Pest Diagnosis and Control Strategies for Fruit and Vegetable Plants

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Insect Pest Management".

Deadline for manuscript submissions: 15 September 2025 | Viewed by 6754

Special Issue Editors


E-Mail Website
Guest Editor
Department for Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia
Interests: entomology; integrated pest management; biological pest control; soil fauna; molecular methods in entomology

E-Mail Website
Guest Editor
Department for Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia
Interests: entomology; pesticide application; oilseed rape pests; vegetable pests; decision support systems; biological control

E-Mail Website
Guest Editor
Laboratorio di Entomologia ed Ecologia Applicata, Dipartimento PAU, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy
Interests: insect ecology; pest management; forest entomology; biological control; tritrophic interactions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fruit and vegetable production is constantly threatened by insect pests, diseases and weeds, as well as new invasive species of harmful organisms. Any of these threats can restrict market access and food supply chains, and have an impact on natural and agro ecosystems. The basis for protecting crops from pests today is Integrated Pest Management (IPM), which involves the proper and timely pest diagnosis and pest-adapted control. Accurate and rapid pest detection and identification is the first step towards the use of effective control strategies, which can help growers avoid costly mistakes that lead to economic losses. Nowadays, various diagnostic tools ("decision support systems") are being developed and used that allow the fast and efficient identification of harmful organisms so that an accurate and timely choice of a specific pest control strategy can be implemented.

The purpose of this Special Issue “Pest Diagnosis and Control Strategies for Fruit and Vegetable Plants” is to present innovative studies, approaches, tools and techniques that can be successfully used in pest diagnosis or as efficient control measures in fruit and vegetable production. These also include innovative articles on molecular and geometric morphometrics diagnostic tools, the implementation of artificial intelligence in pest detection, and any control strategy that can suppress the pest in an environmentally friendly and cost-efficient manner.

Dr. Maja Čačija
Dr. Ivan Juran
Dr. Carmelo Bonsignore
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • integrated pest management
  • diagnostic tools (decision support systems)
  • pest monitoring and detection
  • control measures

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1249 KiB  
Article
Sweet Chestnut Wood Distillate’s Role in Reducing Helicoverpa armigera Damage and Enhancing Chickpea Performance: Evidence from Field Trial
by Pablo Carril, Ilaria Colzi, Riccardo Fedeli, Cristina Gonnelli and Stefano Loppi
Horticulturae 2025, 11(6), 613; https://doi.org/10.3390/horticulturae11060613 - 30 May 2025
Viewed by 717
Abstract
The moth Helicoverpa armigera (Lepidoptera: Noctuidae), better known as the pod borer, poses significant threats to chickpea (Cicer arietinum L.) production. Therefore, effective and sustainable crop management strategies are required to mitigate the impact of this cosmopolitan pest. The present study aimed [...] Read more.
The moth Helicoverpa armigera (Lepidoptera: Noctuidae), better known as the pod borer, poses significant threats to chickpea (Cicer arietinum L.) production. Therefore, effective and sustainable crop management strategies are required to mitigate the impact of this cosmopolitan pest. The present study aimed at investigating the potential of wood distillate (WD), a liquid byproduct of the pyrolysis of waste lignocellulosic biomass, to both reduce H. armigera pest incidence and to enhance crop yields in field-grown chickpea. The application of WD as a foliar spray effectively reduced the number of damaged pods by 35% during the plant´s reproductive stage compared with water-sprayed plants (~16 vs. 24 bored pods plant−1, respectively) and increased the number of healthy pods (~16 vs. 10 pods plant−1, respectively). Moreover, the lower pest incidence was accompanied by an improvement of both the seed yield and the quality at the plant´s full maturity stage. Specifically, WD-treated plants increased both the number and weight of seeds by ~80% compared to water-sprayed plants (~23 vs. 13 and 5.5 vs. 3 plant−1, respectively) which further showed a remarkable improvement in their nutritional value, with the concentration of total polyphenols, flavonoids, starch, calcium, and magnesium increasing by 17%, 56%, 43%, 23%, and 15%, respectively. These results underscore the potential of WD to both improve chickpea performance and to reduce H. armigera damage to sustainably improve the productivity of this critical legume crop, aligning with the principles of the circular economy and offering an environmentally friendly alternative to synthetic pesticides and fertilizers in agriculture. Full article
(This article belongs to the Special Issue Pest Diagnosis and Control Strategies for Fruit and Vegetable Plants)
Show Figures

