromus erectus3Oenothera rubricaulis−1
Bromus hordaceus0Oenothera salicifolia−1
Bromus inermis5Oenothera suaveolens−1
Bromus japonicus0Oenothera x hoelscheri−1
Bromus lanceolatus1Omphalodes scorpioides1
Bromus lepidus1Omphalodes verna1
Bromus madritensis1Onobrychis arenaria4
Bromus pannonicus3Onobrychis viciifolia4
Bromus racemosus1Ononis arvensis3
Bromus ramosus1Ononis pusilla1
Bromus reptans3Ononis spinosa−3
Bromus rigidus1Ononis spinosiformis3
Bromus secalinus0Onopordum acanthium−3
Bromus squarrosus0Onosma arenarium−1
Bromus sterilis1Onosma pseudarenarium−1
Bromus tectorum1Onosma tornense−1
Bryonia alba−2Onosma visianii−1
Bryonia dioica−2Ophioglossum vulgatum0
Bulbocodium versicolor−2Ophrys apifera−1
Bunias orientalis−1Ophrys fuciflora−1
Buphthalmum salicifolium−1Ophrys insectifera−1
Bupleurum affine1Ophrys scolopax−1
Bupleurum falcatum1Ophrys sphecodes−1
Bupleurum longifolium1Orchis coriophora−1
Bupleurum pachnospermum1Orchis laxiflora−1
Bupleurum praealtum1Orchis mascula subsp. signifera−1
Bupleurum rotundifolium1Orchis militaris−1
Bupleurum tenuissimum1Orchis morio−1
Butomus umbellatus−1Orchis pallens−1
Calamagrostis arundinacea1Orchis purpurea−1
Calamagrostis canescens1Orchis simia−1
Calamagrostis epigeios1Orchis tridentata−1
Calamagrostis pseudophragmites1Orchis ustulata−1
Calamagrostis purpurea1Origanum vulgare1
Calamagrostis stricta1Orlaya grandiflora1
Calamagrostis varia1Ornithogalum boucheanum−2
Calamagrostis villosa1Ornithogalum comosum−2
Calamintha einseleana1Ornithogalum orthophyllum−2
Calamintha menthifolia1Ornithogalum pyramidale−2
Calamintha thymifolia1Ornithogalum refractum−2
Caldesia parnassifolia−2Ornithogalum sphaerocarpum−2
Calepina irregularis1Ornithogalum umbellatum−2
Calla palustris−2Ornithogalum x degenianum−2
Callitriche cophocarpa1Orobanche alba−2
Callitriche palustris0Orobanche alsatica−2
Calluna vulgaris−2Orobanche arenaria−2
Caltha palustris−2Orobanche caesia−2
Calystegia sepium−2Orobanche caryophyllacea−2
Camelina alyssum1Orobanche cernua−2
Camelina microcarpa1Orobanche coerulescens−2
Camelina rumelica1Orobanche elatior−2
Camelina sativa1Orobanche flava−2
Campanula bononiensis−1Orobanche gracilis−2
Campanula cervicaria−1Orobanche hederae−2
Campanula glomerata1Orobanche loricata−2
Campanula latifolia−1Orobanche lutea−2
Campanula macrostachya−1Orobanche minor−2
Campanula moravica1Orobanche nana−2
Campanula patula1Orobanche picridis−2
Campanula persicifolia1Orobanche purpurea−2
Campanula rapunculoides1Orobanche ramosa−2
Campanula rapunculus1Orobanche reticulata−2
Campanula rotundifolia1Orobanche teucrii−2
Campanula sibirica−1Osmunda regalis−2
Campanula trachelium1Ostrya carpinifolia−1
Campanula xylocarpa1Oxalis acetosella−2
Camphorosma annua1Oxalis corniculata−2
Cannabis sativa−2Oxalis dillenii−2
Capsella bursa-pastoris1Oxalis fontana−2
Capsella rubella1Oxytropis pilosa3
Cardamine amara−1Padus avium−1
Cardamine bulbifera−1Padus serotina−1
Cardamine enneaphyllos−1Paeonia officinalis−3
Cardamine flexuosa−1Panicum capillare1
Cardamine glanduligera−1Panicum miliaceum1
Cardamine hirsuta−1Panicum philadelphicum1
Cardamine impatiens−1Papaver argemone−2
Cardamine parviflora−1Papaver dubium−2
Cardamine pratensis−1Papaver hybridum−2
Cardamine trifolia−1Papaver rhoeas−2
Cardamine waldsteinii−1Papaver somniferum−2
Cardaminopsis arenosa1Parietaria officinalis−1
Cardaminopsis petraea1Paris quadrifolia−3
Cardaria draba−1Parnassia palustris−1
Carduus acanthoides−3Paronychia cephalotes0
Carduus collinus−3Parthenocissus inserta−2
Carduus crassifolius subsp. glaucus−2Parthenocissus quinquefolia−2
Carduus crispus−3Parthenocissus tricuspidata−2
Carduus hamulosus−3Pastinaca sativa−1
Carduus nutans−3Pedicularis palustris−3
Carex acuta−1Peplis portula1
Carex acutiformis−1Persicaria amphibia−2
Carex alba1Persicaria bistorta−2
Carex appropinquata−1Persicaria dubia−2
Carex bohemica1Persicaria hydropiper−2
Carex brevicollis0Persicaria lapathifolia−2
Carex brizoides−1Persicaria maculosa−2
Carex buekii−1Persicaria minor−2
Carex buxbaumii−1Petasites albus−2
Carex caespitosa0Petasites hybridus−2
Carex canescens0Petrorhagia glumacea0
Carex caryophyllea1Petrorhagia prolifera0
Carex davalliana0Petrorhagia saxifraga0
Carex diandra−1Peucedanum alsaticum−1
Carex digitata1Peucedanum arenarium−1
Carex distans0Peucedanum carvifolia−1
Carex disticha−1Peucedanum cervaria−1
Carex divisa1Peucedanum officinale−1
Carex divulsa0Peucedanum oreoselinum−1
Carex echinata1Peucedanum palustre−1
Carex elata−1Peucedanum rochelianum−1
Carex elongata−1Peucedanum verticillare−1
Carex ericetorum1Phacelia congesta2
Carex flacca0Phacelia tanacetifolia2
Carex flava0Phalaris arundinacea4
Carex fritschii0Phalaris canariensis3
Carex halleriana1Phaseolus vulgaris4
Carex hartmannii0Phleum bertolonii5
Carex hirta0Phleum paniculatum3
Carex hordeistichos1Phleum phleoides3
Carex hostiana1Phleum pratense5
Carex humilis1Phlomis tuberosa−1
Carex lasiocarpa−1Pholiurus pannonicus1
Carex lepidocarpa0Phragmites australis−1
Carex limosa1Phyllitis scolopendrium−2
Carex liparicarpos1Physalis alkekengi−2
Carex melanostachya−1Physocaulis nodosus−2
Carex michelii1Physospermum cornubiense−2
Carex montana1Phyteuma orbiculare1
Carex nigra1Phyteuma spicatum1
Carex otrubae−1Phytolacca americana−3
Carex ovalis1Picea abies−1
Carex pairaei1Picris hieracioides−1
Carex pallescens0Pimpinella major2
Carex panicea1Pimpinella saxifraga2
Carex paniculata−1Pinguicula alpina−1
Carex pendula−1Pinguicula vulgaris−1
Carex pilosa0Pinus nigra−1
Carex pilulifera1Pinus sylvestris−1
Carex praecox1Piptatherum miliaceum1
Carex pseudocyperus−1Piptatherum virescens1
Carex remota0Pisum elatius4
Carex repens−1Pisum sativum4
Carex riparia−1Plantago altissima2
Carex rostrata−1Plantago indica1
Carex secalina1Plantago argentea2
Carex spicata0Plantago lanceolata3
Carex stenophylla1Plantago major2
Carex strigosa0Plantago maritima2
Carex supina1Plantago maxima2
Carex sylvatica0Plantago media2
Carex tomentosa1Plantago schwarzenbergiana2
Carex umbrosa0Plantago stepposa2
Carex vesicaria−1Plantago tenuiflora2
Carex viridula1Platanthera bifolia−1
Carex vulpina0Platanthera chlorantha−1
Carlina acaulis−3Pleurospermum austriacum−1
Carlina vulgaris−3Poa angustifolia5
Carpesium abrotanoides−1Poa annua2
Carpesium cernuum−1Poa badensis2
Carpinus betulus−1Poa bulbosa2
Carpinus orientalis−1Poa compressa1
Carthamus lanatus−3Poa humilis6
Carum carvi2Poa nemoralis2
Castanea sativa−1Poa palustris5
Catabrosa aquatica3Poa scabra2
Caucalis latifolia−1Poa pratensis6
Caucalis platycarpos−1Poa remota3
Celtis australis−1Poa stiriaca3
Celtis occidentalis−1Poa supina2
Cenchrus incertus−3Poa trivialis5
Centaurea arenaria1Podospermum canum2
Centaurea calcitrapa−1Podospermum laciniatum2
Centaurea cyanus1Polycnemum arvense−1
Centaurea diffusa1Polycnemum heuffelii−1
Centaurea indurata1Polycnemum majus−1
Centaurea jacea subsp. angustifolia2Polycnemum verrucosum−1
