Effects of Three Organic Fertilizers and Biostimulants on the Morphological Traits and Secondary Metabolite Content of Lettuce
Abstract
1. Introduction
2. Materials and Methods
2.1. Setting up the Experiment
2.2. Organic Fertilizers
2.3. Biostimulants
2.4. Plant Sampling
2.5. Phenols, Phenolic Acids, Flavonoids, Antioxidant Activity, and Proline
2.6. Statistical Analysis
3. Results
3.1. Morphological Measurements
3.2. Phenols, Phenolic Acids, Antioxidant Activities, Flavonoids, and Prolines
4. Discussion
4.1. Effects on Morphological Parameters and Yield
4.2. Physiological Mechanisms and Biochemical Interpretation
4.3. Implications for Sustainable Agriculture
5. Conclusions
5.1. Limitations and Risks
5.2. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirosavljević, K.; Benković, R.; Knezović, I.; Hrgovčić, A.; Benković-Lačić, T. Modelling of moisture release dynamics during the drying process. Tech. Gaz. 2025, 5, 1848–1855. [Google Scholar] [CrossRef]
- Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K. Effect of drought and heat stresses on plant growth and yield: A review. Int. Agrophysics 2013, 27, 463–477. [Google Scholar] [CrossRef]
- Rohman, F.; Firgiyanto, R.; Fatkhu Dinata, G.; Rohman, H.F.; Siswadi, E.; Zayin Sukri, M.; Rizgy Fadilah, A.; Firdausi, H. Tomato Growth and Production under Different Concentrations of Weed Extract-Based Biostimulant in Dry. Int. J. Technol. Food Agric. (TEFA) 2025, 2, 107–114. [Google Scholar] [CrossRef]
- Chowdhury, S.P.; Babin, D.; Sandamann, M.; Jacquid, S.; Sommermann, L.; Sorensen, S.J.; Fliessbach, A.P.; Mader, P.; Geistlinger, J.; Smalla, K.M.; et al. Effect of long-term organic and mineral fertilization strategies on rhizosphere microbiota assemblage and performance of lettuce. Environ. Microbiol. 2019, 21, 2426–2439. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, D.W.; Mäder, P.; et al. Soil quality–a critical review. Soil. Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Fließbach, A.; Oberholzer, H.R.; Gunst, L.; Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.; Gong, Y.; Fan, M.; Yang, H.; Lal, R.; Kuzyakov, Y. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China plain. Nutr. Cycl. Agroecosystems 2012, 92, 21–33. [Google Scholar] [CrossRef]
- Bi, G.; Evans, W.B.; Spiers, J.M.; Witcher, A.L. Effects of organic and inorganic fertilizers on marigold growth and flowering. HortScience 2010, 45, 1373–1377. [Google Scholar] [CrossRef]
- Mazurenko, B.; Hossain Sani, M.N.; Litvinov, D.; Kalenska, S.; Kovalenko, V.; Shpakovych, I.; Pikovska, O.; Gordienko, L.; Hong Yong, J.W.; Ghaley, B.B.; et al. Biostimulants-induced improvements in pea-barley intercropping systems: A study of biomass and yield optimization under Ukranian climatic conditions. J. Agric. Food Res. 2025, 22, 102074. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Sani, M.N.H.; Amin, M.; Bergstrand, K.J.; Caspersen, S.; Prade, T.; Yong, J.W.H. Harnessing biostimulants from biogas digestates for high.value resource recovery: A review. Environ. Chem. Lett. 2025, 23, 139–164. [Google Scholar] [CrossRef]
