-
Origin and Possible Members of the ‘Malvasia’ Family: The New Fuencaliente de La Palma Hypothesis on the True ‘Malvasia’
-
Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Pepper Yield and Soil GHGs Emissions
-
Over Half a Century of Research on Blackberry Micropropagation: A Comprehensive Review
-
Assessment of Melon Fruit Nutritional Composition Using VIS/NIR/SWIR Spectroscopy Coupled with Chemometrics
-
Nitrogen Forms and Nitrogen Deficiency Regulate Theanine Accumulation Patterns in Tea Plants (Camellia sinensis) During Winter Dormancy
Journal Description
Horticulturae
Horticulturae
is an international, peer-reviewed, open access journal published monthly online by MDPI. The Spanish Society of Horticultural Sciences (SECH) is affiliated with Horticulturae and its members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubAg, AGRIS, FSTA, and other databases.
- Journal Rank: JCR - Q1 (Horticulture) / CiteScore - Q1 (Horticulture)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 17.1 days after submission; acceptance to publication is undertaken in 2.4 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.0 (2024);
5-Year Impact Factor:
3.2 (2024)
Latest Articles
Effects of Container Substrate Composition on the Growth and Performance of Garberia heterophylla (W. Bartram) Merr. & F. Harper: A Native Xeric Species
Horticulturae 2025, 11(8), 982; https://doi.org/10.3390/horticulturae11080982 - 19 Aug 2025
Abstract
Container production of landscape plants requires reliably consistent and affordable substrates with properties suitable for a wide range of species. Native plant production often requires additional considerations when determining ideal substrates for species found in precise ecosystems. Thus, the introduction of novel native
[...] Read more.
Container production of landscape plants requires reliably consistent and affordable substrates with properties suitable for a wide range of species. Native plant production often requires additional considerations when determining ideal substrates for species found in precise ecosystems. Thus, the introduction of novel native species, such as garberia [Garberia heterophylla (W. Bartram) Merrill & F. Harper] requires research insight into discerning which type of substrate provides the greatest plant quality in the least amount of time. In this greenhouse study, garberia was container-grown for six months in five substrates. These included two different pine bark-based media (Atlas 3000 and ‘Native mix’) typically used for native plant production, a commercial standard of peat-based medium (ProMix BX), and compost-based medium (COMANDscape) by itself or at a 1:1 compost/native mix ratio. All substrates varied from each other in terms of pH and electroconductivity (EC), with ProMix BX having the most acidic pH (5.3) and COMANDscape having the highest EC (5.2 dS/m). The ProMix BX had the greatest water-holding capacity, while the Atlas 3000 had the greatest bulk and particle densities. After six months, plant heights and widths were similar between treatments. The ProMix BX yielded the greatest shoot and root dry matter values and well-developed root systems that held the substrate the best. Plants grown in ProMix BX or COMANDscape had the greatest SPAD values and very good to excellent shoot visual quality ratings, compared to other substrates evaluated. While garberia was found to be a slow-growing species regardless of substrate, these results demonstrate its tolerance of diverse substrates that are non-characteristic of the soil where it thrives naturally. This knowledge can be useful for nursery practitioners; ultimately contributing to expanded production and the widened use of garberia in landscapes.
Full article
(This article belongs to the Section Plant Nutrition)
►
Show Figures
Open AccessArticle
Changes in Microbial Diversity During Dictyophora indusiata Mycelium Regression Period
by
Jie Cheng, Lei Ye, Xin Li, Yunfu Gu, Yi Wang, Zebin Zeng, Xiaoxue Liu, Xiaoling Li and Xiaoping Zhang
Horticulturae 2025, 11(8), 981; https://doi.org/10.3390/horticulturae11080981 - 19 Aug 2025
Abstract
Dictyophora indusiata cultivation is severely impeded by premature hyphal regression. This study elucidates the spatiotemporal dynamics of mycelial regression and associated microbial succession in both substrate and soil matrices across progressive regression stages (CK: normal growth; S1: initial recession; S2: advanced recession; S3:
[...] Read more.
Dictyophora indusiata cultivation is severely impeded by premature hyphal regression. This study elucidates the spatiotemporal dynamics of mycelial regression and associated microbial succession in both substrate and soil matrices across progressive regression stages (CK: normal growth; S1: initial recession; S2: advanced recession; S3: complete recession). Microscopic analysis revealed preferential mycelial regression in the substrate, preceding soil regression by 1–2 stages. High-throughput sequencing demonstrated significant fungal community restructuring, characterized by a sharp decline in Phallus abundance (substrate: 99.7% → 7.0%; soil: 78.3% → 5.5%) and concomitant explosive proliferation of Trichoderma (substrate: 0% → 45.2%; soil: 0.1% → 55.3%). Soil fungal communities exhibited a higher richness (Chao1, p < 0.05) and stability, attributed to functional redundancy (e.g., Aspergillus, Conocybe) and physical protection by organic–mineral complexes. Conversely, substrate bacterial diversity dominated, driven by organic matter availability (e.g., the Burkholderia–Caballeronia–Paraburkholderia complex surged to 59%) and optimized porosity. Niche analysis confirmed intensified competition in post-regression soil (niche differentiation) versus substrate niche contraction under Trichoderma dominance. Critically, Trichoderma overgrowing was mechanistically linked to (1) nutrient competition via activated hydrolases (e.g., Chit42) and (2) pathogenic activity (e.g., T. koningii causing rot). We propose ecological control strategies: application of antagonistic Bacillus subtilis (reducing Trichoderma by 63%), substrate C/N ratio modulation via soybean meal amendment, and Sphingomonas–biochar soil remediation. This work provides the first integrated microbial niche model for D. indusiata regression, establishing a foundation for sustainable cultivation.
Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
►▼
Show Figures

Figure 1
Open AccessArticle
Towards Understanding the Promotion of Plant Growth Under an Experimental Red-Fluorescent Plastic Film
by
Eric J. Stallknecht and Erik S. Runkle
Horticulturae 2025, 11(8), 980; https://doi.org/10.3390/horticulturae11080980 - 19 Aug 2025
Abstract
Semitransparent plastic films containing red-fluorescent pigments can increase the growth of some greenhouse crops despite a lower transmitted photosynthetic photon flux density (PPFD), but the underlying mechanism by which this occurs is not fully understood. We postulated it can be attributed to a
[...] Read more.