Centaurea jacea subsp. banatica2Polygala amara0
Centaurea jacea subsp. jacea2Polygala amarella0
Centaurea jacea subsp. macroptilon1Polygala comosa0
Centaurea mollis2Polygala major0
Centaurea nigrescens2Polygala nicaeensis subsp. carniolica0
Centaurea pseudophrygia1Polygala vulgaris0
Centaurea salonitana1Polygonatum latifolium−2
Centaurea scabiosa subsp. fritschii1Polygonatum multiflorum−2
Centaurea scabiosa subsp. scabiosa1Polygonatum odoratum−2
Centaurea scabiosa subsp. spinulosa1Polygonatum verticillatum−2
Centaurea scabiosa subsp.sadleriana1Polygonum arenarium−2
Centaurea solstitialis−1Polygonum arenastrum−2
Centaurea stenolepis2Polygonum aviculare−2
Centaurea stoebe subsp. micranthos1Polygonum bellardii−2
Centaurea stoebe subsp. stoebe1Polygonum graminifolium−2
Centaurea triumfetti2Polygonum rurivagum−2
Centaurium erythraea1Polypodium interjectum−2
Centaurium littorale1Polypodium vulgare−2
Centaurium pulchellum0Polystichum aculeatum−2
Centunculus minimus0Polystichum braunii−2
Cephalanthera damasonium−1Polystichum lonchitis−2
Cephalanthera longifolia−1Polystichum setiferum−2
Cephalanthera rubra−1Populus alba−1
Cephalaria pilosa−2Populus deltoides−1
Cephalaria transsylvanica−2Populus nigra−1
Cerastium arvense1Populus simonii−1
Cerastium brachypetalum1Populus tremula−1
Cerastium dubium1Populus x canadensis−1
Cerastium fontanum1Populus x canescens−1
Cerastium glomeratum1Portulaca oleracea0
Cerastium pumilum0Potentilla alba2
Cerastium semidecandrum1Potentilla anserina−1
Cerastium subtetrandrum1Potentilla arenaria1
Cerastium sylvaticum1Potentilla argentea1
Cerasus avium−1Potentilla collina2
Cerasus fruticosa−1Potentilla erecta−1
Cerasus mahaleb−1Potentilla heptaphylla1
Cerasus vulgaris−1Potentilla impolita2
Ceratophyllum demersum−2Potentilla inclinata2
Ceratophyllum submersum−2Potentilla leucopolitana2
Cerinthe minor−1Potentilla micrantha1
Ceterach javorkaeanum0Potentilla neumanniana1
Ceterach officinarum0Potentilla palustris1
Chaerophyllum aromaticum−1Potentilla patula1
Chaerophyllum aureum−1Potentilla pedata2
Chaerophyllum bulbosum−1Potentilla pusilla1
Chaerophyllum hirsutum−1Potentilla recta1
Chaerophyllum temulum−2Potentilla reptans−1
Chamaecytisus albus−2Potentilla rupestris2
Chamaecytisus austriacus−2Potentilla supina2
Chamaecytisus ciliatus−2Potentilla thyrsiflora2
Chamaecytisus heuffelii−2Potentilla wiemanniana2
Chamaecytisus ratisbonensis−2Prenanthes purpurea1
Chamaecytisus rochelii−2Primula auricula−1
Chamaecytisus supinus−2Primula elatior−1
Chamaecytisus triflorus−2Primula farinosa−1
Chamaecytisus virescens−2Primula veris−1
Chelidonium majus−2Primula vulgaris−1
Chenopodium album subsp. album−2Prunella grandiflora1
Chenopodium album subsp. borbasii−2Prunella laciniata1
Chenopodium album subsp. pedunculare−2Prunella vulgaris1
Chenopodium ambrosioides−3Prunus cerasifera−1
Chenopodium aristatum−1Prunus domestica−1
Chenopodium bonus-henricus−1Prunus spinosa−3
Chenopodium botrys−1Pseudolysimachion incanum2
Chenopodium chenipodioides−1Pseudolysimachion longifolium2
Chenopodium ficifolium−1Pseudolysimachion orchideum2
Chenopodium foliosum−1Pseudolysimachion spicatum2
Chenopodium giganteum−2Pseudolysimachion spurium2
Chenopodium glaucum−1Pteridium aquilinum−3
Chenopodium hybridum−3Puccinellia distans4
Chenopodium murale−1Puccinellia limosa3
Chenopodium opulifolium−1Puccinellia peisonis4
Chenopodium polyspermum−1Pulicaria dysenterica−2
Chenopodium pumilio−1Pulicaria vulgaris−2
Chenopodium rubrum−1Pulmonaria angustifolia−1
Chenopodium scheraderianum−1Pulmonaria mollis−1
Chenopodium strictum subsp. striatiforme−1Pulmonaria obscura−1
Chenopodium strictum subsp. strictum−1Pulmonaria officinalis−1
Chenopodium suecicum−1Pulsatilla grandis−2
Chenopodium urbicum−2Pulsatilla patens−2
Chenopodium vulvaria−1Pulsatilla pratensis−2
Chondrilla juncea−1Pyrus communis−1
Chorispora tenella1Pyrus magyarica−1
Chrysopogon gryllus−1Pyrus nivalis−1
Chrysosplenium alternifolium−1Pyrus pyraster−1
Cichorium intybus3Pyrus x austriaca−1
Cicuta virosa−3Quercus cerris−1
Circaea alpina−2Quercus dalechampii−1
Circaea lutetiana−2Quercus frainetto−1
Circaea x intermedia−2Quercus petraea−1
Cirsium arvense−3Quercus polycarpa−1
Cirsium boujartii−3Quercus pubescens−1
Cirsium brachycephalum−3Quercus robur−1
Cirsium canum−3Quercus rubra−1
Cirsium eriophorum−3Quercus virgiliana−1
Cirsium erisithales−3Radiola linoides0
Cirsium furiens−3Ranunculus acris−2
Cirsium oleraceum−3Ranunculus aquatilis−3
Cirsium palustre−3Ranunculus arvensis−2
Cirsium pannonicum−2Ranunculus auricomus−2
Cirsium rivulare−3Ranunculus baudotii−3
Cirsium vulgare−3Ranunculus bulbosus−2
Cladium mariscus−2Ranunculus cassubicus−2
Cleistogenes serotina1Ranunculus circinatus−3
Clematis alpina−3Ranunculus cymbalaria−2
Clematis integrifolia−3Ranunculus fallax−2
Clematis recta−3Ranunculus flammula−3
Clematis vitalba−3Ranunculus fluitans−3
Clematis viticella−3Ranunculus illyricus−2
Clinopodium vulgare1Ranunculus lanuginosus−2
Cnidium dubium2Ranunculus lateriflorus−2
Coeloglossum viride0Ranunculus lingua−3
Colchicum arenarium−3Ranunculus parviflorus−2
Colchicum autumnale−3Ranunculus pedatus−2
Colchicum hungaricum−3Ranunculus peltatus−3
Colutea arborescens−1Ranunculus polyanthemos−2
Commelina communis1Ranunculus polyphyllus−2
Conium maculatum−3Ranunculus psilostachys−2
Conringia austriaca1Ranunculus repens−3
Conringia orientalis1Ranunculus rhipiphyllus−3
Consolida orientalis−2Ranunculus rionii−3
Consolida regalis−2Ranunculus sardous−3
Convallaria majalis−3Ranunculus sceleratus−3
Convolvulus arvensis−1Ranunculus strigulosus−2
Convolvulus cantabrica−1Ranunculus trichophyllus−3
Conyza canadensis−3Raphanus raphanistrum−2
Corallorhiza trifida−1Raphanus sativus−2
Coriandrum sativum−1Rapistrum perenne−2
Corispermum canescens−1Reseda inodora−1
Corispermum nitidum−1Reseda lutea−1
Cornus mas−1Reseda luteola−1
Cornus sanguinea−1Reseda phyteuma−1
Coronilla coronata2Rhamnus catharticus−2
Coronilla vaginalis3Rhamnus saxatilis−2
Coronopus didymus1Rhinanthus alectorolophus−2
Coronopus squamatus1Rhinanthus borbasii−2
Corothamnus procumbens−1Rhinanthus minor−2
Corydalis cava−2Rhinanthus rumelicus−2
Corydalis intermedia−2Rhinanthus serotinus−2
Corydalis pumila−2Rhinanthus wagneri−2
Corydalis solida−2Ribes alpinum−1
Corylus avellana−1Ribes aureum−1
Corylus colurna−1Ribes nigrum−1
Corynephorus canescens2Ribes petraeum−1
Cotinus coggygria−3Ribes rubrum−1
Cotoneaster integerrimus−3Ribes uva-crispa−1
Cotoneaster matrensis−3Ricinus communis−3
Cotoneaster niger−3Robinia pseudo-acacia−3
Cotoneaster tomentosus−3Rorippa amphibia−2
Crambe tataria−1Rorippa austriaca−2
Crataegus calycina−2Rorippa palustris−2
Crataegus laevigata−3Rorippa sylvestris−2
Crataegus monogyna−3Rorippa x anceps−2
Crataegus nigra−1Rorippa x armoracioides−2
Crepis biennis−2Rorippa x astylis−2
Crepis capillaris−1Rorippa x hungarica−2
Crepis nicaeënsis−1Rosa agrestis−3