- Bulgari, R.; Travellini, A.; Ferrante, A. Effects of Two Doses of Organic Extract- Based Biostimulant on Greenhouse Lettuce Grown Under Increasing NaCl Concentrations. Front. Plant Sci. 2019, 9, 1870. [Google Scholar] [CrossRef]
- Zufiqar, F.; Casadesus, A.; Brockman, H.; Munne-Bosch, S. An overview of Plant-Based Natural Biostimulants for Sustainable Horticulture with Particular Focus on Moringa Leaf Extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrant, A.; Espen, L. Biostimulants on Crops: Their impact under Abiotic Stress Conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
- Ma, Y.; Freitas, H.; Dias, M.C. Strategies and Prospects for Biostimulants to Alleviate Abiotic Stres in Plants. Front. Plant Sci. 2022, 13, 1024243. [Google Scholar] [CrossRef]
- Zahra, A.M.; Sinaga, A.N.K.; Nugroho, B.D.A.; Masithoh, R.E. Effect of plant biostimulants on red and green romaine lettuce (Lactuca sativa L.) growth in indoor farming. Earth Environ. Sci. 2024, 1297, 012008. [Google Scholar] [CrossRef]
- Li, J.; Van Gerrewey, T.; Geelen, D. A meta-analysis of biostimulant yield effectiveness in field trials. Front. Plant Sci. 2022, 13, 836702. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Leon, E.; Lopez-Moreno, F.J.; Borda, E.; Marin, C.; Sierras, N.; Blasco, B.; Ruiz, J.M. Effect of l-amino Acid.based Biostimulants on Nitrogen Use Efficiency NUE) in Lettuce Plants. J. Sci. Food. Agric. 2022, 102, 7098–7106. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Cercioglu, M.; Okur, B.; Delibacak, S.; Ongun, A.R. Effects of tobacco waste and farmyard manure on soil properties and yield of lettuce (Lactuca sativa L. var. capitata). Comm. Soil Sci. Plant Anal. 2012, 43, 875–886. [Google Scholar] [CrossRef]
- Tsiakaras, G.; Petropoulos, S.A.; Khah, E.M. Effect of GA3 and nitrogen on yield and marketability of lettuce (Lactuca sativa L.). Aust. J. Crop Sci. 2014, 8, 127–132. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 4th ed.; Council of Europe: Strasbourg, France, 2004; pp. 2377–2378.
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Carillo, P.; Gibon, Y. Protocol: Extraction and Determination of Proline; Prometheus Wiki: Amherst, NY, USA, 2011; pp. 1–5. [Google Scholar]
- Kiehl, E.J. Fertilizantes Orgânicos; Ceres: São Paulo, Brazil, 1985; p. 492. [Google Scholar]
- Santos, A.W.; Trindade, A.M.G. Analise do crescimento e desenvolvimento de melancia submetida a diferentes doses de esterco caprino. Rev. Agropecuária Técnica 2010, 31, 170–173. [Google Scholar] [CrossRef]
- Santi, A.; Carvalho, M.A.; Campos, O.R.; Silva, A.F.; Almeida, J.L.; Monteiro, S. Ação de material orgânico sobre a produção e características comerciais de cultivares de alface. Rev. Hortic. Bras. 2010, 2, 87–90. [Google Scholar] [CrossRef]