Semitransparent plastic films containing red-fluorescent pigments can increase the growth of some greenhouse crops despite a lower transmitted photosynthetic photon flux density (PPFD), but the underlying mechanism by which this occurs is not fully understood. We postulated it can be attributed to a lower blue-light environment that increases leaf expansion and thus photon capture. We examined the growth response and photosynthetic capacity of vegetable and ornamental greenhouse crops under a red-fluorescent plastic, plastics with varying transmission percentages of blue light (from 6% to 20%), and an uncovered greenhouse control with a 40% greater PPFD. When the transmitted PPFD was similar, decreasing the percentage of blue light increased the extension growth for some but not all species tested. Transmitted PPFD had a more pronounced effect on extension growth than the percentage of blue light. Lettuce shoot dry mass was greater under the red-fluorescent film than the other covered treatments and similar to the uncovered control with 40% more light. Regardless of the transmission spectrum, decreasing the transmitted PPFD reduced tomato fruit fresh mass and generally decreased the number of flowers ornamental on the species. Maximum photosynthetic rate (Amax), stomatal conductance (gsw), and quantum yield of photosystem II (PhiPSII) consistently decreased as the percentage of blue light transmission decreased, but this did not correlate to biomass accumulation. An experimental red-fluorescent film had cultivar and species-specific effects on growth, highlighting both its potential for leafy greens and potential challenges for greenhouse crops with a greater quantum requirement.
Full article
(This article belongs to the Special Issue Optimized Light Management in Controlled-Environment Horticulture)
►▼
Show Figures

Figure 1
Open AccessArticle
Nutritional Quality and Evaluation of Chinese Water Chestnuts from Different Origins
by
Yongting Wang, Hongyan Lu, Yang Yi, Limei Wang, Hongxun Wang, Youwei Ai and Ting Min
Horticulturae 2025, 11(8), 979; https://doi.org/10.3390/horticulturae11080979 - 18 Aug 2025
Abstract
Chinese water chestnuts (CWCs) have high nutritional value and are important in the field of food and medicine. However, there may be significant differences between CWCs from different regions. This study focused on the differences in nutritional quality and functional active substance content
[...] Read more.
Chinese water chestnuts (CWCs) have high nutritional value and are important in the field of food and medicine. However, there may be significant differences between CWCs from different regions. This study focused on the differences in nutritional quality and functional active substance content of CWCs from nine different origins in China and established an evaluation method to assess these differences. It was found that the total phenolic and total flavonoid contents of CWCs peel were much higher than those of pulp, with the peel of CWCs from origin II having the highest total phenolic content and a high DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical scavenging rate. The starch content of the pulp of CWCs from origin V was significantly higher than that in the other origins, and the peel from origin IX and the pulp from origin IV had the highest soluble sugar levels. Principal component analysis (PCA) revealed that the peel quality was primarily affected by the browning degree, soluble solids, and antioxidant capacity, while the pulp exhibited a stronger correlation with total flavonoids and protein. The comprehensive evaluation demonstrated that origin I, origin VII, and origin IX were relatively high-quality peel resources, while origin II, origin V, and origin VIII had better pulp quality than the other groups. This study aimed to elucidate the differences between various production areas of CWCs and provide a reference for the deep processing of CWCs.
Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Evaluating Water Use Dynamics and Yield Responses in Capsicum chinense Cultivars Using Integrated Sensor-Based Irrigation System
by
Harjot Sidhu, Edmond Kwekutsu, Arnab Bhowmik and Harmandeep Sharma
Horticulturae 2025, 11(8), 978; https://doi.org/10.3390/horticulturae11080978 - 18 Aug 2025
Abstract
Efficient irrigation management is essential for optimizing yield and quality in specialty crops like hot peppers (Capsicum chinense), particularly under controlled greenhouse environments. This study employed a novel sensor-based system integrating soil moisture and sap flux monitoring to evaluate water use
[...] Read more.
Efficient irrigation management is essential for optimizing yield and quality in specialty crops like hot peppers (Capsicum chinense), particularly under controlled greenhouse environments. This study employed a novel sensor-based system integrating soil moisture and sap flux monitoring to evaluate water use dynamics in Capsicum chinense, a species for which such applications have not been widely reported. Three cultivars—Habanero, Helios, and Lantern—were grown under three volumetric soil moisture contents: low (15%), medium (18%), and high (21%). Water uptake was measured at leaf (transpiration, stomatal conductance) and plant levels (sap flux via heat balance sensors). Photosynthesis, fruit yield, and capsaicinoid concentrations were assessed. Compared to high irrigation, medium and low irrigation increased photosynthesis by 16.6% and 22.2%, respectively, whereas high irrigation favored greater sap flux and vegetative growth. Helios exhibited an approximately 8.5% higher sap flux as compared to Habanero and about 10% higher as compared to Lantern. Helios produced over 30% higher fruits than Habanero and Lantern under high irrigation. Habanero recorded the highest pungency, with a capsaicinoid level of 187,292 SHU—exceeding Lantern and Helios by 56% and 76%, respectively. Similarly, nordihydrocapsaicin and dihydrocapsaicin accumulation were more cultivar-dependent than irrigation-dependent. No significant interaction between cultivar and irrigation was observed, indicating genotype-driven water use strategies. Our study contributes to precision horticulture by integrating soil moisture and sap flux sensors to reveal cultivar-specific water use strategies in Capsicum chinense, thereby demonstrating the potential of an integrated sensor-based irrigation system for efficient irrigation management under increasing water scarcity in protected environments. As a preliminary greenhouse study aimed at maintaining consistent irrigation throughout the growing season across three volumetric soil moisture levels, these findings provide a foundation for subsequent validation and exploration under diverse soil moisture conditions including variations in stress duration, stress frequency, and stress application at different phenological stages.
Full article
(This article belongs to the Section Vegetable Production Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimizing Caraway Growth, Yield and Phytochemical Quality Under Drip Irrigation: Synergistic Effects of Organic Manure and Foliar Application with Vitamins B1 and E and Active Yeast
by
Ahmed A. Hassan, Amir F.A. Abdel-Rahim, Ghadah H. Al Hawas, Wadha Kh. Alshammari, Reda M.Y. Zewail, Ali A. Badawy and Heba S. El-Desouky
Horticulturae 2025, 11(8), 977; https://doi.org/10.3390/horticulturae11080977 - 18 Aug 2025
Abstract
Despite its value as a culinary, medicinal, and essential oil crop, caraway struggles to grow and develop its biochemical quality in drought-prone sandy soils. To tackle this challenge, we conducted two field trials under drip irrigation, testing four rates of organic manure (0,
[...] Read more.
