Next Issue
Volume 14, August
Previous Issue
Volume 14, June
 
 

Antioxidants, Volume 14, Issue 7 (July 2025) – 139 articles

Cover Story (view full-size image): This study examined how genetic polymorphisms influence biological responses to fruit and vegetable (F&V) blends in healthy individuals. Increased F&V intake reduced ex vivo DNA damage, enhanced plasma antioxidant capacity, and improved microvascular function. Notably, XRCC1 wildtype carriers exhibited greater DNA protection following flavanol-rich F&V intake, while GSTP1 wildtype individuals showed superior microvascular improvements. These genotype-specific effects underscore the potential of integrating genetic stratification into personalized nutrition approaches for chronic disease prevention. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
24 pages, 2226 KiB  
Article
Melatonin Implantation Improves the Reproductive Performance of Estrus-Synchronized Ewes During Seasonal Anestrus and Enhances the Antioxidant and Steroidogenic Capacities of Granulosa and Luteal Cells
by Zengyi Duan, Menghao Liu, Junjin Li, Kexiong Liu, Qi Qi, Zhixuan Yu, Hadia Akber Samoo, Chunxin Wang and Jian Hou
Antioxidants 2025, 14(7), 895; https://doi.org/10.3390/antiox14070895 - 21 Jul 2025
Viewed by 315
Abstract
Seasonal reproduction in sheep reduces reproductive efficiency. Melatonin (MT) plays a crucial role in reproductive processes. The purpose of this study was to assess the effects of a 5-day MT implant pretreatment on estrus synchronization and reproductive performance in sheep during seasonal anestrus. [...] Read more.
Seasonal reproduction in sheep reduces reproductive efficiency. Melatonin (MT) plays a crucial role in reproductive processes. The purpose of this study was to assess the effects of a 5-day MT implant pretreatment on estrus synchronization and reproductive performance in sheep during seasonal anestrus. A total of 40 multiparous Mongolian sheep were selected and randomly divided into two groups. In the MT group (n = 20), the ewes received an MT implant for 5 days, and then, they were given a progesterone (P4)-containing vaginal sponge for 14 days with equine chorionic gonadotropin (eCG) administered (330 I.U. per ewe; I.M.) at sponge removal. Control (CON) ewes (n = 20) were similarly treated but did not receive MT implants. The results demonstrated that MT implantation significantly improved serum levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px), increased post-ovulatory luteal diameter and serum P4 levels, and reduced ovarian apoptosis. Compared with the CON group, the MT group showed significantly higher pregnancy (68.23% vs. 50.59%) and lambing rates (63.53% vs. 47.06%; number of lambed ewes/number of total ewes) following cervical-timed artificial insemination. Ovarian transcriptome analysis revealed 522 differentially expressed genes (DEGs) in the MT group compared with the CON group, including 355 upregulated and 167 downregulated DEGs. In addition, MT significantly enhanced proliferation and inhibited apoptosis in cultured granulosa cells (GCs) and luteal cells (LCs) in vitro. Moreover, it enhanced the antioxidant capacity of GCs and LCs probably by activating the NRF2 signaling pathway as well as stimulating steroid hormone synthesis. In conclusion, MT implantation 5 days before applying the conventional P4-eCG protocol enhances ovine reproductive outcomes during seasonal anestrus. MT implantation has a beneficial role on the growth and function of ovarian cells. These findings offer novel evidence supporting the functional role of MT in mammalian reproduction, and would be informative for optimizing estrus synchronization in sheep. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Figure 1