- Sarmento, J.J.A.; Costa, C.C.; Dantas, M.V.; Lopes, K.P.; Macedo, C.; Bomfim, M.P.; Barbosa, J.W.S. Productivity of Lettuce Under Organic Fertilization. J. Agric. Sci. 2019, 11, 333–343. [Google Scholar] [CrossRef]
- Roy, D. Role of Biostimulants towards Sustainable Agriculture: A Review. Food Sci. Rep. 2024, 5, 47–52. [Google Scholar]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- Moreira, M.A.; Santos, C.A.P.; Lucas, A.A.T.; Bianchini, F.G.; Souza, I.M.; Viégas, P.R.A. Lettuce production according to different sources of organic matter and soil cover. Agric. Sci. 2014, 5, 99–105. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Kopta, T.; Pavlikova, M.; Sekara, A.; Pokluda, R.; Maršalek, B. Effect of bacterial-algal biostimulant on the yield and internal quality of lettuce (Lactuca sativa L.) produced for spring and summer crop. Nor. Bot. Horti Agrobot. 2018, 46, 615–621. [Google Scholar] [CrossRef]
- Khan, S.; Yu, H.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Jiang, W. Exogenous application of amino acids improves the growth and yield of lettuce by enchancing photosynthetic assimilation and nutrient availability. Agronomy 2019, 9, 266. [Google Scholar] [CrossRef]
- Zandvakili, O.R.; Barker, A.V.; Hashemei, M.; Etemadi, F. Biomass and nutrient concentration of lettuce grown with organic fertilizers. J. Plant Nutr. 2019, 42, 444–457. [Google Scholar] [CrossRef]
- Ottaiano, L.; Mola, I.E.; Cozzolino, E.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Biostimulant application under different nitrogen fertilization levels: Assessment of yield, leaf quality and nitrogen metabolism of tunnel-grown lettuce. Agronomy 2021, 11, 1613. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 2015, 184, 124–133. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Baffi, C.; Colla, G. A vegetal biopolymer-based biostimulant promoted growth in melon while triggering brassinosteroids and stress-related compounds. Front. Plant Sci. 2018, 9, 472. [Google Scholar] [CrossRef]
- Abd–Elrahman, S.H.; Saudy, H.S.; El–Fattah, D.A.A.; Hashem, F.A.E. Effect of Irrigation Water and Organic Fertilizer on Reducing Nitrate Accumulation and Boosting Lettuce Productivity. J. Soil Sci. Plant Nutr. 2022, 22, 2144–2155. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Saini, N.; Anmol, A.; Kumar, S.; Wani, A.W.; Bakshi, M.; Dhiman, Z. Exploring phenolic compounds as natural stress alleviators in plants- a comprehensive review. Physiol. Mol. Plant Pathol. 2024, 133, 102383. [Google Scholar] [CrossRef]
- Romanjek Fajdetić, N.; Blažinkov, M.; Božić Ostojić, L.J.; Mirosavljević, K.; Antunović, S.; Knezović, I.; Benković, R.; Sviličić, P.; Benković Lačić, T. Influence of PAW on the Lettuce Growth and Formation of the Secondary Metabolites in Different Growing Conditions. Horticulturae 2024, 10, 1367. [Google Scholar] [CrossRef]