Despite its value as a culinary, medicinal, and essential oil crop, caraway struggles to grow and develop its biochemical quality in drought-prone sandy soils. To tackle this challenge, we conducted two field trials under drip irrigation, testing four rates of organic manure (0, 5, 10, and 15 ton/hectare (ha) and three foliar biostimulants: vitamin B1 (50 and 100 mg L−1), vitamin E (50 and 100 mg L−1), and active yeast (100 and 150 mL L−1). We used a randomized split-plot design with three replicates, assigning manure rates to main plots and biostimulants to subplots. We measured plant height, stem diameter, branch number, dry biomass, umbels per plant, 1000-seed weight, seed yield (per plant and per ha), essential oil content, chlorophyll a and b, carotenoids, and leaf N, P, and K. All treatments outperformed the unfertilized control. Applying 15 ton/ha of manure alone increased mean plant height by 185.3 cm, stem diameter by 2.93 mm, branch number by 14.5, and herbal weight by 91.97 g across both seasons—a gain of about 11–15%. Foliar application of vitamin B1 at 100 mg L−1 (without manure) achieved even larger gains: mean plant height improved by 176.5 cm, stem diameter by 2.6 mm, branches number by 15.1, and herbal biomass by 103.95 g (20–36% growth increases). It also boosted essential oil yield by 1.89 mL per plant (16–50%) and enhanced nutrient uptake. The most pronounced synergy emerged when combining 15 ton/ha of manure with 100 mg L−1 vitamin B1, raising seed yield to 1698.8 kg/ha (35%), plant height to 184.7 cm (52%), number of branches to 17.4 per plant (56%), umbels to 38.1 per plant (42%), 1000-seed weight to 16.9 g (48%), and essential oil yield to 2.3 mL per plant (115%), compared to the control. Chlorophyll a increased by 50%, chlorophyll b by 33%, carotenoids by 35%, and leaf N, P, and K by 43%, 90%, and 76%, respectively. Manure combined with vitamin E or yeast delivered moderate improvements. These findings demonstrate that integrating organic manure with targeted foliar biostimulants—especially vitamin B1—under drip irrigation, is a sustainable strategy to maximize caraway yield, oil content, and nutritional quality on marginal sandy soils.
Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Systemic Delivery of Oxytetracycline by Drill-Based and Drill-Free Trunk Injection for Treatment of Huanglongbing in Young Sweet Orange Trees
by
Ute Albrecht, Caroline Tardivo, Gerardo Moreno and Jasmine de Freitas
Horticulturae 2025, 11(8), 976; https://doi.org/10.3390/horticulturae11080976 - 18 Aug 2025
Abstract
The systemic delivery of oxytetracycline (OTC) by trunk injection has emerged as a viable strategy to manage huanglongbing (HLB, also known as citrus greening), a bacterial disease devastating citrus production around the world. This study examines the efficacy of delivering OTC systemically into
[...] Read more.
The systemic delivery of oxytetracycline (OTC) by trunk injection has emerged as a viable strategy to manage huanglongbing (HLB, also known as citrus greening), a bacterial disease devastating citrus production around the world. This study examines the efficacy of delivering OTC systemically into the trunk of young, HLB-affected citrus trees using a drill-based or a drill-free system to improve tree health and productivity. Two field trials were conducted in two commercial production sites in Florida. Trees were four years old at the start of the study and composed of ‘Valencia’ or ‘OLL-8’ sweet orange (Citrus sinensis) scion grafted on X-639 (C. reticulata × Poncirus trifoliata) rootstock. Injections were performed in spring or late summer/early fall in 2022 and 2023. Using the drill-based system, 0.79 g of OTC was administered into each tree, whereas 0.15 g or 0.3 g was administered using the drill-free system. Delivering a higher dose of OTC by drill-based injection increased fruit yield and improved juice quality more than delivering lower doses by drill-free injection, though responses varied between cultivars. Injections in late summer/early fall increased the juice total soluble solids content considerably more than injections in spring. However, fall injections resulted in OTC fruit residues exceeding the maximum allowed level. Trunk injury was more extensive when OTC was applied with the drill-free system than when it was applied with the drill-based system.
Full article
(This article belongs to the Special Issue Advances in Citrus Physiology and Molecular Biology: From Genes to Orchard Performance)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Effects of Different Storage Conditions on Physiological, Biochemical, and Microbial Community Traits of Michelia macclurei Seeds
by
Shenghui Tian, Zhaoli Chen, Baojun Li, Haoyue Xue, Shida Zhang, Haijun Chen, Chao Qu and Qingbin Jiang
Horticulturae 2025, 11(8), 975; https://doi.org/10.3390/horticulturae11080975 - 17 Aug 2025
Abstract
This study aimed to explore how storage temperature (25 °C, 4 °C, −20 °C, and −196 °C), drying duration (0, 1, 3, 5 days), and aril removal affect the physiological, biochemical, and microbial community traits of Michelia macclurei seeds. After one month of
[...] Read more.
This study aimed to explore how storage temperature (25 °C, 4 °C, −20 °C, and −196 °C), drying duration (0, 1, 3, 5 days), and aril removal affect the physiological, biochemical, and microbial community traits of Michelia macclurei seeds. After one month of storage, physiological, biochemical, and microbial indexes were evaluated. Results showed that seeds dried for one day and stored at 4 °C had the highest vigor and germination rates. Storage at 4 °C or −196 °C significantly enhanced antioxidant enzyme activities and affected water content, soluble sugar, protein, malondialdehyde, and amylase levels. Principal component analysis confirmed that retaining arils and drying for 0~1 day before storage at −196 °C or 4 °C was optimal for maintaining seed quality. Microbial analysis revealed that low temperatures increased fungal diversity and bacterial diversity, though bacterial richness decreased compared to 25 °C storage. Ascomycota and Proteobacteria were dominant at the phylum level, while Penicillium and Rhodococcus were the dominant genera. Drying time and aril removal also influenced microbial structure. Overall, moderate drying and low-temperature storage, especially at 4 °C or −196 °C with arils retained, most effectively preserved seed vigor and shaped favorable microbial communities.