Crepis paludosa−1Rosa arvensis−3
Crepis pannonica−2Rosa caesia−3
Crepis praemorsa−1Rosa canina−3
Crepis pulchra−2Rosa corymbifera−3
Crepis rhoeadifolia−1Rosa dumalis−3
Crepis setosa−1Rosa elliptica−3
Crepis taraxicifolia−1Rosa rugosa−3
Crepis tectorum−1Rosa gallica−3
Crocus albiflorus−2Rosa gizellae−3
Crocus heuffelianus−2Rosa glauca−3
Crocus reticulatus−2Rosa hungarica−3
Crocus sativus−2Rosa inodora−3
Crocus tommasinianus−2Rosa kmetiana−3
Cruciata glabra1Rosa jundzillii−3
Cruciata laevipes1Rosa majalis−3
Cruciata pedemontana1Rosa micrantha−3
Crupina vulgaris1Rosa tomentella−3
Crypsis aculeata0Rosa pendulina−3
Cucubalus baccifer2Rosa polyacantha−3
Cuscuta approximata−2Rosa rubiginosa−3
Cuscuta australis−2Rosa villosa−3
Cuscuta campestris−2Rosa scabriuscula−3
Cuscuta epilinum−2Rosa sherardii−3
Cuscuta epithymum subsp. epithymum−2Rosa spinosissima−3
Cuscuta epithymum subsp. kotschi−2Rosa subcanina−3
Cuscuta europaea−2Rosa subcollina−3
Cuscuta lupuliformis−2Rosa szaboi−3
Cyclamen purpurascens−2Rosa tomentosa−3
Cydonia oblonga−1Rosa zagrebiensis−3
Cymbalaria muralis0Rosa zalana−3
Cynodon dactylon2Rubus caesius−3
Cynoglossum hungaricum−2Rubus fruticosus agg.−3
Cynoglossum officinale−2Rubus idaeus−3
Cynosurus cristatus4Rubus saxatilis−3
Cynosurus echinatus2Rumex acetosa−1
Cyperus difformis1Rumex acetosella−1
Cyperus flavescens−1Rumex aquaticus−2
Cyperus fuscus1Rumex confertus−1
Cyperus glaber−1Rumex conglomeratus−1
Cyperus glomeratus−1Rumex crispus−2
Cyperus longus−1Rumex dentatus−1
Cyperus pannonicus0Rumex hydrolapathum−2
Cypripedium calceolus−2Rumex kerneri−2
Cystopteris fragilis−2Rumex maritimus−1
Dactylis glomerata5Rumex obtusifolius−2
Dactylis polygama3Rumex palustris−1
Dactylorhiza fuchsii−1Rumex patientia−2
Dactylorhiza incarnata−1Rumex pseudonatronatus−2
Dactylorhiza maculata−1Rumex pulcher−1
Dactylorhiza majalis−1Rumex sanguineus−1
Dactylorhiza sambucina−1Rumex stenophyllus−1
Danthonia alpina2Rumex thyrsiflorus−2
Danthonia decumbens1Ruscus aculeatus−3
Daphne cneorum−3Ruscus hypoglossum1
Daphne laureola−3Sagina apetala subsp. apetala0
Daphne mezereum−3Sagina apetala subsp. erecta0
Datura stramonium−3Sagina nodosa0
Daucus carota1Sagina procumbens0
Deschampsia cespitosa1Sagina sabuletorum0
Deschampsia flexuosa1Sagina saginoides0
Descurainia sophia−1Sagina subulata0
Dianthus arenarius2Sagittaria sagittifolia−3
Dianthus armeria2Salicornia prostrata1
Dianthus barbatus2Salix alba−2
Dianthus carthusianorum2Salix aurita−2
Dianthus collinus2Salix caprea−2
Dianthus deltoides2Salix cinerea−2
Dianthus diutinus2Salix elaeagnos−2
Dianthus giganteiformis2Salix fragilis−2
Dianthus plumarius subsp praecox2Salix myrsinifolia−2
Dianthus plumarius subsp. lumnitzeri2Salix pentandra−2
Dianthus plumarius subsp. regis-stephani2Salix purpurea−2
Dianthus pontederae2Salix rosmarinifolia−2
Dianthus serotinus2Salix triandra−2
Dianthus superbus2Salix viminalis−2
Dichostylis micheliana1Salix x multinervis−2
Dictamnus albus−2Salsola kali−1
Digitalis ferruginea−3Salsola soda−1
Digitalis grandiflora−3Salvia aethiopis1
Digitalis lanata−3Salvia austriaca1
Digitalis purpurea−3Salvia glutinosa1
Digitaria ciliaris1Salvia nemorosa2
Digitaria ischaemum0Salvia nutans1
Digitaria sanguinalis1Salvia officinalis1
Diphasium complanatum−2Salvia pratensis2
Diphasium issleri−2Salvia sclarea1
Diphasium tristachyum−2Salvia verbenaca2
Diplotaxis erucoides1Salvia verticillata2
Diplotaxis muralis1Sambucus ebulus−3
Diplotaxis tenuifolia1Sambucus nigra−3
Dipsacus laciniatus−3Sambucus racemosa−3
Dipsacus sylvestris−3Samolus valerandi1
Doronicum austriacum1Sanguisorba minor2
Doronicum hungaricum1Sanguisorba officinalis2
Doronicum orientale1Sanicula europaea2
Dorycnium germanicum0Saponaria officinalis−1
Dorycnium herbaceum0Sarothamnus scoparius−3
Draba lasiocarpa0Satureja hortensis1
Draba muralis1Saxifraga adscendens0
Draba nemorosa1Saxifraga bulbifera0
Dracocephalum austriacum−2Saxifraga granulata0
Dracocephalum moldavica−2Saxifraga paniculata0
Dracocephalum ruyschiana−2Saxifraga tridactylites0
Drosera anglica−2Scabiosa canescens2
Drosera rotundifolia−2Scabiosa columbaria2
Dryopteris carthusiana−2Scabiosa ochroleuca2
Dryopteris cristata−2Scabiosa triandra2
Dryopteris dilatata−2Scandix pecten-veneris1
Dryopteris expansa−2Schoenoplectus lacustris−2
Dryopteris filix-mas−2Schoenoplectus litoralis−2
Dryopteris pseudo-mas−2Schoenoplectus mucronatus−1
Ecballium elaterium−3Schoenoplectus setaceus−1
Echinochloa crus-galli1Schoenoplectus supinus−1
Echinochloa eruciformis1Schoenoplectus tabernaemontani−2
Echinochloa occidentalis1Schoenoplectus triqueter−2
Echinochloa oryzoides1Schoenus ferrugineus−1
Echinochloa phyllopogon1Schoenus nigricans−1
Echinocystis lobata−3Scilla autumnalis0
Echinops ruthenicus−3Scilla drunensis0
Echinops sphaerocephalus−3Scilla kladnii0
Echium italicum−2Scilla spetana0
Echium maculatum−2Scilla vindobonensis0
Echium vulgare−2Scirpoides holoschoenus−1
Elaeagnus angustifolia−1Scirpus pungens−1
Elatine alsinastrum1Scirpus radicans−1
Elatine hexandra1Scirpus sylvaticus−1
Elatine hungarica1Scleranthus annuus0
Elatine hydropiper1Scleranthus dichotomus0
Elatine triandra1Scleranthus perennis0
Eleocharis acicularis1Scleranthus polycarpos0
Eleocharis austriaca1Scleranthus verticillatus0
Eleocharis carniolica1Sclerochloa dura0
Eleocharis mamillata1Scopolia carniolica−3
Eleocharis ovata1Scorzonera austriaca1
Eleocharis palustris1Scorzonera hispanica1
Eleocharis quinqueflora1Scorzonera humilis1
Eleocharis uniglumis1Scorzonera parviflora1
Eleusine indica1Scorzonera purpurea1
Elymus caninus3Scrophularia nodosa−2
Elymus hispidus3Scrophularia scopolii−2
Elymus repens3Scrophularia umbrosa−2
Ephedra distachya−2Scrophularia vernalis−2
Epilobium ciliatum−1Scutellaria altissima−2
Chamaenerion angustifolium−2Scutellaria columnae−2
Epilobium collinum−1Scutellaria galericulata−2
Chamaenerion dodonaei−1Scutellaria hastifolia−2
Epilobium hirsutum−2Secale sylvestre1
Epilobium lanceolatum−1Securigera elegans5
Epilobium montanum−1Securigera varia5
Epilobium obscurum−1Sedum acre−2
Epilobium palustre−1Sedum album−2
Epilobium parviflorum−2Sedum caespitosum−2
Epilobium roseum−1Sedum hispanicum−2
Epilobium tetragonum−1Hylotelephium telephium subsp. maxium−2
Epipactis atrorubens−2Sedum neglectum−2
Epipactis helleborine−2Sedum reflexum−2
Epipactis leptochila−2Sedum sartorianum−2
Epipactis microphylla−2Sedum sexangulare−2
Epipactis muelleri−2Sedum spurium−2
Epipactis palustris−2Selaginella helvetica0
Epipactis pontica−2Selinum carvifolia1
Epipactis purpurata−2Sempervivum marmoreum0
Epipactis voethii−2Sempervivum tectorum0
Epipactis exilis−2Senecio aquaticus−2
Epipactis mecsekensis−2Tephroseris aurantiaca−2
Epipactis albensis−2Senecio doria−2
Epipactis placentina−2Senecio erraticus−2
Epipactis muelleri−2Senecio erucifolius−2
Epipactis nordeniorum−2Senecio sarracenicus−2
Epipactis tallosii−2Senecio inaeequidens−2