- Sytar, O.; Zivcaka, M.; Bruckovaa, K.; Brestica, M.; Hemmerichc, I.; Rauhc, C.; Simkod, I. Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Sci. Horticulturae 2018, 239, 193–204. [Google Scholar] [CrossRef]
- Luna, M.C.; Martínez-Sánchez, A.; Selma, M.V.; Tudela, J.A.; Baixauli, C.; Gil, M.I. Influence of nutrient solutions in an open-field soilless system on the quality characteristics and shelf life of fresh-cut red and green lettuces (Lactuca sativa L.) in different seasons. J. Sci. Food Agric. 2013, 93, 415–421. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effect of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Liu, X.; Ardo, S.; Bunning, M.; Parry, J.; Zhou, K.; Stushnoff, C.; Stoniker, F.; Yu, L.; Kendall, P. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. Lwt-Food Sci. Technol. 2007, 40, 552–557. [Google Scholar] [CrossRef]
- Liu, R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013, 78 (Suppl. S1), A18–A25. [Google Scholar] [CrossRef]
- García-Macías, P.; Ordidge, M.; Vysini, E.; Waroonphan, S.; Battey, N.H.; Gordon, M.H.; Hadley, P.; John, P.; Lovegrove, J.A.; Wagstaffe, A. Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency. J. Agric. Food Chem. 2007, 55, 10168–10172. [Google Scholar] [CrossRef]
- Mattila, P.; Hellstrom, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Zhao, X.; Carey, E.E.; Young, J.E.; Wang, W.Q.; Iwamoto, T. Influences of organic fertilization, high tunnel environment, and postharvest storage on phenolic compounds in lettuce. HortScience 2007, 42, 71–76. [Google Scholar] [CrossRef]
- Pumnuan, J.; Kramchote, S.; Sarapothong, K. Antioxidant potential, phenolic content and nitrate/nitrite content in various lettuce varieties. Agrivita J. Agric. Sci. 2025, 46, 134–143. [Google Scholar] [CrossRef]
- Cho, E.; Gurdon, C.; Zhao, R.; Peng, H.; Poulev, A.; Raskin, I.; Simko, I. Phytochemical and Agronomic Characterization of High-Flavonoid Lettuce Lines Grown under Field Conditions. Plants 2023, 12, 3467. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Yeo, H.J.; Baskar, T.B.; Kim, K.J.; Park, S.U. Metabolic profiling and chemical-based antioxidant assays of green and red lettuce (Lactuca sativa). Nat. Prod. Commun. 2018, 13, 315–322. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil, M.I.; Castañer, M.; Tomás-Barberán, F.A. Phenolic Metabolites in Red Pigmented Lettuce (Lactuca sativa). Changes with Minimal Processing and Cold Storage. J. Agric. Food Chem. 1997, 45, 4249–4254. [Google Scholar] [CrossRef]
- Smolen, S.; Kowalska, I.; Czernicka, M.; Halka, M.; Keska, K.; Sady, W. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata). Front. Plant Sci. 2016, 7, 1553. [Google Scholar] [CrossRef]