Full article
(This article belongs to the Section Propagation and Seeds)
►▼
Show Figures

Figure 1
Open AccessArticle
Domestication Has Reshaped Gene Families, Gene Expressions and Flavonoid Metabolites in Green Jujube (Ziziphus mauritiana Lam.) Fruit
by
Fan Jiang, Xudong Zhu, Miaohong Wu, Pengyan Chang, Huini Wu and Haiming Li
Horticulturae 2025, 11(8), 974; https://doi.org/10.3390/horticulturae11080974 - 17 Aug 2025
Abstract
Domestication has been proven to significantly impact the biosynthesis of plant secondary metabolites. Cultivated green jujube (Ziziphus mauritiana Lam.), as an important autotetraploid fruit crop widely planted in tropical regions, exhibits differential physicochemical traits compared with its wild progenitor. To assess the
[...] Read more.
Domestication has been proven to significantly impact the biosynthesis of plant secondary metabolites. Cultivated green jujube (Ziziphus mauritiana Lam.), as an important autotetraploid fruit crop widely planted in tropical regions, exhibits differential physicochemical traits compared with its wild progenitor. To assess the traits lost in cultivated green jujube during domestication, the study performed comprehensive genomic, transcriptomic and metabolomic investigations of flavonoid pathways in wild and cultivated green jujube. Based on the four haplotype genomes of wild and cultivated green jujube, for the first time, the study bulk-identified 16 key gene families associated with flavonoid biosynthesis. Collinearity analysis revealed that tandem duplication was the predominant event in flavonoid-related genes rather than WGD. Through the expression profiles in different tissues, the distinct member of these gene families was classified as “redundant” or “functional”. Transcriptomic analyses illustrated the significant differential expressions (p < 0.05) of 13 flavonoid-related gene families in fruits of six cultivated and three wild green jujube accessions, except for FLS, LAR and PPO. The wild green jujube fruits accumulated more abundance of flavonoid metabolites than in cultivated fruits (p < 0.0001), as evidenced by upregulated chalcones, dihydroflavonol, isoflavones and flavonoid carbonoside. Gene–metabolite co-expression modules further validated the potential transcription regulators, such as BBX21, WRI1 and bZIP44. Together, the study suggested a genomic, transcriptomic and metabolic perspective for domestication regarding fruit flavonoid pathways in green jujube, which provides a valuable genetic resource for fruit quality improvement in cultivated green jujube.
Full article
(This article belongs to the Special Issue New Insights into Breeding and Genetic Improvement of Fruit Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
iTRAQ-Based Phosphoproteomic Profiling Reveals Spermidine Enhanced SOS Signaling and Metabolic Reprogramming in Cucumber Seedlings Under Salt Stress
by
Bin Li, Danyi Wang, Liru Ren, Bo Qiao, Lincao Wei and Lingjuan Han
Horticulturae 2025, 11(8), 973; https://doi.org/10.3390/horticulturae11080973 - 17 Aug 2025
Abstract
Soil salinity severely impairs plant growth, and polyamines such as spermidine (Spd) are known to bolster stress tolerance by acting as osmoprotectants and signaling molecules. Using TiO2 enrichment, iTRAQ quantification, and bioinformatics analysis, we identified 870 proteins and 157 differentially phosphorylated proteins.
[...] Read more.
Soil salinity severely impairs plant growth, and polyamines such as spermidine (Spd) are known to bolster stress tolerance by acting as osmoprotectants and signaling molecules. Using TiO2 enrichment, iTRAQ quantification, and bioinformatics analysis, we identified 870 proteins and 157 differentially phosphorylated proteins. Functional annotation showed that salt stress activated key components of the Salt Overly Sensitive pathway, particularly serine threonine kinases (SOS2) and Ca2+ binding sensors (SOS3). Among thirty-six SOS-associated kinases detected, eight SOS2 isoforms, four MAPKs, and two SOS3 homologs were significantly upregulated by NaCl, and Spd further increased the phosphorylation of six SOS2 proteins and one SOS3 protein under salt stress, with no detectable effect on SOS1. qRT PCR revealed enhanced expression of MAPKs and calcium-dependent protein kinases, suggesting a phosphorylation-centered model in which Spd amplifies Ca2+-mediated SOS signaling and reinforces ion homeostasis through coordinated transcriptional priming and post-translational control. Additional, proteins involved in protein synthesis and turnover (ribosomal subunits, translation initiation factors, ubiquitin–proteasome components), DNA replication and transcription, and RNA processing showed differential expression under salt or Spd treatment. Central metabolic pathways were reprogrammed, involving glycolysis, the TCA cycle, the pentose phosphate pathway, as well as ammonium transporters and amino acid biosynthetic enzymes. These findings indicate that exogenous Spd regulated phosphorylation-mediated networks involving the SOS signaling pathway, protein homeostasis, and metabolism, thereby enhancing cucumber salt tolerance.
Full article
(This article belongs to the Section Biotic and Abiotic Stress)
►▼
Show Figures

Figure 1
Open AccessArticle
GC-MS Non-Target Metabolomics-Based Analysis of the Volatile Aroma in Cerasus humilis After Grafting with Different Rootstocks
by
Gaixia Qiao, Jun Xie, Chun’e Zhang, Yujuan Liu, Xiaojing Guo, Qiaoxia Jia, Caixia Zhang and Meilong Xu
Horticulturae 2025, 11(8), 972; https://doi.org/10.3390/horticulturae11080972 - 16 Aug 2025
Abstract
C. humilis is a small shrub belonging to the Rosaceae family, and grafting is one of the main ways for propagation. However, the influence of different rootstocks on volatile aroma is still unclear. In this study, an untargeted metabolomics approach based on gas
[...] Read more.