Graphical abstract

11 pages, 3981 KiB  
Article
Injury Caused by Western Tarnished Plant Bug (Hemiptera: Miridae) on Broccoli and Cauliflower in Laboratory Assays
by Shimat V. Joseph
Horticulturae 2025, 11(2), 210; https://doi.org/10.3390/horticulturae11020210 - 16 Feb 2025
Viewed by 508
Abstract
The polyphagous Lygus hesperus Knight is a serious pest on many crops in the western USA, including California’s central coast. Although L. hesperus adults can cause damage to broccoli and cauliflower, symptoms from their interactions with these plants are not fully characterized. Characterizing [...] Read more.
The polyphagous Lygus hesperus Knight is a serious pest on many crops in the western USA, including California’s central coast. Although L. hesperus adults can cause damage to broccoli and cauliflower, symptoms from their interactions with these plants are not fully characterized. Characterizing the feeding and ovipositional damage will help in the early diagnosis of the problem in the field and in greenhouses. Thus, the objective of this study was to characterize the feeding and ovipositional injury symptoms in broccoli and cauliflower after exposing 0, 1, 3, 5, and 10 adult L. hesperus to seedlings of broccoli and cauliflower for 24 h, 48 h, and 7 d. Although distorted and “blind” shoots were observed, feeding injury did not rapidly manifest into damage after 7 d post-exposure with high counts of adults on broccoli and cauliflower seedlings. The ovipositional injury was expressed as lesions that developed rapidly with a high density of adults in 24 h. The same levels of damage were observed with three or five adults to these hosts in 48 h. Significant positive correlations between the total eggs and lesions developed were observed on broccoli and cauliflower seedlings. After adult L. hesperus exposure, the growth of broccoli seedlings was reduced, but there was no effect on the growth of cauliflower seedlings. For diagnosis, data show that lesions are associated with adult L. hesperus ovipositional activity on these crops, which recommends thorough scouting and immediate application of plant protectants to reduce potential crop loss in greenhouses and in the field. Full article
(This article belongs to the Special Issue Pest Diagnosis and Control Strategies for Fruit and Vegetable Plants)
Show Figures

Figure 1

16 pages, 3488 KiB  
Article
Refining Degree-Day Models for Sparganothis Fruitworm in Cranberry by Biofix and Variety
by James Shope, Paolo Salazar-Mendoza, Yahel Ben-Zvi and Cesar Rodriguez-Saona
Horticulturae 2024, 10(12), 1346; https://doi.org/10.3390/horticulturae10121346 - 15 Dec 2024
Viewed by 836
Abstract
Timing insecticide applications with insect emergence is critical for the management of cranberry pests like Sparganothis fruitworm (Sparganothis sulfureana, Lepidoptera: Tortricidae). The annual peak flight of S. sulfureana has previously been predicted using a degree-day model with a biofix date of [...] Read more.
Timing insecticide applications with insect emergence is critical for the management of cranberry pests like Sparganothis fruitworm (Sparganothis sulfureana, Lepidoptera: Tortricidae). The annual peak flight of S. sulfureana has previously been predicted using a degree-day model with a biofix date of 1 March; however, this biofix is not suitable for regions where winter and spring temperatures are warmer and flooding of cranberry beds is relied upon, which inhibits S. sulfureana development. In this study, we present two new degree-day models for predicting S. sulfureana peak flight based on six years of trapping data from New Jersey (USA): one with a biofix of 15 April, a date when drainage of cranberry beds occurs on average, and another using individual bed drainage dates. These models project peak flights at 525.5 and 521.0 degree-days using 15 April and water draw date as biofixes, respectively. These models can be used interchangeably, with both biofixes being suitable for regional grower guidance. Furthermore, differences in S. sulfureana peak flight were observed across four cranberry varieties; however, the effect of variety was influenced by year (significant variety-by-year interaction). This year-to-year variation in peak flight was strongly associated with spring (April–May) temperatures. Using these models, we project that with climate change, the peak flight of S. sulfureana in New Jersey cranberry beds may occur up to a week earlier by 2050. The use of a region-specific biofix and variety-specific models will help to better refine degree-day models for S. sulfureana, allowing for improved timing of management strategies against this pest. Full article
(This article belongs to the Special Issue Pest Diagnosis and Control Strategies for Fruit and Vegetable Plants)
Show Figures