Epipactis bugacensis−2Tephroseris integrifolia−2
Epipactis greuterii−2Senecio jacobaea−2
Epipogium aphyllum−2Senecio germanicus−2
Equisetum arvense−2Senecio ovatus−2
Equisetum fluviatile−2Tephroseris longifolia−2
Equisetum hyemale−2Senecio paludosus−2
Equisetum palustre−2Senecio rupestris−2
Equisetum ramosissimum−2Senecio sylvaticus−2
Equisetum sylvaticum−2Senecio umbrosus−2
Equisetum telmateia−2Senecio vernalis−2
Equisetum variegatum−2Senecio viscosus−2
Equisetum x moorei−2Senecio vulgaris−2
Eragrostis cilianensis1Serratula lycopifolia2
Eragrostis minor1Serratula radiata2
Eragrostis parviflora1Serratula tinctoria2
Eragrostis pilosa2Seseli annuum2
Eranthis hyemalis0Seseli hippomarathrum2
Erechtites hieraciifolia−2Seseli leucospermum2
Erigeron acris−2Seseli osseum2
Erigeron annus−2Seseli varium2
Eriophorum angustifolium−1Sesleria albicans1
Eriophorum gracile−1Sesleria heuflerana2
Eriophorum latifolium−1Sesleria hungarica1
Eriophorum vaginatum−1Sesleria sadlerana1
Erodium ciconium−1Sesleria uliginosa1
Erodium cicutarium−1Setaria italica1
Erodium neilreichii−1Setaria pumila1
Erophila praecox0Setaria verticillata1
Erophila spathulata0Setaria verticilliformis1
Erophila verna0Setaria viridis1
Eruca sativa−2Sherardia arvensis1
Erucastrum gallicum1Sicyos angulatus−2
Erucastrum nasturtiifolium1Sideritis montana0
Eryngium campestre−3Silaum peucedanoides−1
Eryngium planum−3Silaum silaus−1
Erysimum cheiranthoides−3Silene alba1
Erysimum crepidifolium−3Silene armeria1
Erysimum diffusum−3Silene borysthenica1
Erysimum hieracifolium−3Silene conica0
Erysimum odoratum−3Silene dichotoma1
Erysimum pallidiflorum−3Silene dioica1
Erysimum repandum−3Silene gallica0
Erythronium dens-canis−3Silene longiflora1
Euclidium syriacum0Silene multiflora1
Euonymus europaea−2Silene nemoralis1
Euonymus verrucosa−2Silene noctiflora1
Eupatorium cannabinum−2Silene nutans1
Euphorbia amygdaloides−2Silene otites1
Euphorbia angulata−2Silene viridiflora1
Euphorbia carpatica−2Silene viscosa1
Euphorbia cyparissias−2Silene vulgaris1
Euphorbia dulcis−2Sinapis alba−2
Euphorbia epithymoides−2Sinapis arvensis−2
Euphorbia esula−2Sisymbrium altissimum−2
Euphorbia exigua−2Sisymbrium loeselii−2
Euphorbia falcata−2Sisymbrium officinale−2
Euphorbia helioscopia−2Sisymbrium orientale−2
Euphorbia humifusa−2Sisymbrium polymorphum−2
Euphorbia lucida−2Sisymbrium strictissimum−2
Euphorbia maculata−2Sium latifolium−2
Euphorbia nutans−2Sium sisarum−2
Euphorbia palustris−2Smyrnium perfoliatum−1
Euphorbia glareosa−2Solanum alatum−3
Euphorbia peplus−2Solanum dulcamara−3
Euphorbia platyphyllos−2Solanum villosum−3
Euphorbia salicifolia−2Solanum nigrum−3
Euphorbia segetalis−2Solanum rostratum−3
Euphorbia seguierana−2Solidago canadensis−2
Euphorbia stricta−2Solidago gigantea−2
Euphorbia taurinensis−2Solidago virgaurea−1
Euphorbia verrucosa−2Sonchus arvensis−1
Euphorbia villosa−2Sonchus asper−1
Euphorbia virgata−2Sonchus oleraceus−1
Euphrasia kerneri−1Sonchus palustris−2
Euphrasia rostkoviana−1Sorbus aria−1
Euphrasia stricta−1Sorbus aucuparia−1
Euphrasia tatarica−1Sorbus austriaca−1
Fagopyrum esculentum−1Sorbus domestica−1
Fagus sylvatica−2Sorbus graeca−1
Falcaria vulgaris−1Sorbus torminalis−1
Fallopia convolvulus−1Sorbus x danubialis−1
Fallopia dumetorum−1Sorghum bicolor3
Fallopia japonica−3Sorghum halepense3
Fallopia sachalinensis−3Sorghum sudanense3
Fallopia x bohemica−3Sparganium emersum−2
Ferula sadlerana1Sparganium erectum−2
Festuca altissima3Sparganium minimum−2
Festuca amethystina2Spergula arvensis0
Festuca arundinacea4Spergula pentandra0
Festuca dalmatica3Spergularia marina0
Festuca drymeia2Spergularia maritima0
Festuca filiformis2Spergularia rubra0
Festuca gigantea3Spiraea crenata−1
Festuca heterophylla2Spiraea media−1
Festuca nigrescens3Spiraea salicifolia−1
Festuca ovina2Spiranthes aestivalis−1
Festuca pallens2Spiranthes spiralis−1
Festuca pannonica2Stachys alpina−1
Festuca pratensis6Stachys annua1
Festuca pseudodalmatica3Stachys byzantina−2
Festuca pseudovaginata3Stachys germanica−1
Festuca pseudovina3Stachys palustris1
Festuca rubra4Stachys recta1
Festuca rupicola3Stachys sylvatica−1
Festuca tenuifolia3Staphylea pinnata−1
Festuca vaginata2Stellaria graminea1
Festuca valesiaca3Stellaria holostea1
Festuca vojtkoi2Stellaria media1
Festuca x stricta2Stellaria nemorum1
Festuca x wagneri3Stellaria palustris1
Ficaria verna1Stellaria uliginosa1
Filago arvensis0Sternbergia colchiciflora0
Filago minima0Stipa borysthenica−2
Filago vulgaris0Stipa bromoides−2
Filipendula ulmaria1Stipa capillata−2
Filipendula vulgaris1Stipa crassiculmis−2
Foeniculum vulgare−1Stipa dasyphylla−2
Fragaria moschata2Stipa eriocaulis−1
Fragaria vesca2Stipa pennata−2
Fragaria viridis2Stipa pulcherrima−2
Frangula alnus−1Stipa tirsa−1
Fraxinus angustifolia−1Stratiotes aloides−3
Fraxinus excelsior−1Suaeda maritima1
Fraxinus ornus−1Suaeda pannonica1
Fraxinus pennsylvanica−1Succisa pratensis2
Fritillaria meleagris−2Succisella inflexa2
Fumana ericoides0Symphytum officinale−1
Fumana procumbens0Symphytum tuberosum−1
Fumaria officinalis−1Syrenia cana−3
Fumaria parviflora−1Syringa vulgaris−3
Fumaria rostellata−1Taeniatherum asperum1
Fumaria schleicheri−1Tamarix gallica−2
Fumaria vaillantii−1Tamarix ramosissima−2
Gagea bohemica0Tamarix tetrandra−2
Gagea lutea0Tamus communis−1
Gagea minima0Tanacetum corymbosum−2
Gagea pratensis0Tanacetum parthenium−2
Gagea pusilla0Tanacetum vulgare−2
Gagea spathacea0Taraxacum bessarabicum1
Gagea szovitsii0Taraxacum laevigatum1
Gagea villosa0Taraxacum officinale3
Galanthus nivalis−3Taraxacum palustre2
Galega officinalis2Taraxacum serotinum2
Galeobdolon luteum−2Taxus baccata−3
Galeopsis bifida−2Teesdalia nudicaulis1
Galeopsis ladanum−2Telekia speciosa−2
Galeopsis pubescens−2Tetragonolobus maritimus4
Galeopsis segetum−2Teucrium botrys1
Galeopsis speciosa−2Teucrium chamaedrys1
Galeopsis tetrahit−2Teucrium montanum1
Galinsoga ciliata−1Teucrium scordium1
Galinsoga parviflora−1Teucrium scorodonia1
Galium abaujense−1Thalictrum aquilegiifolium−2
Galium album−1Thalictrum flavum−2
Galium aparine−1Thalictrum foetidum−2
Galium austriacum−1Thalictrum lucidum−2
Galium boreale−1Thalictrum minus−2
Galium divaricatum1Thalictrum simplex−2
Galium elongatum−1Thelypteris palustris−2
Galium glaucum−1Thesium arvense0
Galium humifusum−1Thesium bavarum0
Galium lucidum−1Thesium dollineri0
Galium mollugo−1Thesium linophyllon0
Galium odoratum−1Thladiantha dubia−2
Galium palustre−1Thlaspi alliaceum1
Galium parisiense1Thlaspi arvense1
Galium pumilum1Thlaspi coerulescens1
Galium rivale−1Thlaspi goesingense1
Galium rotundifolium1Thlaspi jankae1
Galium rubioides−1Thlaspi kovatsii1
Galium schultesii−1Thlaspi montanum1
Galium spurium1Thlaspi perfoliatum1
Galium sylvaticum−1Thymelaea passerina0
Galium tenuissimum1Thymus caespitosus−1
Galium tricornutum1Thymus glabrescens−1
Galium uliginosum−1Thymus pannonicus−1
Galium verum−1Thymus praecox−1