C. humilis is a small shrub belonging to the Rosaceae family, and grafting is one of the main ways for propagation. However, the influence of different rootstocks on volatile aroma is still unclear. In this study, an untargeted metabolomics approach based on gas chromatography–mass spectrometry (GC-MS) was utilized to analyze the volatile differential metabolites between the rootstock–scion combinations and self-rooted seedlings. Furthermore, metabolic pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In total, 191,162 and 150 volatile differential metabolites were identified in different rootstock–scion combinations. The rootstock–scion combinations of ZG/MYT and ZG/BT could improve the volatile aroma in the fruit of C. humilis and made significant contributions to the rose and fruity flavors. KEGG pathway analysis indicated that the differential metabolites were mainly enriched in the butanoate metabolism and glycolysis/gluconeogenesis pathways, showing an increasing trend. Prunus tomentosa and Amygdalus communis can serve as preferred rootstocks for enhancing the aroma quality of C. humilis fruits. These results provide new insight into rootstock-based propagation and breeding and also offer some guidance for graft-based fruit production.
Full article
(This article belongs to the Special Issue Genetic Breeding and Germplasm Resources of Fruit and Vegetable Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
Prediction of Selected Minerals in Beef-Type Tomatoes Using Machine Learning for Digital Agriculture
by
Aylin Kabaş, Uğur Ercan, Onder Kabas and Georgiana Moiceanu
Horticulturae 2025, 11(8), 971; https://doi.org/10.3390/horticulturae11080971 - 16 Aug 2025
Abstract
Tomato is one of the most important vegetables due to its high production and nutritional value. With the development of digital agriculture, the tomato breeding and processing industries have seen a rapid increase in the need for simple, low-labor, and inexpensive methods for
[...] Read more.
Tomato is one of the most important vegetables due to its high production and nutritional value. With the development of digital agriculture, the tomato breeding and processing industries have seen a rapid increase in the need for simple, low-labor, and inexpensive methods for analyzing tomato composition. This study proposes a digital method to predict four minerals (calcium, potassium, phosphorus, and magnesium) in beef-type tomato using machine learning models, including k-nearest neighbors (kNN), artificial neural networks (ANNs), and Support Vector Regression (SVR). The models were discriminated using the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The kNN model showed the best performance for estimation of quantity of calcium, potassium, phosphorus, and magnesium. The results demonstrate that kNN consistently outperforms ANNs and SVR across all target nutrients, achieving the highest R2 and the lowest error metrics (RMSE, MAE, and MAPE). Notably, kNN achieved an exceptional R2 of 0.8723 and a remarkably low MAPE of 3.95% in predicting phosphorus. This study highlights how machine learning can provide a versatile, accurate, and efficient solution for tomato mineral analysis in digital agriculture.
Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in the Processing of Horticultural Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
Nanoextract of Zataria multiflora Boiss. Enhances Salt Stress Tolerance in Hydroponically Grown Ocimum basilicum L. var. Genovese
by
Edris Shabani, Fardin Ghanbari, Afsaneh Azizi, Elham Helalipour and Matteo Caser
Horticulturae 2025, 11(8), 970; https://doi.org/10.3390/horticulturae11080970 - 16 Aug 2025
Abstract
In order to investigate the effect of Zataria multiflora Bioss. extract and nanoextract on morphophysiological and phytochemical indices, yield, and essential oil compositions of basil (Ocimum basilicum L. var. Genovese) under salinity stress (0, 25, 50, and 100 mM NaCl), an experiment
[...] Read more.
In order to investigate the effect of Zataria multiflora Bioss. extract and nanoextract on morphophysiological and phytochemical indices, yield, and essential oil compositions of basil (Ocimum basilicum L. var. Genovese) under salinity stress (0, 25, 50, and 100 mM NaCl), an experiment was conducted as a split-plot design in a basic block with complete randomization and three replications. In the treatment without salinity, nanoextract increased the shoot fresh weight by 34.28%, and regular extract increased it by 8.35% compared to the 0 NaCl without extract. In the treatment without salinity stress, nanoextract decreased the Na content by 17%, and regular extract decreased it by 5%; nanoextract increased the K content by 22.93%, and regular extract increased it by 9.05% compared to the 0 NaCl without extract, respectively. In all salinity concentrations applied, nanoextract showed lower sodium accumulation and higher potassium accumulation rate than regular extract and treatment without extract at the same salinity concentration. The highest total phenols were observed in the 100 mM salinity treatment in both nanoextract and regular extract of Z. multiflora, followed by the 50 mM salinity treatment—nano extract, with 12.33, 11.17, and 10.01 mg GA g−1 FW, respectively. In the non-saline stress treatment, nanoextract increased the proline content by 125%, and regular extract increased it by 79.16% compared to the 0 NaCl without extract. In the treatment without salinity stress, the nano extract increased the level of PAL enzyme by 16.66% and the regular extract by 8.33% compared to the 0 NaCl without extract. The highest antioxidant activity was observed in the 100 mM salinity treatment in both nano extract and regular extract of Z. multiflora, followed by the 50 mM salinity treatment and nano extract with 31.86, 30.60, and 28.21%, respectively. In this study, the results of essential oil analysis indicated the identification of 39 compounds in which linalool, eugenol, carotenoid, methyl chavicol, A-Humulene, and menthol were identified as the main compounds. Among all treatments, Z. multiflora nanoextract, while moderating the effects of stress, showed the highest efficiency in improving the morphophysiological and biochemical traits and essential oil content and secondary metabolites of O. basilicum L. var. Genovese.
Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Transcriptome Analysis Reveals That PpSLFL3 Is Associated with Cross-Incompatibility in the Peach Landrace ‘Liuyefeitao’
by
Haijing Wang, Chunsheng Liu, Yating Liu, Yudie Zhang, Meilan Wu, Haiping Li, Man Zhang, Kun Xiao, Kai Su, Chenguang Zhang, Gang Li, Xiaoying Li, Libin Zhang and Junkai Wu
Horticulturae 2025, 11(8), 969; https://doi.org/10.3390/horticulturae11080969 - 16 Aug 2025
Abstract
The peach landrace ‘Liuyefeitao’ exhibits the unique reproductive trait of self-compatibility combined with cross-incompatibility, contrasting with typical Prunus species in this way. In preliminary studies involving controlled pollination assays, we showed complete pollen tube arrest in cross-pollinated styles, whereas self-pollination enabled full tube
[...] Read more.