- Yassen, A.A.; Takacs-Hajos, M. The Effect of Plant Biostimulants on the Macronutrient Content and Ion Ratio of Several Lettuce (Lactuca sativa L.) Cultivars Grown in a Plastic House. S. Afr. J. Bot. 2022, 147, 223–230. [Google Scholar] [CrossRef]
| Yield Comp. | Height (cm) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Date | 1st Metric 21 March 2024 | 2nd Metric 28 March 2024 | 3rd Metric 5 April 2024 | ||||||
| Biostimulant | Fertilization | Fertilization | Fertilization | ||||||
| S | P | B | S | P | B | S | P | B | |
| BC | 12.33 A | 12.53 A | 11.72 | 16.83 A | 16.71 A | 16.25 | 23.84 Ab | 25.48 Aa | 21.29 Ac |
| BS | 10.53 B | 11.2 B | 11.22 | 14.46 Bb | 15.77 ABa | 15.7 a | 20.41 Bb | 21.83 Ba | 20.96 Aab |
| BO | 10.40 B | 10.67 B | 10.92 | 16.18 AC | 16.00 AB | 16.17 | 21.14 B | 22.05 B | 21.37 A |
| C | 11.31 AB | 11.94 AB | 11.17 | 15.54 BC | 15.33 B | 15.33 | 19.97 B | 20.39 C | 19.83 B |
| FF | * (p < 0.05, F = 0.99) | n.s. (p < 0.05, F = 0.25) | * (p < 0.05, F = 12.62) | ||||||
| FBS | n.s. (p < 0.05, F = 6.24) | * (p < 0.05, F = 7.01) | * (p < 0.05, F = 30.85) | ||||||
| Interaction | |||||||||
| FF-FBS | n.s. (p < 0.05, F = 0.56) | n.s. (p < 0.05, F =1.28) | * (p < 0.05, F = 4.31) | ||||||
| Yield Comp. | Mass (g) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Date | 1st Metric 21 March 2024 | 2nd Metric 28 March 2024 | 3rd Metric 5 April 2024 | ||||||
| Biostimulant | Fertilization | Fertilization | Fertilization | ||||||
| S | P | B | S | P | B | S | P | B | |
| BC | 58.65 Aab | 61.94 Aa | 51.52 Ab | 99.34 A | 102.38 A | 94.46 | 200.97 Aab | 209.74 Aa | 183.98 Ab |
| BS | 46.46 B | 41.7 BC | 44.23 B | 91.94 AB | 89.73 B | 88.32 | 156.43 Bb | 166.54 Ca | 158.38 BC |
| BO | 43.24 B | 47.7 B | 45.44 B | 92.8 AB | 91.71 B | 95.60 | 155.75 Bc | 190.41 Ba | 168.44 Bb |
| C | 47.15 Ba | 40.15 Cab | 39.12 Bb | 90.88 B | 92.22 B | 90.88 | 139.84 B | 154.84 C | 156.17 C |
| FF | n.s. (p < 0.05, F = 2.55) | n.s. (p < 0.05, F = 5.43) | * (p < 0.05, F = 21.49) | ||||||
| FBS | * (p < 0.05, F = 23.13) | * (p < 0.05, F = 0.51) | * (p < 0.05, F = 88.23) | ||||||
| Interaction | |||||||||
| FF-FBS | n.s. (p < 0.05, F = 2.32) | n.s. (p < 0.05, F = 0.84) | * (p < 0.05, F = 4.83) | ||||||
| Yield Comp. | Number of Leaves | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Date | 1st Metric 21 March 2024 | 2nd Metric 28 March 2024 | 3rd Metric 5 April 2024 | ||||||
| Biostimulant | Fertilization | Fertilization | Fertilization | ||||||
| S | P | B | S | P | B | S | P | B | |
| BC | 11.67 Aa | 13 Aa | 10 b | 16 A | 15.33 A | 14.67 A | 18.67 Ab | 22 Aa | 18.33 b |
| BS | 8.33 Bb | 11.33 Ba | 9.33 b | 11.67 B | 13.67 A | 13.67 A | 18.33 AC | 19 B | 17.67 |
| BO | 11.33 A | 10 B | 10.33 | 12.67 Bb | 15 Aa | 14 Aa | 17 CBb | 19 Ba | 17.33 b |
| C | 8.33 Bb | 10.33 Ba | 10.33 a | 11.33 B | 11.33 B | 11.33 B | 16.67 B | 18 B | 17.33 |