Gaudinia fragilis2Thymus pulegioides−1
Genista germanica−2Thymus serpyllum−1
Genista ovata−2Thymus vulgaris−1
Genista pilosa−2Tilia cordata−1
Genista pilosa−2Tilia platyphyllos−1
Genista tinctoria−2Tilia tomentosa−1
Genistella sagittalis−1Tofieldia calyculata1
Gentiana asclepiadea1Tordylium maximum1
Gentiana cruciata1Torilis arvensis−1
Gentiana pneumonanthe1Torilis japonica−1
Gentianella austriaca0Torilis ucranica−1
Gentianella amarella subsp. livonica0Tragopogon dubius2
Gentianopsis ciliata0Tragopogon floccosus2
Geranium bohemicum1Tragopogon orientalis2
Geranium columbinum0Tragus racemosus−1
Geranium dissectum0Traunsteinera globosa−1
Geranium divaricatum1Tribulus terrestris−3
Geranium lucidum0Trifolium alpestre4
Geranium molle0Trifolium angulatum4
Geranium palustre1Trifolium arvense1
Geranium phaeum1Trifolium aureum5
Geranium pratense1Trifolium campestre5
Geranium pusillum0Trifolium diffusum4
Geranium pyrenaicum1Trifolium dubium5
Geranium robertianum1Trifolium fragiferum6
Geranium rotundifolium0Trifolium hybridum7
Geranium sanguineum1Trifolium incarnatum4
Geranium sibiricum1Trifolium medium4
Geranium sylvaticum1Trifolium micranthum5
Geum aleppicum1Trifolium montanum4
Geum urbanum1Trifolium ochroleucon4
Gladiolus byzantinus−2Trifolium ornithopodioides3
Gladiolus imbricatus−2Trifolium pallidum4
Gladiolus palustris−2Trifolium pannonicum5
Glaucium corniculatum−2Trifolium patens5
Glaucium flavum−2Trifolium pratense7
Glaux maritima0Trifolium repens7
Glechoma hederacea−2Trifolium resupinatum5
Glechoma hirsuta−2Trifolium retusum4
Gleditsia triacanthos−3Trifolium rubens5
Globularia cordifolia1Trifolium striatum5
Globularia punctata1Trifolium strictum5
Glyceria declinata−1Trifolium subterraneum2
Glyceria fluitans−1Trifolium vesiculosum4
Glyceria maxima−1Triglochin maritimum−1
Glyceria nemoralis−1Triglochin palustre−1
Glyceria notata−1Trigonella caerulea3
Glycyrrhiza echinata2Trigonella foenum-graecum3
Glycyrrhiza glabra2Trigonella gladiata3
Gnaphalium luteo-album0Trigonella monspeliaca3
Gnaphalium sylvaticum0Trigonella procumbens3
Gnaphalium uliginosum0Trinia glauca−1
Goodyera repens0Trinia ramosissima−1
Gratiola officinalis−2Trisetum flavescens4
Gymnadenia conopsea−1Trollius europaeus−2
Gymnadenia odoratissima−1Tulipa sylvestris−2
Gymnocarpium dryopteris−2Turritis glabra1
Gymnocarpium robertianum−2Tussilago farfara−2
Gypsophila fastigiata1Typha angustifolia−1
Gypsophila muralis1Typha latifolia−1
Gypsophila paniculata1Typha laxmannii−1
Haynaldia villosa2Typha minima−1
Hedera helix−3Typha shuttleworthii−1
Heleochloa alopecuroides1Ulmus glabra−1
Heleochloa schoenoides0Ulmus laevis−1
Helianthemum canum0Ulmus minor−1
Helianthemum nummularium0Ulmus procera−1
Helianthemum ovatum0Urtica dioica1
Helianthus annuus−2Urtica kioviensis1
Helianthus decapetalus−2Urtica pilulifera1
Helianthus rigidus−2Urtica urens1
Helianthus tuberosus−2Vaccaria hispanica2
Helichrysum arenarium−1Vaccinium myrtillus−1
Helictotrichon adsurgens2Vaccinium oxycoccos−1
Helictotrichon compressum2Vaccinium vitis-idaea−1
Helictotrichon pratense2Valeriana dioica−1
Helictotrichon pubescens1Valeriana excelsa−1
Heliotropium europaeum−2Valeriana officinalis−1
Heliotropium supinum−2Valeriana stolonifera−1
Helleborus dumetorum−3Valeriana tripteris−1
Helleborus odorus−3Valerianella carinata1
Helleborus purpurascens−3Valerianella coronata1
Helleborus viridis−3Valerianella dentata1
Helminthia echioides−1Valerianella locusta1
Hemerocallis fulva−3Valerianella pumila1
Hemerocallis lilio-asphodelus−3Valerianella rimosa1
Hepatica nobilis−1Ventenata dubia1
Heracleum mantegazzianum−3Veratrum album−3
Heracleum sphondylium−3Veratrum nigrum−3
Herniaria glabra0Verbascum austriacum−1
Herniaria hirsuta0Verbascum blattaria−2
Herniaria incana0Verbascum densiflorum−2
Hesperis matronalis−1Verbascum lychnitis−1
Hesperis sylvestris−1Verbascum nigrum−1
Hesperis tristis1Verbascum phlomoides−2
Hibiscus trionum1Verbascum phoeniceum0
Hieracium pilosella1Verbascum pulverulentum−1
Hieracium aurantiacum1Verbascum speciosum−2
Hieracium bauhinii1Verbascum thapsus−2
Hieracium bifidum1Verbena officinalis1
Hieracium bupleuroides1Verbena supina1
Hieracium caespitosum1Veronica acinifolia0
Hieracium cymosum1Veronica agrestis0
Hieracium echioides1Veronica anagallis-aquatica2
Hieracium lachenalii1Veronica anagalloides1
Hieracium lactucella1Veronica arvensis0
Hieracium laevigatum1Veronica austriaca1
Hieracium macranthum1Veronica beccabunga1
Hieracium murorum1Veronica catenata1
Hieracium piloselloides1Veronica chamaedrys1
Hieracium racemosum1Veronica dillenii0
Hieracium sabaudum1Veronica hederifolia0
Hieracium schmidtii1Veronica montana1
Hieracium staticifolium1Veronica officinalis1
Hieracium umbellatum1Veronica opaca0
Hierochloë australis1Veronica peregrina0
Hierochloë repens1Veronica persica0
Himantoglossum adriaticum−1Veronica polita0
Himantoglossum caprinum−1Veronica praecox0
Hippocrepis comosa2Veronica prostrata0
Hippocrepis emerus2Veronica scardica1
Hippophaë rhamnoides−3Veronica scutellata1
Holcus lanatus2Veronica serpyllifolia1
Holcus mollis1Veronica teucrium1
Holosteum umbellatum1Veronica triphyllos0
Hordelymus europaeus1Veronica verna0
Hordeum hystrix1Viburnum lantana−2
Hordeum marinum1Viburnum opulus−2
Hordeum murinum1Vicia angustifolia3
Hornungia petraea0Vicia articulata3
Hottonia palustris−2Vicia biennis4
Humulus lupulus−1Vicia cassubica4
Humulus scandens−1Vicia cracca3
Huperzia selago0Vicia dumetorum4
Hydrocharis morsus-ranae−2Vicia ervilia3
Hydrocotyle vulgaris−2Vicia faba3
Hyoscyamus niger−3Vicia grandiflora3
Hypericum barbatum1Vicia hirsuta3
Hypericum elegans1Vicia lathyroides3
Hypericum hirsutum1Vicia lutea3
Hypericum humifusum1Vicia narbonensis3
Hypericum maculatum1Vicia oroboides4
Hypericum montanum1Vicia pannonica3
Hypericum perforatum1Vicia peregrina3
Hypericum tetrapterum1Vicia pisiformis4
Hypochoeris maculata1Vicia sativa4
Hypochoeris radicata1Vicia sepium4
Hyssopus officinalis1Vicia sparsiflora4
Impatiens balfouri−2Vicia sylvatica4
Impatiens glandulifera−2Vicia tenuifolia3
Impatiens noli-tangere−2Vicia tenuissima3
Impatiens parviflora−2Vicia tetrasperma3
Inula britannica1Vicia villosa4
Inula conyza2Vinca herbacea−2
Inula ensifolia2Vinca major−2
Inula germanica−1Vinca minor−2
Inula helenium2Vincetoxicum hirundinaria−3
Inula hirta−1Vincetoxicum pannonicum−3
Inula oculus-christi−1Viola alba1
Inula salicina2Viola ambigua1
Inula spiraeifolia2Viola arvensis0
Ipomoea purpurea−1Viola biflora1
Iris aphylla−2Viola canina1
Iris arenaria−2Viola collina1
Iris germanica−2Viola cyanea1
Iris graminea−2Viola elatior1
Iris pseudacorus−3Viola hirta1
Iris pumila−2Viola kitaibeliana0
Iris sibirica−2Viola mirabilis1
Iris spuria−2Viola montana1
Iris variegata−2Viola odorata1
Isatis tinctoria−1Viola palustris1
Isopyrum thalictroides−2Viola pumila1
Jasione montana1Viola riviniana1
Jovibarba hirta0Viola rupestris0