Figure 1

14 pages, 10693 KiB  
Article
Projection of the Potential Global Geographic Distribution of the Solanum Fruit Fly Bactrocera latifrons (Hendel, 1912) (Diptera: Tephritidae) Based on CLIMEX Models
by Yajie Wei, Xiaoqing Xian, Haoxiang Zhao, Jianyang Guo, Nianwan Yang, Zhi Gong, Wanxue Liu and Zhengqiang Peng
Horticulturae 2024, 10(9), 977; https://doi.org/10.3390/horticulturae10090977 - 14 Sep 2024
Cited by 1 | Viewed by 1120
Abstract
The solanum fruit fly Bactrocera latifrons (Diptera: Tephritidae) is an invasive alien insect that causes huge economic losses to pepper and other solanaceous plant industries. It is mainly distributed in South and Southeast Asia, SW Europe, Western USA, and in some African countries. [...] Read more.
The solanum fruit fly Bactrocera latifrons (Diptera: Tephritidae) is an invasive alien insect that causes huge economic losses to pepper and other solanaceous plant industries. It is mainly distributed in South and Southeast Asia, SW Europe, Western USA, and in some African countries. However, the potential global geographical distribution of B. latifrons is unknown. Therefore, in this study, based on the current (1981–2010) and future (2040–2059) climatic scenarios determined using the CNRM-CM5, Access1.0, GFDL-ESM-2M, and NorESM1-M models, we used a species distribution model (CLIMEX 4.0) to project the potential global geographic distribution of B. latifrons to prevent further invasion and harm. In the current climate scenario, South America (1286.06 × 104 km2), Africa (1435.47 × 104 km2), and Oceania (410.66 × 104 km2) have the largest proportions of suitable land areas for B. latifrons colonization. Under all four future climate models, the global potential suitable area for Bactrocera latifrons is projected to decrease and shift towards higher latitudes. This study provides an important baseline upon which researchers, quarantine personnel, and governments can develop the appropriate control strategies against B. latifrons. Full article
(This article belongs to the Special Issue Pest Diagnosis and Control Strategies for Fruit and Vegetable Plants)
Show Figures