| FF | n.s. (p < 0.05, F = 6.39) | n.s. (p < 0.05, F = 1.78) | * (p < 0.05, F = 14.24) | ||||||
| FBS | * (p < 0.05, F = 7.95) | * (p < 0.05, F = 17.80) | * (p < 0.05, F = 30.85) | ||||||
| Interaction | |||||||||
| FF-FBS | * (p < 0.05, F = 7.95) | n.s. (p < 0.05, F =1.63) | n.s. (p < 0.05, F =1.76) | ||||||
| Yield Comp. | Dry Matter | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Date | 1st Metric 21 March 2024 | 2nd Metric 28 March 2024 | 3rd Metric 5 April 2024 | ||||||
| Biostimulant | Fertilization | Fertilization | Fertilization | ||||||
| S | P | B | S | P | B | S | P | B | |
| BC | 3.81 Ab | 4.06 Aa | 2.99 Ab | 7.04 A | 7.26 A | 6.70 | 9.01 Aab | 9.41 Aa | 8.70 Ab |
| BS | 2.35 Bb | 2.75 Ba | 2.58 BCab | 6.52 AB | 6.36 B | 6.26 | 6.62 Bb | 7.47 Ba | 7.05 BCab |
| BO | 2.69 B | 2.87 B | 2.67 AB | 6.58 AB | 6.50 B | 6.78 | 6.81 Bc | 9.16 Aa | 7.56 Bb |
| C | 2.62 Ba | 2.12 Cb | 2.25 Cab | 6.44 B | 6.63 B | 6.44 | 7.04 B | 7.17 B | 7.01 C |
| FF | * (p < 0.05, F = 7.19) | n.s. (p < 0.05, F = 0.52) | * (p < 0.05, F = 29.64) | ||||||
| FBS | * (p < 0.05, F = 59.35) | * (p < 0.05, F = 5.17) | * (p < 0.05, F = 81.00) | ||||||
| Interaction | |||||||||
| FF-FBS | * (p < 0.05, F = 6.60) | n.s. (p < 0.05, F = 0.86) | * (p < 0.05, F = 8.17) | ||||||
| Yield Comp. | Height (cm) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Date | 1st Metric 2 May 2024 | 2nd Metric 2 May 2024 | 3rd Metric 2 May 2024 | ||||||
| Biostimulant | Fertilization | Fertilization | Fertilization | ||||||
| S | P | B | S | P | B | S | P | B | |
| BC | 11.96 Ab | 12.98 Aa | 12.12 Aab | 16.86 A | 17.13 A | 16.46 A | 24.41 Aa | 24.88 Aa | 21.25 b |
| BS | 10.93 B | 10.98 B | 11.17 AB | 14.25 Cb | 5.39 Ba | 15.8 AB | 22.71 Ba | 22.67 Ba | 20.78 b |
| BO | 10.77 B | 11.14 B | 11.12 B | 15.20 B | 16.00 B | 15.27 B | 22.01 B | 21.99 B | 21.24 |
| C | 10.54 Bb | 11.82 Ba | 10.94 Bab | 15.08 B | 15.34 B | 15.18 B | 20.36 C | 21.6 B | 20.63 |
| FF | * (p < 0.05, F = 3.85) | * (p < 0.05, F = 4.87) | * (p < 0.05, F = 12.62) | ||||||
| FBS | * (p < 0.05, F = 10.96) | * (p < 0.05, F = 22.94) | * (p < 0.05, F = 12.75) | ||||||
| Interaction | |||||||||
| FF-FBS | n.s. (p < 0.05, F = 0.91) | * (p < 0.05, F = 2.74) | n.s. (p < 0.05, F = 0.91) | ||||||
| Yield Comp. | Mass (g) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Date | 1st Metric 2 May 2024 | 2nd Metric 9 May 2024 | 3rd Metric 16 May 2024 | ||||||
| Biostimulant | Fertilization | Fertilization | Fertilization | ||||||
| S | P | B | S | P | B | S | P | B | |
| BC | 56.82 Ab | 65.42 Aa | 56.34 Ab | 102.17 A | 104.5 A | 100.24 A | 196.82 Aa | 211.43 Aa | 149.73 Ab |
| BS | 48.38 B | 41.46 B | 47.74 B | 80.69 BCb | 92.33 Ba | 87.53 Bab | 145.95 Bb | 168.55 Ca | 141.24 Ab |
| BO | 43.40 B | 47.43 B | 44.46 B | 88.09 Ba | 92.01 Ba | 78.52 Cb | 137.73 Bb | 190.18 Ba | 142.47 Ab |
| C | 40.86 Bb | 51.59 Ba | 42.33 Bb | 74.10 Cab | 79.89 Ca | 70.54 CbB | 143.64 Ba | 149.81 Da | 127.15 Bb |