Jovibarba sobolifera0Viola stagnina1
Juglans nigra−1Viola suavis1
Juglans regia−1Viola sylvestris1
Juncus alpinus0Viola tricolor1
Juncus articulatus0Viscum album−2
Juncus atratus−1Vitis rupestris−1
Juncus bufonius0Vitis sylvestris−1
Juncus bulbosus0Vitis vinifera−1
Juncus capitatus0Vitis vulpina−1
Juncus compressus0Vulpia bromoides1
Juncus conglomeratus−1Vulpia myuros1
Juncus effusus−1Waldsteinia geoides1
Juncus gerardii−1Xanthium italicum−3
Juncus inflexus−1Xanthium spinosum−3
Juncus maritimus−2Xanthium strumarium−3
Juncus sphaerocarpus0Xeranthemum annuum−1
Juncus subnodulosus−1Xeranthemum cylindraceum−1

References

  1. Huber, R.; Le’Clec’h, S.; Buchmann, N.; Finger, R. Economic Value of Three Grassland Ecosystem Services When Managed at the Regional and Farm Scale. Sci. Rep. 2022, 12, 4194. [Google Scholar] [CrossRef]
  2. Zhao, Y.; Liu, Z.; Wu, J. Grassland Ecosystem Services: A Systematic Review of Research Advances and Future Directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
  3. Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
  4. Boval, M.; Dixon, R.M. The Importance of Grasslands for Animal Production and Other Functions: A Review on Management and Methodological Progress in the Tropics. Animal 2012, 6, 748–762. [Google Scholar] [CrossRef] [PubMed]
  5. Moog, D.; Poschlod, P.; Kahmen, S.; Schreiber, K.-F. Comparison of Species Composition between Different Grassland Management Treatments after 25 Years. Appl. Veg. Sci. 2002, 5, 99–106. [Google Scholar] [CrossRef]
  6. Hoekstra, N.J.; De Long, J.R.; Jansma, A.P.; Iepema, G.; Manhoudt, A.; van Eekeren, N. Differences in Grassland Sward Biodiversity and Management Regime Lead to Mixed Effects on Ecosystem Services. Eur. J. Agron. 2023, 149, 126886. [Google Scholar] [CrossRef]
  7. Frank, D.A.; Wallen, R.L.; White, P.J. Ungulate Control of Grassland Production: Grazing Intensity and Ungulate Species Composition in Yellowstone Park. Ecosphere 2016, 7, e01603. [Google Scholar] [CrossRef]
  8. Sun, J.; Wang, X.; Cheng, G.; Wu, J.; Hong, J.; Niu, S. Effects of Grazing Regimes on Plant Traits and Soil Nutrients in an Alpine Steppe, Northern Tibetan Plateau. PLoS ONE 2014, 9, e108821. [Google Scholar] [CrossRef]
  9. Alves, F.G.S.; Gomes, E.C.; Faria, A.F.G.; Pompeu, R.C.F.F.; Coutinho, D.N.; Cândido, M.J.D. The Effects of Grazing Frequency and Intensity on Herbage and Structural Characteristics of Irrigated ‘Tifton 85’ Bermudagrass Grazed by Sheep. N. Z. J. Agric. Res. 2025, 68, 2131–2142. [Google Scholar] [CrossRef]
  10. French, K.E. Species Composition Determines Forage Quality and Medicinal Value of High Diversity Grasslands in Lowland England. Agric. Ecosyst. Environ. 2017, 241, 193–204. [Google Scholar] [CrossRef]
  11. Komac, B.; Domènech, M.; Fanlo, R. Effects of Grazing on Plant Species Diversity and Pasture Quality in Subalpine Grasslands in the Eastern Pyrenees (Andorra): Implications for Conservation. J. Nat. Conserv. 2014, 22, 247–255. [Google Scholar] [CrossRef]
  12. Blaix, C.; Chabrerie, O.; Alard, D.; Catterou, M.; Diquelou, S.; Dutoit, T.; Lacoux, J.; Loucougaray, G.; Michelot-Antalik, A.; Pacé, M.; et al. Forage Nutritive Value Shows Synergies with Plant Diversity in a Wide Range of Semi-Natural Grassland Habitats. Agric. Ecosyst. Environ. 2023, 347, 108369. [Google Scholar] [CrossRef]
  13. Humbert, J.-Y.; Pellet, J.; Buri, P.; Arlettaz, R. Does Delaying the First Mowing Date Benefit Biodiversity in Meadowland? Environ. Evid. 2012, 1, 9. [Google Scholar] [CrossRef]
  14. Stolz, C.; Deppe, U.; Kämmer, G.; Kuhwald, M.; Nass, D.; Sönnichsen, L. The Development of Nutrient Contents on a New Conservation Area in the Far North of Germany Concerning Different Types of Use. A Proposal for a Sustainable Development in Nature Conservation Practice. Pol. J. Soil Sci. 2018, 51, 133. [Google Scholar] [CrossRef]
  15. Rayburn, E.B.; Blaser, R.E.; Fontenot, J.P. In Vivo Quality of Tall Fescue as Influenced by Season, Legumes, Age, and Canopy Strata. Agron. J. 1980, 72, 872–876. [Google Scholar] [CrossRef]
  16. Nosalewicz, A.; Siecińska, J.; Kondracka, K.; Nosalewicz, M. The Functioning of Festuca Arundinacea and Lolium Perenne under Drought Is Improved to a Different Extend by the Previous Exposure to Water Deficit. Environ. Exp. Bot. 2018, 156, 271–278. [Google Scholar] [CrossRef]
  17. Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Darkalt, A. Changes in the Physiological and Morphometric Characteristics and Biomass Distribution of Forage Grasses Growing under Conditions of Drought and Silicon Application. Plants 2023, 12, 16. [Google Scholar] [CrossRef] [PubMed]
  18. Van den Bossche, T.; De Boever, J.L.; Haesaert, G.; Cougnon, M.; Debevere, S.; Vandaele, L.; Goossens, K. Management Strategies to Improve the Nitrogen Use Efficiency in Grasslands and the Protein Quality in Grass Silages: Lessons from a Practical Study on Dairy Farms in Flanders. Grassl. Res. 2024, 3, 18–32. [Google Scholar] [CrossRef]
  19. Bryan, W.B.; Mata, D.J.; Gekara, O.J. Manure and Management Affect Grassland Production and Soil Quality in Organic Lamb Production. Agrosyst. Geosci. Environ. 2019, 2, 190058. [Google Scholar] [CrossRef]
  20. Chang, S.; Xie, K.; Du, W.; Jia, Q.; Yan, T.; Yang, H.; Hou, F. Effects of Mowing Times on Nutrient Composition and In Vitro Digestibility of Forage in Three Sown Pastures of China Loess Plateau. Animals 2022, 12, 2807. [Google Scholar] [CrossRef]
  21. Zhao, C.; Li, Q.; Cheng, L.; Zhong, R. Effects of Mowing Regimes on Forage Yield and Crude Protein of Leymus Chinensis (Trin.) Tzvel in Songnen Grassland. Grassl. Sci. 2021, 67, 275–284. [Google Scholar] [CrossRef]
  22. Andueza, D.; Cruz, P.; Farruggia, A.; Baumont, R.; Picard, F.; Michalet-Doreau, B. Nutritive Value of Two Meadows and Relationships with Some Vegetation Traits. Grass Forage Sci. 2010, 65, 325–334. [Google Scholar] [CrossRef]
  23. Andueza, D.; Rodrigues, A.M.; Picard, F.; Rossignol, N.; Baumont, R.; Cecato, U.; Farruggia, A. Relationships between Botanical Composition, Yield and Forage Quality of Permanent Grasslands over the First Growth Cycle. Grass Forage Sci. 2016, 71, 366–378. [Google Scholar] [CrossRef]
  24. Chen, L.; Auh, C.-K.; Dowling, P.; Bell, J.; Chen, F.; Hopkins, A.; Dixon, R.A.; Wang, Z.-Y. Improved Forage Digestibility of Tall Fescue (Festuca arundinacea) by Transgenic down-Regulation of Cinnamyl Alcohol Dehydrogenase. Plant Biotechnol. J. 2003, 1, 437–449. [Google Scholar] [CrossRef] [PubMed]
  25. Harmon, D.D.; Rayburn, E.B.; Griggs, T.C. Grassland Ecology and Ecosystem Management for Sustainable Livestock Performance. Agronomy 2023, 13, 1380. [Google Scholar] [CrossRef]
  26. Yang, Y.; Tilman, D.; Furey, G.; Lehman, C. Soil Carbon Sequestration Accelerated by Restoration of Grassland Biodiversity. Nat. Commun. 2019, 10, 718. [Google Scholar] [CrossRef]