The peach landrace ‘Liuyefeitao’ exhibits the unique reproductive trait of self-compatibility combined with cross-incompatibility, contrasting with typical Prunus species in this way. In preliminary studies involving controlled pollination assays, we showed complete pollen tube arrest in cross-pollinated styles, whereas self-pollination enabled full tube elongation. S-genotyping identified a homozygous S2S2 genotype with intact S2-RNase but a truncated PpSFB2 due to a frameshift mutation. Transcriptome profiling of the styles revealed 7937 differentially expressed genes (DEGs) between self- and cross-pollination treatments, with significant enrichment in plant MAPK signaling, plant–pathogen interactions, and plant hormone signaling transduction pathways (|Fold Change| ≥ 2, FDR < 0.01). Notably, PpSLFL3 (a pollen F-box gene) showed down-regulation in cross-pollinated styles, as validated by means of qRT-PCR. Protein interaction assays revealed direct binding between PpSLFL3 and S2-RNase via Y2H and BiFC analysis, suggesting its role in mediating SCF complex-dependent degradation. We propose that insufficient PpSLFL3 expression during cross-pollination disrupts SCF ubiquitin ligase complex-mediated degradation of non-self S2-RNase, leading to the toxic degradation of RNA in pollen tubes by S2-RNase. This mechanism is mechanistically similar to unilateral reproductive barriers in Solanaceae but represents a novel regulatory module in Rosaceae. Our findings provide critical insights into the evolution of cross-incompatibility systems and molecular breeding strategies for Prunus species.
Full article
(This article belongs to the Special Issue Reproductive Growth in Perennial Fruit Trees: Importance and Impact of Climate Change)
►▼
Show Figures

Figure 1
Open AccessArticle
Evolutionary Expansion, Structural Diversification, and Functional Prediction of the GeBP Gene Family in Brassica oleracea
by
Ziying Zhu, Kexin Ji and Zhenyi Wang
Horticulturae 2025, 11(8), 968; https://doi.org/10.3390/horticulturae11080968 - 15 Aug 2025
Abstract
The GLABROUS1 Enhancer Binding Protein (GeBP) gene family plays a crucial role in plant growth, development, and stress responses. In this study, 28 GeBP genes were identified in Brassica oleracea using HMMER and validated through multiple conserved domain databases. A phylogenetic tree was
[...] Read more.
The GLABROUS1 Enhancer Binding Protein (GeBP) gene family plays a crucial role in plant growth, development, and stress responses. In this study, 28 GeBP genes were identified in Brassica oleracea using HMMER and validated through multiple conserved domain databases. A phylogenetic tree was constructed based on the GeBP protein sequences from B. oleracea, Arabidopsis thaliana, Brassica rapa, and Brassica napus, dividing them into four evolutionary clades (A–D), which revealed a close evolutionary relationship within the genus Brassica. Conserved motif and gene structure analyses showed clade-specific features, while physicochemical property analysis indicated that most BoGeBP proteins are hydrophilic, nuclear-localized, and structurally diverse. Gene duplication and chromosomal localization analyses suggested that both segmental and tandem duplication events have contributed to the expansion of this gene family. Promoter cis-element analysis revealed a dominance of light-responsive and hormone-responsive elements, implying potential roles in photomorphogenesis and stress signaling pathways. Notably, the protein encoded by BolC01g019630.2J possesses both a transmembrane domain and characteristics of the Major Facilitator Superfamily (MFS) transporter family, and it is predicted to localize to the plasma membrane. This suggests that it may act as a molecular bridge between environmental signal perception and transcriptional regulation, potentially representing a novel signaling mechanism within the GeBP family. This unique feature implies its involvement in transmembrane signal perception and downstream transcriptional regulation under environmental stimuli, providing valuable insights for further investigation of its role in stress responses and metabolic regulation. Overall, this study provides a theoretical foundation for understanding the evolutionary patterns and functional diversity of the GeBP gene family in B. oleracea and lays a basis for future functional validation and breeding applications.
Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Foliar Application of Iron and Zinc Affected Aromatic Plants Grown Under Conventional and Organic Agriculture Differently
by
Nikolaos Tzortzakis, Efraimia Hajisolomou, Nikoletta Zaravelli and Antonios Chrysargyris
Horticulturae 2025, 11(8), 967; https://doi.org/10.3390/horticulturae11080967 - 14 Aug 2025
Abstract
The utilization of organic fertilizers for the cultivation of wild edible and medicinal plants offers agronomic and ecological benefits, given their suitability to low-input and sustainable production systems. Under such conditions, these species may also benefit from targeted foliar applications of micronutrients to
[...] Read more.
The utilization of organic fertilizers for the cultivation of wild edible and medicinal plants offers agronomic and ecological benefits, given their suitability to low-input and sustainable production systems. Under such conditions, these species may also benefit from targeted foliar applications of micronutrients to enhance their nutritional quality. This study examined the effects of a vinasse-based organic fertilizer and conventional fertilization regime, in combination with foliar applications of iron (Fe) and zinc (Zn), on the biomass, leaf photochemistry, and plant stress-related responses of Sideritis cypria and Origanum dubium. In S. cypria, organic fertilization resulted in a similar yield compared to conventional fertilization, while O. dubium showed a significant decrease in yield when using organic fertilizers. The impact of spraying with Zn on S. cypria dry matter content was related to the availability of nutrients, particularly nitrogen, while in O. dubium Zn spraying induced a decrease in dry matter. The total phenols content and antioxidant activity of S. cypria were elevated by conventional fertilization and foliar application of Fe, while the combination of organic fertilization and foliar application of Fe and Zn reduced lipid peroxidation. In O. dubium, foliar application of Fe and Zn led to a reduction in total phenols content, antioxidant capacity, and hydrogen peroxide content under adequate nutrition. In general, foliar spraying with Zn tended to improve water use efficiency under specific fertilization practices on both species, while the positive effect of conventional fertilization on nutrient use efficiency still requires further validation. Ultimately, the efficiency of organic fertilization was related to the examined species, inducing variations in leaf chlorophyll content. In addition, foliar application of Fe and Zn affected the antioxidant capacity and mineral content of the examined species. Thus, appropriate fertilization management is vital to fully realize the specific benefits of foliar micronutrient addition.
