Open AccessProceeding Paper
Chlorogenic Acid as a Model Compound for Optimization of an In Vitro Gut Microbiome-Metabolism Model
by
Olivier Mortelé, Elias Iturrospe, Annelies Breynaert, Christine Lammens, Xavier Basil Britto, Surbhi Malhotra-Kumar, Philippe Jorens, Luc Pieters, Alexander L. N. van Nuijs and Nina Hermans
Cited by 3 | Viewed by 2122
Abstract
It has been believed that the metabolism of xenobiotics occurred mainly by the cytochrome P450 enzyme system in the liver. However, recent data clearly suggest a significant role for the gut microbiota in the metabolism of xenobiotic compounds. This microbiotic biotransformation could lead
[...] Read more.
It has been believed that the metabolism of xenobiotics occurred mainly by the cytochrome P450 enzyme system in the liver. However, recent data clearly suggest a significant role for the gut microbiota in the metabolism of xenobiotic compounds. This microbiotic biotransformation could lead to differences on activation, inactivation and possible toxicity of these compounds. In vitro models are generally used to study the colonic biotransformation as they allow easy dynamic and multiple sampling over time. However, to ensure this accurately mimics communities in vivo, the pre-analytical phase requires optimization. Chlorogenic acid, a polyphenolic compound abundantly present in the human diet, was used as a model compound to optimize a ready-to-use gut microbiome biotransformation platform. Samples of the in vitro gastrointestinal dialysis-model with colon stage were analyzed by liquid chromatography coupled to high resolution time-of-flight mass spectrometry. Complementary screening approaches were also employed to identify the biotransformation products.
Full article