  27. Sala, O.E.; Austin, A.T. Methods of Estimating Aboveground Net Primary Productivity. In Methods in Ecosystem Science; Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W., Eds.; Springer: New York, NY, USA, 2000; pp. 31–43. ISBN 978-1-4612-1224-9. [Google Scholar]
  28. Nagy, G.; Pető, K. A Lábonálló Gyepek Termésének Mérése. [Measuring the Yield of Standing Grasslands]. Állattanyésztés é S Takarmányozás 2001, 50, 139–154. [Google Scholar]
  29. Klapp, E.; Boecker, P.; König, F.; Stählin, A. Wertzahlen der Grünlandpflanzen. [Feed and ecological values of grassland species]. Das. Grünland 1953, 2, 38–40. [Google Scholar]
  30. Balázs, F. A gyepek botanikai és gazdasági értékelése. [Botanical and economic evaluation of grasslands]. A Keszthelyi Mezőgazdasági Akadémia Kiadványai 1960, 8, 3–23. [Google Scholar]
  31. Briemle, G.; Nietsche, S.; Nitsche, L. Grünlandpflanzen Und Ihre Nutzungswertzahlen. [Grassland Species and Their Utility Values]. Jahrb. Naturschutz Hess. 2003, 8, 81–96. [Google Scholar]
  32. Briemle, G.; Nitsche, S.; Nitsche, L. Nutzungswertzahlen Für Gefäßpflanzen. [The Utility Values of Vascular Plants]. Schriftenreihe Veg. 2002, 38, 203–225. [Google Scholar]
  33. Briemle, G. Möglichkeiten Und Grenzen Fer Anwendbarkeit von Wertzahlen Im Grünland. Das Wirtschaftseigene Futter 43 1997, 141–164. [Google Scholar]
  34. Nitsche, L. Vegetations-Bestanderfassungen Nach Dem Hessischen Biotoppflegesystem Für Magerrasen. [Vegetation Surveys According to the Hessian Biotope Management System for Nutrient-Poor Grasslands]. Naturschutz Und Landschaftsplanung 1993, 25, 17–23. [Google Scholar]
  35. Briemle, G. Zur Anwendbarkeit Ökologischer Wertzahlen Im Grünland. [On the Applicability of Ecological Values in Grassland]. Angew. Bot. 1997, 71, 219–228. [Google Scholar]
  36. Briemle, G.; Ellenberg, H. Zur Mahdverträglichkeit von Grünlandpflanzen. Möglichkeiten Der Praktischen Anwendung von Ziegerwerten. [On the Mowing Compatibility of Grassland Plants. Practical Applications of Forage and Ecological Values]. Nat. Landschaft 1994, 69, 139–147. [Google Scholar]
  37. Čarni, A.; Ćuk, M.; Krstonošić, D.; Škvorc, Ž. Study of Forage Quality of Grasslands on the Southern Margin of the Pannonian Basin. Agronomy 2021, 11, 2132. [Google Scholar] [CrossRef]
  38. Cebrián-Piqueras, M.A.; Trinogga, J.; Trenkamp, A.; Minden, V.; Maier, M.; Mantilla-Contreras, J. Digging into the Roots: Understanding Direct and Indirect Drivers of Ecosystem Service Trade-Offs in Coastal Grasslands via Plant Functional Traits. Environ. Monit. Assess. 2021, 193, 271. [Google Scholar] [CrossRef]
  39. Tichý, L.; Axmanová, I.; Dengler, J.; Guarino, R.; Jansen, F.; Midolo, G.; Nobis, M.P.; Van Meerbeek, K.; Aćić, S.; Attorre, F.; et al. Ellenberg-Type Indicator Values for European Vascular Plant Species. J. Veg. Sci. 2023, 34, e13168. [Google Scholar] [CrossRef]
  40. Midolo, G.; Herben, T.; Axmanová, I.; Marcenò, C.; Pätsch, R.; Bruelheide, H.; Karger, D.N.; Aćić, S.; Bergamini, A.; Bergmeier, E.; et al. Disturbance Indicator Values for European Plants. Glob. Ecol. Biogeogr. 2023, 32, 24–34. [Google Scholar] [CrossRef]
  41. Balázs, F. A gyepek termésbecslése növényszociológia alapján. [Estimating grass yields based on plant sociology]. Agrártudomány 1949, 1, 26–35. [Google Scholar]
  42. Balázs, F. Mérések a B Szám Megállapítására. [Measurements to Determine the B Number]. Mosonmagyaróvári Mezőgazdasági Kísérleti Intézet Évkönyve 1951, 1, 29–38. [Google Scholar]
  43. Bettin, K.; Komainda, M.; Tonn, B.; Isselstein, J. Relationship between Concentrate Feeding Strategy and Grassland Phytodiversity on Dairy Farms. Agric. Ecosyst. Environ. 2023, 344, 108293. [Google Scholar] [CrossRef]
  44. Gilhaus, K.; Hölzel, N. Seasonal Variations of Fodder Quality and Availability as Constraints for Stocking Rates in Year-Round Grazing Schemes. Agric. Ecosyst. Environ. 2016, 234, 5–15. [Google Scholar] [CrossRef]
  45. Sölter, U.; Hopkins, A.; Sitzia, M.; Goby, J.P.; Greef, J.M. Seasonal Changes in Herbage Mass and Nutritive Value of a Range of Grazed Legume Swards under Mediterranean and Cool Temperate Conditions. Grass Forage Sci. 2007, 62, 372–388. [Google Scholar] [CrossRef]
  46. King, C.; McEniry, J.; Richardson, M.; O’Kiely, P. Yield and Chemical Composition of Five Common Grassland Species in Response to Nitrogen Fertiliser Application and Phenological Growth Stage. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2012, 62, 644–658. [Google Scholar] [CrossRef]
  47. Chirilă, S.D.; Răileanu, S.; David, L.O.; Covaliov, S.; Doroftei, M. An Analysis of Plant Palatability on Pastures of the Delta: Case Study, Danube Delta Area, Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13568. [Google Scholar] [CrossRef]
  48. Nakano, T.; Bat-Oyun, T.; Shinoda, M. Responses of Palatable Plants to Climate and Grazing in Semi-Arid Grasslands of Mongolia. Glob. Ecol. Conserv. 2020, 24, e01231. [Google Scholar] [CrossRef]
  49. Scharenberg, A.; Arrigo, Y.; Gutzwiller, A.; Soliva, C.R.; Wyss, U.; Kreuzer, M.; Dohme, F. Palatability in Sheep and in Vitro Nutritional Value of Dried and Ensiled Sainfoin (Onobrychis viciifolia) Birdsfoot Trefoil (Lotus corniculatus), and Chicory (Cichorium intybus). Arch. Anim. Nutr. 2007, 61, 481–496. [Google Scholar] [CrossRef]
  50. Sheaffer, C.C.; Wyse, D.L.; Ehlke, N.J. Palatability and Nutritive Value of Native Legumes. Nativ. Plants J. 2009, 10, 224–231. [Google Scholar] [CrossRef]
  51. Tilley, J.M.A.; Terry, R.A. A Two-Stage Technique for the in Vitro Digestion of Forage Crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
  52. Liu, D.; Semenchuk, P.; Essl, F.; Lenzner, B.; Moser, D.; Blackburn, T.M.; Cassey, P.; Biancolini, D.; Capinha, C.; Dawson, W.; et al. The Impact of Land Use on Non-Native Species Incidence and Number in Local Assemblages Worldwide. Nat. Commun. 2023, 14, 2090. [Google Scholar] [CrossRef] [PubMed]
  53. Anacker, B.L.; Seastedt, T.R.; Halward, T.M.; Lezberg, A.L. Soil Carbon and Plant Richness Relationships Differ among Grassland Types, Disturbance History and Plant Functional Groups. Oecologia 2021, 196, 1153–1166. [Google Scholar] [CrossRef] [PubMed]
  54. Tatarko, A.R.; Knops, J.M.H. Nitrogen Addition and Ecosystem Functioning: Both Species Abundances and Traits Alter Community Structure and Function. Ecosphere 2018, 9, e02087. [Google Scholar] [CrossRef]
  55. Hayes, F.; Mills, G.; Jones, L.; Abbott, J.; Ashmore, M.; Barnes, J.; Neil Cape, J.; Coyle, M.; Peacock, S.; Rintoul, N.; et al. Consistent Ozone-Induced Decreases in Pasture Forage Quality across Several Grassland Types and Consequences for UK Lamb Production. Sci. Total Environ. 2016, 543, 336–346. [Google Scholar] [CrossRef]
  56. Lumivero XLSTAT Statistical and Data Analysis Solution 2024. Available online: https://www.xlstat.com/download (accessed on 20 October 2024).