Full article
(This article belongs to the Special Issue Wild Plant Species as Potential Horticultural Crops: An Opportunity for Farmers and Consumers—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparing Two Varieties of Blood Orange: A Differential Methylation Region Within the Specific Encoding Sequence of a Retrotransposon Adjacent to the Ruby Locus
by
Jianhui Wang, Zhihong Li, Weiqing Guo, Zhihan Liu, Mingfu Xu, Yan Sun, Dayu Liu and Ying Chen
Horticulturae 2025, 11(8), 966; https://doi.org/10.3390/horticulturae11080966 - 14 Aug 2025
Abstract
The blood orange arose from the insertion of a retrotransposon adjacent to the Ruby gene, an MYB-type transcriptional activator of anthocyanin production, as reported previously. However, the intricate process of anthocyanin regulation among different varieties of blood orange remains incompletely understood. In this
[...] Read more.
The blood orange arose from the insertion of a retrotransposon adjacent to the Ruby gene, an MYB-type transcriptional activator of anthocyanin production, as reported previously. However, the intricate process of anthocyanin regulation among different varieties of blood orange remains incompletely understood. In this study, mRNA levels of the transcription factors Ruby and TT8 were found to be upregulated in the juice vesicle tissues of a variety with higher concentrations of anthocyanins in the pulp compared with another variety with a lower anthocyanin content. In contrast, comparative analysis of the two varieties using two-dimensional electrophoresis and mass spectrometry did not identify differentially expressed proteins related to anthocyanin biosynthesis in the juice vesicle tissues. Furthermore, higher anthocyanin contents were observed in various tissues of transgenic Arabidopsis thaliana overexpressing the Ruby gene from blood orange compared with the wildtype plant. Moreover, the long terminal repeat (LTR) region of a retrotransposon inserted upstream of the Ruby locus exhibited the ability to drive reporter expression through histochemical assay in a transgenic seedling. Thus, a PCR-based molecular marker was developed, targeting the upstream sequence of the Ruby locus to identify Citrus hybrids with the unique trait of red-fleshed fruit. Intriguingly, bisulfite sequencing revealed differentially methylated regions within a Gag-Pol polyprotein-encoding sequence of a retrotransposon adjacent to Ruby locus when comparing two varieties with different anthocyanin contents. A higher average level of methylation status was observed in the fruit with a lower anthocyanin content. In conclusion, methylation modifications at specific upstream positions on the Ruby locus may influence anthocyanin production in blood oranges.
Full article
(This article belongs to the Section Developmental Physiology, Biochemistry, and Molecular Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
Chayote [Sechium edule (Jacq.) Sw.] Fruit Quality Influenced by Plant Pruning
by
Jorge Cadena-Iñiguez, Ma. de Lourdes Arévalo-Galarza, Juan F. Aguirre-Medina, Carlos H. Avendaño-Arrazate, Daniel A. Cadena-Zamudio, Jorge David Cadena-Zamudio, Ramón M. Soto-Hernández, Víctor M. Cisneros-Solano, Lucero del Mar Ruiz-Posadas, Celeste Soto-Mendoza and Jorge L. Mejía-Méndez
Horticulturae 2025, 11(8), 965; https://doi.org/10.3390/horticulturae11080965 - 14 Aug 2025
Abstract
Plant pruning is the selective removal of specific plant parts to enhance growth, shape, and health. In this work, the effects of pruning were evaluated regarding the physiological parameters, maturity, quality, and harvest indices and the nutritional quality features of twelve chayote [
[...] Read more.
Plant pruning is the selective removal of specific plant parts to enhance growth, shape, and health. In this work, the effects of pruning were evaluated regarding the physiological parameters, maturity, quality, and harvest indices and the nutritional quality features of twelve chayote [Sechium edule (Jacq.) Sw] (Cucurbitaceae) varieties. GC-FID approaches were utilized to determine CO2 assimilation rates. The results demonstrated that pruning upregulated the leaf temperature and conductance but decreased transpiration and CO2 assimilation rates within the evaluated period (06:30 a.m.–16:23 p.m.). It was noted that the implementation of pruning also impacted samples with enhanced photosynthetically active radiation activity, with a positive correlation with CO2 assimilation. The macro- and micronutrient content was higher in samples with an epidermis, especially for S. edule var. albus spinosum. Nevertheless, the analyzed samples presented low (5–10 mL CO2 kg−1 h−1), medium (10–15 mL CO2 kg−1 h−1), and high levels (15–20 mL CO2 kg−1 h−1) of respiratory intensity and weight loss (7–17%)—effects attributed to botanical differences between the studied chayote varieties. This work demonstrates, for the first time, the effects of pruning in chayote orchards and expands the knowledge regarding the implementation of effective approaches to produce plants with culinary, cultural, and medicinal implications. Further approaches are required to determine the effects of pruning on chayote after harvest.
Full article
(This article belongs to the Special Issue New Strategies for Agrochemical-Conventional Management in Horticultural Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
Exogenous Melatonin Affects Fruit Enlargement and Sugar Metabolism in Melt Peach
by
Yanfei Guo, Baoxin Jiang, Qinghao Wang, Huilian Xu and Wangshu Zhang
Horticulturae 2025, 11(8), 964; https://doi.org/10.3390/horticulturae11080964 - 14 Aug 2025
Abstract
Peach (Prunus persica (L.)) fruits are abundant in nutrients, with fruit shape and sugar content serving as critical indicators of fruit quality. Melatonin plays a pivotal role in peach fruit development; however, the mechanisms by which it regulates fruit shape development, sugar
[...] Read more.