Figure 1

10 pages, 2636 KiB  
Article
Whitefly Detected: LED Traps Enhance Monitoring of Trialeurodes vaporariorum in Greenhouse-Grown Tomato
by Björn Grupe and Rainer Meyhöfer
Horticulturae 2024, 10(9), 960; https://doi.org/10.3390/horticulturae10090960 - 9 Sep 2024
Viewed by 1349
Abstract
Yellow sticky traps (YSTs) are common tools for monitoring the greenhouse whitefly (GWF), Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), which can cause significant yield reduction in different greenhouse crops such as cucumber and tomato. In recent years, sticky traps equipped with green light-emitting diodes (LEDs) [...] Read more.
Yellow sticky traps (YSTs) are common tools for monitoring the greenhouse whitefly (GWF), Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), which can cause significant yield reduction in different greenhouse crops such as cucumber and tomato. In recent years, sticky traps equipped with green light-emitting diodes (LEDs) have also been (successfully) tested for catching GWFs. However, no study has observed GWF population dynamics at low population densities using such LED traps for early pest detection in crop stands. Therefore, a greenhouse experiment was conducted aiming to investigate the correlation between GWF populations on tomato crops (Solanum lycopersicum L. (Solanaceae)) and the numbers caught on yellow sticky traps and green LED traps, respectively. A small number of whiteflies was released into two pest-free greenhouse cabins, and populations on plants and traps were monitored for the duration of two months. The results show that the GWFs caught on LED traps correlate significantly positive with the population density on the tomato crops. Such a correlation was not found for standard YSTs. Moreover, the results indicate the possibility of early pest detection using LED traps. The findings are discussed in the context of the whiteflies’ ecology and population dynamics in greenhouses. Full article
(This article belongs to the Special Issue Pest Diagnosis and Control Strategies for Fruit and Vegetable Plants)
Show Figures

Figure 1

15 pages, 3976 KiB  
Article
Complex Habitats Boost Predator Co-Occurrence, Enhancing Pest Control in Sweet Pepper Greenhouses
by Carmelo Peter Bonsignore and Joan van Baaren
Horticulturae 2024, 10(6), 614; https://doi.org/10.3390/horticulturae10060614 - 9 Jun 2024
Cited by 1 | Viewed by 1263
Abstract
Sweet pepper is a crop that benefits from phytosanitary treatments with low environmental impact, especially the successful control of pests through the introduction of biological control agents in greenhouses. However, predators that naturally occur in these surroundings often enter greenhouses. The precise roles [...] Read more.
Sweet pepper is a crop that benefits from phytosanitary treatments with low environmental impact, especially the successful control of pests through the introduction of biological control agents in greenhouses. However, predators that naturally occur in these surroundings often enter greenhouses. The precise roles of these natural predators and their interactions with the introduced predatory insects and mites are often unknown. This study investigated the relationships between Nesidiocoris tenuis, which is naturally present, and Amblyseius swirskii and Orius laevigatus, which are two species of generalist predators released for the control of multiple pests. This study was conducted for two years on 13 commercial sweet pepper crops in various types of greenhouses (tunnels and traditional greenhouses) in Sicily. The environmental complexity value (ECV) for each site was estimated based on 18 points detected around the site according to the different habitats that occurred at each coordinate. The results showed that the occurrence of N. tenuis in greenhouses, independently of their typology (tunnel or traditional greenhouse), was mainly promoted by the greater diversification of habitats immediately surrounding the pepper crops (in a circular area with a diameter of 500 mt), with an increase in its density during the crop season. Moreover, N. tenuisO. laevigatus’s co-occurrence in flowers suggested that they were not impacted by each other’s presence and that their co-occurrence had a significant effect on pest reduction, although their co-occurrence was density-dependent. As an intraguild predator, N. tenuis competed with O. laevigatus for Frankliniella occidentalis when many predators were present. In addition, N. tenuis also competed with A. swirskii when they both occurred in flowers at a higher density. This study highlights the importance of pepper plant flowers in promoting a higher occurrence of juvenile forms of N. tenuis within flowers. Amblyseius swirskii colonized the plants in 3 weeks, distributing itself almost uniformly over the leaves with a clear control action against not only Bemisia tabaci but also F. occidentalis when present on the flowers. Thus, this concurrent analysis of several commercial pepper sites within the same production area suggests that, even with similar pest control plans, the diverse variability in the presence of natural enemies must be considered when selecting control strategies for pepper crop pests and that N. tenuis, favored by complex surrounding habitats, contributes actively to pest reduction. Full article
(This article belongs to the Special Issue Pest Diagnosis and Control Strategies for Fruit and Vegetable Plants)
Show Figures

Graphical abstract

Back to TopTop