  57. Pereña-Ortiz, J.F.; Salvo-Tierra, Á.E.; Sánchez-Mata, D. Application of Phytosociological Information in the Evaluation of the Management of Protected Areas. Plants 2023, 12, 406. [Google Scholar] [CrossRef]
  58. Flombaum, P.; Sala, O.E. A Non-Destructive and Rapid Method to Estimate Biomass and Aboveground Net Primary Production in Arid Environments. J. Arid. Environ. 2007, 69, 352–358. [Google Scholar] [CrossRef]
  59. Wang, Y.; Shen, X.; Jiang, M.; Tong, S.; Lu, X. Spatiotemporal Change of Aboveground Biomass and Its Response to Climate Change in Marshes of the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102385. [Google Scholar] [CrossRef]
  60. Wang, W.; Liu, H.; Zhang, J.; Li, Z.; Wang, L.; Wang, Z.; Wu, Y.; Wang, Y.; Liang, C. Effect of Grazing Types on Community-Weighted Mean Functional Traits and Ecosystem Functions on Inner Mongolian Steppe, China. Sustainability 2020, 12, 7169. [Google Scholar] [CrossRef]
  61. Serba, D.D.; Hejl, R.W.; Burayu, W.; Umeda, K.; Bushman, B.S.; Williams, C.F. Pertinent Water-Saving Management Strategies for Sustainable Turfgrass in the Desert U.S. Southwest. Sustainability 2022, 14, 12722. [Google Scholar] [CrossRef]
  62. Wan, Z.; Yang, J.; Gu, R.; Liang, Y.; Yan, Y.; Gao, Q.; Yang, J. Influence of Different Mowing Systems on Community Characteristics and the Compensatory Growth of Important Species of the Stipa Grandis Steppe in Inner Mongolia. Sustainability 2016, 8, 1121. [Google Scholar] [CrossRef]
  63. Koyama, A.; Kubo, D.; Yoshihara, Y.; Jamsran, U.; Okuro, T. Response of Degraded Vegetation to Introduction of Prescribed Burning or Mowing Management in a Mongolian Steppe. Grassl. Sci. 2016, 62, 37–44. [Google Scholar] [CrossRef]
  64. Tälle, M.; Deák, B.; Poschlod, P.; Valkó, O.; Westerberg, L.; Milberg, P. Grazing vs. Mowing: A Meta-Analysis of Biodiversity Benefits for Grassland Management. Agric. Ecosyst. Environ. 2016, 222, 200–212. [Google Scholar] [CrossRef]
  65. Winkler, J.; Malovcová, M.; Adamcová, D.; Ogrodnik, P.; Pasternak, G.; Zumr, D.; Kosmala, M.; Koda, E.; Vaverková, M.D. Significance of Urban Vegetation on Lawns Regarding the Risk of Fire. Sustainability 2021, 13, 11027. [Google Scholar] [CrossRef]
  66. Binder, S.; Isbell, F.; Polasky, S.; Catford, J.A.; Tilman, D. Grassland Biodiversity Can Pay. Proc. Natl. Acad. Sci. USA 2018, 115, 3876–3881. [Google Scholar] [CrossRef] [PubMed]
  67. Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Klaus, V.H.; Hölzel, N.; Fischer, M. Direct and Productivity-Mediated Indirect Effects of Fertilization, Mowing and Grazing on Grassland Species Richness. J. Ecol. 2012, 100, 1391–1399. [Google Scholar] [CrossRef]
  68. Uchida, K.; Ushimaru, A. Biodiversity Declines Due to Abandonment and Intensification of Agricultural Lands: Patterns and Mechanisms. Ecol. Monogr. 2014, 84, 637–658. [Google Scholar] [CrossRef]
  69. Ran, L.; Wang, X.; Li, S.; Zhou, Y.; Xu, Y.-J.; Chan, C.N.; Fang, N.; Xin, Z.; Shen, H. Integrating Aquatic and Terrestrial Carbon Fluxes to Assess the Net Landscape Carbon Balance of a Highly Erodible Semiarid Catchment. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006765. [Google Scholar] [CrossRef]
  70. Yang, Y.; Xu, M.; Sun, J.; Qiu, J.; Pei, W.; Zhang, K.; Xu, X.; Liu, D. Dynamic of Grassland Degradation and Its Driving Forces from Climate Variation and Human Activities in Central Asia. Agronomy 2023, 13, 2763. [Google Scholar] [CrossRef]
  71. Wang, X.; Chen, X.; Xu, J.; Ji, Y.; Du, X.; Gao, J. Precipitation Dominates the Allocation Strategy of Above- and Belowground Biomass in Plants on Macro Scales. Plants 2023, 12, 2843. [Google Scholar] [CrossRef]
  72. Li, X.; Zuo, X.; Qiao, J.; Hu, Y.; Wang, S.; Yue, P.; Cheng, H.; Song, Z.; Chen, M.; Hautier, Y. Context-Dependent Impact of Changes in Precipitation on the Stability of Grassland Biomass. Funct. Ecol. 2024, 38, 1185–1198. [Google Scholar] [CrossRef]
  73. Yang, Y.; Fang, J.; Ma, W.; Wang, W. Relationship between Variability in Aboveground Net Primary Production and Precipitation in Global Grasslands. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
  74. Yan, H.; Liang, C.; Li, Z.; Liu, Z.; Miao, B.; He, C.; Sheng, L. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe. PLoS ONE 2015, 10, e0125300. [Google Scholar] [CrossRef]
  75. Huang, Y.; Lei, H.; Duan, L. Resistance of Grassland Productivity to Drought and Heatwave over a Temperate Semi-Arid Climate Zone. Sci. Total Environ. 2024, 951, 175495. [Google Scholar] [CrossRef]
Figure 1. The sample areas: (a) Mende, wetland, with dominance of Festuca arundinacea, (b) Bösztör, dry grassland, with dominance of Festuca pseudovina.
Figure 1. The sample areas: (a) Mende, wetland, with dominance of Festuca arundinacea, (b) Bösztör, dry grassland, with dominance of Festuca pseudovina.
Earth 06 00119 g001
Figure 2. Distribution of functional groups in the two sample areas.
Figure 2. Distribution of functional groups in the two sample areas.
Earth 06 00119 g002
Figure 3. Correlation of the weight estimation method of Balázs with the values of the mown biomass samples.
Figure 3. Correlation of the weight estimation method of Balázs with the values of the mown biomass samples.
Earth 06 00119 g003
Table 1. Procedure for calculating the digestible organic matter yield of grassland.
Table 1. Procedure for calculating the digestible organic matter yield of grassland.
YearNumber
of
Moving
Number of GrowthDB 1T 2Σkt 3K 4P 5Sz 6DM 7DOM 8DM × DOM
(t/ha)(t/ha)(%)(t/ha)
20162131.74655.819,395.24.219417.044.9458.22.88
231.43641.113,842.13.8138.4133.4359.762.05
3131.94217.417,977.24.3179.815.273.6969.492.56
231.22869.411,333.53.9113.39.922.8161.191.72
331.73337.513,439.14134.411.762.6261.371.61
4131.92740.311,897.84.31199.371.6272.721.18
231.82522.110,534.84.2105.38.51.8669.161.28
331.32628.59379.13.693.88.952.2062.81.38
431.93732.115,2184.1152.213.333.1865.662.09
20172131.94883.421,015.14.3210.217.944.8662.793.05
231.93625.113,990.73.9139.912.913.5264.892.28
3131.93357.414,903.24.414911.832.8175.42.12
2313874.715,398.2415413.954.2663.682.71
331.83338.813,395.8413411.772.6966.721.80
41322828.411,676.84.1116.89.721.477.781.09
231.72772.611,722.14.2117.29.52.0167.231.35
331.320807060.73.470.66.761.6870.911.19
431.83210.313,085.94.1130.911.252.5168.581.72
20182131.34121.518,399.74.518414.926.3070.164.42
229.73349.413,384.64133.811.915.0467.113.38
31292168.28886.24.188.97.222.8575.722.16
231.63101.312,5284125.310.834.1562.22.58
332348713,062.83.7130.612.355.6064.653.62
4128.12013.786784.386.86.652.6475.331.99
230.73754.615,7414.2157.413.484.4871.163.19
327.32275.78867.73.988.77.743.0970.82.19
429.82903.511,6674116.710.124.4270.963.14
201921325095.422,195.14.422218.786.6455.73.70
231.34347.217,119.13.9171.215.825.3269.023.67
3131.84151.416,261.43.9162.615.023.4568.382.36
231.83372.712,108.53.6121.111.93.2669.732.28
331.34652.217,651.63.8176.517.043.9668.092.69
41313902.315,072.33.9150.714.064.2980.753.46
230.82326.78891.73.888.97.772.3973.641.6
332.12287.18372.93.783.77.542.3774.211.76
431.53734.314,149.33.8141.513.362.9874.032.21
Legend: 1. Coverage according to Balázs; 2. Sum of relative yields; 3. Sum of the relative yield and forage value of the species; 4. Quality score of the plant population surveyed according to Balázs; 5. Productivity of the plant population recorded: Σkt × 100−1; 6. The quantity of green plant yield (without 4 cm stubble) (t × ha−1); 7. dry matter content; 8. digestible organic matter.
Table 2. Forage value estimates.
Table 2. Forage value estimates.
Speciesb (DB)m (cm)tkkt
Agrostis stolonifera1.63352.85264
Festuca arundinacea1948921.643686.4
Poa pratensis2.93292.26553
Trifolium hybridum0.33711.8782.9
Trifolium pratense3.2401287896
Achillea collina14644.2288.3
Cichorium intybus0.64428.2384.5
Daucus carota0441.411.4
Pastinaca sativa0401.3−1−1.3
Plantago lanceolata0.1231.233.7
Plantago media0.6159.6219.2
Ranunculus acris0351.1−2−2.2
Ranunculus repens0.62214.1−2−28.2
Rumex acetosa0.1505.3−1−5.3
Taraxacum officinale1.62336.83110.4
Σ 32 1349.6 5752.7
M 42.3
K 4.3
P 57.5
Legends: DB: coverage of plant species; m: height of plant species, cm; t: relative mass of plant species = DB × m; T: ∑t, relative green matter of the quadrat/the grassland; k: quality of plant species; kt: relative economic/forage value of plant species (t × k); +kt: sum of positive values; −kt: sum of negative values; K: forage value of the grassland; P: economic/forage value of the grassland (∑kt/1000).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Szentes, S.; Turcsányi-Járdi, I.; Sipos, L.; Penksza, K.; Kende, Z.; Saláta-Falusi, E.; Szabó-Szöllösi, T.; Kevi, A.; Balogh, D.; Bajnok, M.; et al. Feed Values for Grassland Species and Method for Assessing the Quantitative and Qualitative Characteristics of Grasslands. Earth 2025, 6, 119. https://doi.org/10.3390/earth6040119

AMA Style

Szentes S, Turcsányi-Járdi I, Sipos L, Penksza K, Kende Z, Saláta-Falusi E, Szabó-Szöllösi T, Kevi A, Balogh D, Bajnok M, et al. Feed Values for Grassland Species and Method for Assessing the Quantitative and Qualitative Characteristics of Grasslands. Earth. 2025; 6(4):119. https://doi.org/10.3390/earth6040119

Chicago/Turabian Style

Szentes, Szilárd, Ildikó Turcsányi-Járdi, László Sipos, Károly Penksza, Zoltán Kende, Eszter Saláta-Falusi, Tünde Szabó-Szöllösi, Andrea Kevi, Dániel Balogh, Márta Bajnok, and et al. 2025. "Feed Values for Grassland Species and Method for Assessing the Quantitative and Qualitative Characteristics of Grasslands" Earth 6, no. 4: 119. https://doi.org/10.3390/earth6040119

APA Style

Szentes, S., Turcsányi-Járdi, I., Sipos, L., Penksza, K., Kende, Z., Saláta-Falusi, E., Szabó-Szöllösi, T., Kevi, A., Balogh, D., Bajnok, M., & Wagenhoffer, Z. (2025). Feed Values for Grassland Species and Method for Assessing the Quantitative and Qualitative Characteristics of Grasslands. Earth, 6(4), 119. https://doi.org/10.3390/earth6040119

Article Metrics

Back to TopTop