| FF | * (p < 0.05, F = 8.49) | * (p < 0.05, F = 8.56) | * (p < 0.05, F = 43.99) | ||||||
| FBS | * (p < 0.05, F = 21.58) | * (p < 0.05, F = 47.58) | * (p < 0.05, F = 26.47) | ||||||
| Interaction | |||||||||
| FF-FBS | n.s. (p < 0.05, F = 0.66) | * (p < 0.05, F = 1.68) | n.s. (p < 0.05, F = 7.31) | ||||||
| Yield Comp. | Number of Leaves | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Date | 1st Metric 2 May 2024 | 2nd Metric 9 May 2024 | 3rd Metric 16 May 2024 | ||||||
| Biostimulant | Fertilization | Fertilization | Fertilization | ||||||
| S | P | B | S | P | B | S | P | B | |
| BC | 12.67 A | 12.33 | 13.33 A | 19.00 Aa | 16.00 b | 15.67 b | 28.00 Aa | 29.00 Aa | 25.33 Ab |
| BS | 11.00 B | 12.00 | 11.67 B | 17.00 ABa | 16.33 ab | 14.33 b | 26.33 B | 26.00 AB | 25.67 A |
| BO | 12.33 AB | 11.00 | 10.67 B | 17.00 AB | 16.33 | 16.33 | 26.33 Aa | 26.00 Ba | 17.33 Bb |
| C | 11.00 B | 11.33 | 11.00 B | 16.00 B | 16.00 | 16.33 | 24.00 Bb | 26.33 Ba | 17.00 Bc |
| FF | * (p < 0.05, F = 0.03) | * (p < 0.05, F = 5.24) | * (p < 0.05, F = 62.21) | ||||||
| FBS | * (p < 0.05, F = 5.28) | * (p < 0.05, F = 1.20) | * (p < 0.05, F = 21.63) | ||||||
| Interaction | |||||||||
| FF-FBS | n.s. (p < 0.05, F = 1.40) | * (p < 0.05, F = 1.91) | n.s. (p < 0.05, F = 13.04) | ||||||
| Dry Matter (g) | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Date | 1st Metric 2 May 2024 | 2nd Metric 9 May 2024 | 3rd Metric 16 May 2024 | ||||||
| Biostimulant | Fertilization | Fertilization | Fertilization | ||||||
| S | P | B | S | P | B | S | P | B | |
| BC | 3.75 Ab | 4.29 Aa | 3.7 Ab | 7.24 A | 7.42 A | 7.11 A | 8.6 Ab | 9.48 Aa | 6.71 Ac |
| BS | 3.18 B | 3.03 B | 3.14 B | 5.72 BCb | 6.55 Ba | 6.21 Bb | 6.55 Bb | 7.56 Ca | 6.33 Ab |
| BO | 2.88 B | 3.11 B | 3.07 B | 6.25 Ba | 6.53 Ba | 5.57 Cb | 6.08 Bb | 8.53 Ba | 5.25 Bc |
| C | 2.68 Bb | 3.39 Ba | 2.78 Bb | 5.26 Cab | 5.67 Ca | 5 Cb | 6.44 B | 6.72 D | 6.39 A |
| FF | * (p < 0.05, F = 3.82) | * (p < 0.05, F = 8.61) | * (p < 0.05, F = 49.34) | ||||||
| FBS | * (p < 0.05, F = 17.58) | * (p < 0.05, F = 47.48) | * (p < 0.05, F = 26.93) | ||||||
| Interaction | |||||||||
| FF-FBS | n.s. (p < 0.05, F = 1.41) | n.s. (p < 0.05, F = 1.68) | * (p < 0.05, F = 7.58) | ||||||
| Phenols mg GAE/g f.w | Phenolic Acids mg CAE/g f.w. | Antioxidant Activity µmol TE/g f.w. | Flavonoids mg CE/g f.w. | Prolines µmol Proline/g f.w. | |
|---|---|---|---|---|---|
| Mean Value ± STDEV | Mean Value ± STDEV | Mean Value ± STDEV | Mean Value ± STDEV | Mean Value ± STDEV | |
| C | 1.977 ± 0.081 RSD 4.1% | 1.922 ± 0.047 RSD 2.42% | 0.962 ± 0.020 RSD 2.1% | 10.855 ± 0.192 RSD 1.8% | 0.761 ± 0.000 RSD 0.00% |
| CS | 2.558 ± 0.075 RSD 2.9% | 2.419 ± 0.051 RSD 2.1% | 0.731 ± 0.008 RSD 1.0% | 14.092 ± 0.590 RSD 4.2% | 1.005 ± 0.096 RSD 9.5% |