Peach (Prunus persica (L.)) fruits are abundant in nutrients, with fruit shape and sugar content serving as critical indicators of fruit quality. Melatonin plays a pivotal role in peach fruit development; however, the mechanisms by which it regulates fruit shape development, sugar metabolism, and secondary metabolites remain largely unknown. In this study, peach trees were sprayed with 150 µM melatonin 20 days after pollination. Traditional methods were used to investigate fruit morphology, total soluble solids (TSSs), and titratable acidity content (TAC), while liquid chromatography–mass spectrometry (LC-MS) was employed to analyze sugar metabolites during fruit development. The results indicated that melatonin treatment augmented the transverse and longitudinal diameters of peach fruits by 12% and 6%, respectively, and elevated the contents of soluble solids and titratable acid by 7% and 6%, respectively. The single fruit weight experienced a significant increase of 29.4%, whereas fruit firmness at maturity remained unchanged. Metabolite analysis demonstrated that melatonin decreased the levels of sucrose and D-sorbitol in mature fruits but enhanced the accumulation of D-fructose, L-rhamnose, and xylose. Significantly, melatonin expedited the degradation of galactose, D-mannose, and methyl-D-pyranogalactoside prior to maturity (all three substances naturally decline with fruit ripening), highlighting its role in promoting fruit ripening. In conclusion, exogenous melatonin improves the internal nutrition and flavor quality of fruit by regulating the accumulation of primary and secondary metabolites during fruit ripening. Specifically, the increase in D-fructose (a major contributor to sweetness) and L-rhamnose (a potential precursor for aroma compounds) enhances fruit flavor profile. The accelerated degradation of galactose, D-mannose, and methyl-D-pyranogalactoside (components of cell wall polysaccharides) prior to maturity, alongside the metabolic shift favoring fructose accumulation over sucrose, highlights melatonin’s role in promoting fruit ripening and softening processes. It also promotes fruit enlargement and single fruit weight without affecting fruit firmness. This study establishes a theoretical basis for the further investigation of the molecular mechanisms underlying melatonin’s role in peach fruits and for enhancing quality-focused breeding practices.
Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
►▼
Show Figures

Figure 1
Open AccessArticle
Supplemental Light Differentially Regulates Indoor-Grown Basil (Ocimum basilicum) Growth, Volatile Compounds, and Sensory Attributes
by
Nathan Kelly, Madison A. Oehler, Regina O’Brien, Eunhee Park, Jinhe Bai, Jorge M. Fonseca and Yaguang Luo
Horticulturae 2025, 11(8), 963; https://doi.org/10.3390/horticulturae11080963 - 14 Aug 2025
Abstract
Basil (Ocimum basilicum), a widely cultivated herb, thrives in controlled environment agriculture (CEA) systems where light spectra can be precisely manipulated to optimize growth, morphology, and chemical composition. This study examined the effects of supplemental blue (BL), green (GR), and far-red
[...] Read more.
Basil (Ocimum basilicum), a widely cultivated herb, thrives in controlled environment agriculture (CEA) systems where light spectra can be precisely manipulated to optimize growth, morphology, and chemical composition. This study examined the effects of supplemental blue (BL), green (GR), and far-red (FR) light on two basil cultivars, green Prospera and purple Amethyst, focusing on plant growth, photosynthetic efficiency, volatile compound profiles, and sensory attributes. The results showed that FR light significantly increased stem elongation and biomass accumulation, with stem height increasing by 66.3% in Prospera and 144.1% in Amethyst under FR light compared to white light, and fresh biomass increasing by 59.3% and 120.1%, respectively. However, FR light increased photosystem II (PSII) efficiency by 20.9% and 34.3% in Prospera and Amethyst, respectively, compared to high-intensity white light, indicating FR light’s impactful role on growth and photosynthetic performance. The volatile profiles were also significantly influenced by light treatments. FR light increased citral levels by 371.0% in Prospera, while allo-ocimene levels increased by 89.0% in Amethyst compared to the control. Sensory evaluations confirmed that basil grown under FR light had a stronger aromatic profile. In contrast, BL light reduced concentrations of certain volatiles, such as eugenol and linalool, leading to a milder aroma. These findings demonstrate that the light spectra can be strategically manipulated to optimize basil’s growth, morphology, and aromatic profile, aligning production with consumer preferences.
Full article
(This article belongs to the Section Protected Culture)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Horticulturae Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
- 10th Anniversary
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Antioxidants, Horticulturae, Plants
Recent Progress in Plant Nutrition Research and Plant Physiology
Topic Editors: Renato De Mello Prado, Cid Naudi Silva CamposDeadline: 30 September 2025
Topic in
Agriculture, Agronomy, Analytica, Horticulturae, IJPB, Plants, Earth, Agrochemicals
Biostimulants in Agriculture—2nd Edition
Topic Editors: Manuel Ângelo Rosa Rodrigues, Paolo Carletti, Domenico RongaDeadline: 30 October 2025
Topic in
Agriculture, Agronomy, Gastronomy, Grasses, Sustainability, Diversity, Horticulturae, Hydrobiology
Mediterranean Biodiversity, 2nd Edition
Topic Editors: Luigi De Bellis, Massimiliano Renna, Pietro Buzzini, Ignasi TorreDeadline: 15 December 2025
Topic in
Agriculture, Agronomy, Horticulturae, IJPB, Plants
Tolerance to Drought and Salt Stress in Plants, 2nd volume
Topic Editors: Roberto Barbato, Veronica De MiccoDeadline: 31 December 2025

Conferences
Special Issues
Special Issue in
Horticulturae
Advances in Postharvest Packaging and Preservation Techniques
Guest Editors: Jesús Rubén Rodríguez-Núñez, Tomás J. Madera-SantanaDeadline: 20 August 2025
Special Issue in
Horticulturae
Advances in Postharvest Fresh-Keeping Technology and Metabolomics of Horticultural Plants
Guest Editors: Tao Luo, Zhenxian Wu, Xiaomeng GuoDeadline: 20 August 2025
Special Issue in
Horticulturae
Breeding for Tomorrow: Stress Tolerance in Tomato Genotypes
Guest Editors: Salvatore Graci, Amalia BaroneDeadline: 20 August 2025
Special Issue in
Horticulturae
Postharvest Treatments and Storage Technologies Applied to Ensure the Quality and Shelf-Life of Fruits and Vegetables
Guest Editors: Rosalba Troncoso-Rojas, Martín-Ernesto Tiznado-Hernández, Avtar K. HandaDeadline: 20 August 2025
Topical Collections
Topical Collection in
Horticulturae
Nutritional Quality of Fruits and Vegetables
Collection Editor: Sergio Ruffo Roberto
Topical Collection in
Horticulturae
The Correlation of Stress Response and Organ Development in Horticultural Crops
Collection Editors: Ai-Sheng Xiong, Mengyao Li, Sheng Shu
Topical Collection in
Horticulturae
Genetic Engineering and Quality Improvement in Vegetable Crops
Collection Editors: Qiaomei Wang, Rongfang Guo, Lihong Liu, Mengyu Wang
Topical Collection in
Horticulturae
Precision Management Systems for Sustainable Orchards and Vineyards
Collection Editors: Riccardo Lo Bianco, Roberto Massenti, Antonino Pisciotta