| CB | 2.246 ± 0.163 RSD 7.3% | 2.229 ± 0.033 RSD 1.5% | 0.706 ± 0.003 RSD 0.4% | 12.687 ± 0.244 RSD 1.9% | 0.071 ± 0.005 RSD 6.3% |
| CP | 1.992 ± 0.088 RSD 4.4% | 1.972 ± 0.014 RSD 0.7% | 0.553 ± 0.028 RSD 5.0% | 10.936 ± 0.256 RSD 2.3% | 0.858 ± 0.030 RSD 3.5% |
| SS | 2.395 ± 0.034 RSD 1.4% | 2.304 ± 0.074 RSD 0.032 | 0.778 ± 0.008 RSD 1.0% | 12.922 ± 0.500 RSD 3.9% | 0.100 ± 0.042 RSD ** 42.3% |
| SO | 1.406 ± 0.129 RSD 9.2% | 1.373 ± 0.023 RSD 1.7% | 0.901 ± 0.010 RSD 1.1% | 7.980 ± 0.026 RSD 0.3% | 0.220 ± 0.005 RSD 2.5% |
| SC | 2.558 ± 0.129 RSD 5.0% | 2.541 ± 0.047 RSD 1.8% | 0.696 ± 0.008 RSD 1.1% | 13.494 ± 0.000 RSD 0.0% | 0.119 ± 0.066 RSD ** 55.7% |
| BS | 2.025 ± 0.068 RSD 3.4% | 1.919 ± 0.051 RSD 2.7% | 0.692 ± 0.023 RSD 3.3% | 10.882 ± 0.410 RSD 3.8% | 0.131 ± 0.006 RSD 4.5% |
| BO | 1.905 ± 0.007 RSD 0.4% | 1.761 ± 0.005 RSD 0.3% | 0.722 ± 0.040 RSD 5.6% | 10.401 ± 0.346 RSD 3.3% | 0.655 ± 0.090 RSD 13.7% |
| BC | 1.876 ± 0.020 RSD 1.1% | 1.896 ± 0.037 RSD 2.0% | 0.896 ± 0.003 RSD 0.3% | 11.063 ± 0.308 RSD 2.8% | 1.325 ± 0.037 RSD 2.8% |
| PS | 1.904 ± 0.066 RSD 3.4% | 1.841 ± 0.147 RSD 8.0% | 0.343 ± 0.013 RSD 3.9% | 10.400 ± 0.383 RSD 3.7% | 1.088 ± 0.079 RSD 7.2% |
| PO | 1.776 ± 0.054 RSD 3.1% | 1.580 ± 0.028 RSD 1.8% | 1.003 ± 0.033 RSD 3.3% | 9.322 ± 0.385 RSD 4.1% | 2.447 ± 0.193 RSD 7.9% |
| PC | 1.771 ± 0.102 RSD 5.7% | 1.643 ± 0.014 RSD 0.9% | 1.236 ± 0.013 RSD 1.0% | 9.603 ± 0.064 RSD 0.7% | 1.309 ± 0.028 RSD 2.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajdetić, N.R.; Božić Ostojić, L.; Benković, R.; Zima, D.; Blažinkov, M.; Mirosavljević, K.; Popović, B.; Benković-Lačić, T. Effects of Three Organic Fertilizers and Biostimulants on the Morphological Traits and Secondary Metabolite Content of Lettuce. Horticulturae 2025, 11, 1288. https://doi.org/10.3390/horticulturae11111288
Fajdetić NR, Božić Ostojić L, Benković R, Zima D, Blažinkov M, Mirosavljević K, Popović B, Benković-Lačić T. Effects of Three Organic Fertilizers and Biostimulants on the Morphological Traits and Secondary Metabolite Content of Lettuce. Horticulturae. 2025; 11(11):1288. https://doi.org/10.3390/horticulturae11111288
Chicago/Turabian StyleFajdetić, Nataša Romanjek, Ljiljana Božić Ostojić, Robert Benković, Dinko Zima, Mihaela Blažinkov, Krunoslav Mirosavljević, Brigita Popović, and Teuta Benković-Lačić. 2025. "Effects of Three Organic Fertilizers and Biostimulants on the Morphological Traits and Secondary Metabolite Content of Lettuce" Horticulturae 11, no. 11: 1288. https://doi.org/10.3390/horticulturae11111288
APA StyleFajdetić, N. R., Božić Ostojić, L., Benković, R., Zima, D., Blažinkov, M., Mirosavljević, K., Popović, B., & Benković-Lačić, T. (2025). Effects of Three Organic Fertilizers and Biostimulants on the Morphological Traits and Secondary Metabolite Content of Lettuce. Horticulturae, 11(11), 1288. https://doi.org/10.3390/horticulturae11111288