19 pages, 13952 KiB  
Article
Antioxidant and Anti-Inflammatory Effects of Crude Gastrodia elata Polysaccharides in UVB-Induced Acute Skin Damage
by Jiajia Liu, Xiaoqi Yang, Xing Huang, Yuan Luo, Qilin Zhang, Feng Wang, Yicen Lin and Lianbing Lin
Antioxidants 2025, 14(7), 894; https://doi.org/10.3390/antiox14070894 - 21 Jul 2025
Viewed by 403
Abstract
Ultraviolet B (UVB) irradiation drives skin photodamage, prompting exploration of natural therapeutics. This study investigated the reparative effects and mechanisms of crude Gastrodia elata polysaccharides (GP) on UVB-induced acute skin damage. GP was extracted from fresh G. elata via water extraction and alcohol [...] Read more.
Ultraviolet B (UVB) irradiation drives skin photodamage, prompting exploration of natural therapeutics. This study investigated the reparative effects and mechanisms of crude Gastrodia elata polysaccharides (GP) on UVB-induced acute skin damage. GP was extracted from fresh G. elata via water extraction and alcohol precipitation. It is a homogeneous polysaccharide with a weight-average molecular weight of 808.863 kDa, comprising Ara, Glc, Fru, and GalA. Histopathological analysis revealed that topical application of GP on the dorsal skin of mice effectively restored normal physiological structure, suppressing epidermal hyperplasia and collagen degradation. Biochemical assays showed that GP significantly reduced the activities of MPO and MDA following UVB exposure while restoring the enzymatic activities of SOD and GSH, thereby mitigating oxidative stress. Moreover, GP treatment markedly upregulated the anti-inflammatory cytokines TGF-β and IL-10 and downregulated the pro-inflammatory mediators IL-6, IL-1β, and TNF-α, suggesting robust anti-inflammatory effects. Transcriptomics revealed dual-phase mechanisms: Early repair (day 5) involved GP-mediated suppression of hyper inflammation and accelerated necrotic tissue clearance via pathway network modulation. Late phase (day 18) featured enhanced anti-inflammatory, antioxidant, and tissue regeneration processes through energy-sufficient, low-inflammatory pathway networks. Through a synergistic response involving antioxidation, anti-inflammation, promotion of collagen synthesis, and acceleration of skin barrier repair, GP achieves comprehensive repair of UVB-induced acute skin damage. Our findings not only establish GP as a potent natural alternative to synthetic photoprotective agents but also reveal novel pathway network interactions governing polysaccharide-mediated skin regeneration. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

18 pages, 2355 KiB  
Article
Preventive Gastroprotective Effect of a Functional Food Based on Quinoa (Chenopodium quinoa Willd.) and Quercetin in a Murine Model of Ibuprofen-Induced Gastric Damage
by Maribel Valenzuela-González, José Luis Cárdenas-López, Armando Burgos-Hernández, Norma Julieta Salazar-López, Manuel Viuda-Martos, Mónica A. Villegas-Ochoa, Gustavo Martínez-Coronilla, J. Abraham Domínguez-Avila, Shela Gorinstein, Gustavo A. González-Aguilar and Rosario Maribel Robles-Sánchez
Antioxidants 2025, 14(7), 893; https://doi.org/10.3390/antiox14070893 - 21 Jul 2025
Viewed by 349
Abstract
Nonsteroidal anti-inflammatory drug-based therapies are the cause of 20–30% cases of gastric lesions in chronic users worldwide. Co-medication with omeprazole (OMP) is the most commonly used option to prevent these lesions, although this carries risks of its own; thus, alternatives are being explored, [...] Read more.
Nonsteroidal anti-inflammatory drug-based therapies are the cause of 20–30% cases of gastric lesions in chronic users worldwide. Co-medication with omeprazole (OMP) is the most commonly used option to prevent these lesions, although this carries risks of its own; thus, alternatives are being explored, such as dietary antioxidant therapies. The objective of this study was to evaluate the gastroprotective activity of quinoa (Chenopodium quinoa Willd.) on ibuprofen (IBP)-induced gastric ulcers in a rat model. Quinoa cookies were formulated with heat-treated quinoa using microwave radiation. The intestinal bioaccessibility of phenols and flavonoids, and the antioxidant activity of microwaved quinoa cookies (MQCs) were notably higher than quinoa cookies without thermal treatment (RQCs): 132% TPC, 52% TFC, 1564% TEAC vs. 67% TPC, 24% TFC, and 958% TEAC, respectively. Basal diets were supplemented with MQCs (20%) and quercetin (Q, 0.20%) as a reference flavonoid and administered for 30 days. Gastric lesions were induced by intragastric IBP doses, with OMP treatment as a positive control. Gastric damage index (macroscopic study), histological score (microscopic study), and plasma antioxidant enzyme activity (SOD and CAT) were evaluated. Macroscopic results showed that the addition of MQCs, Q, and OMP decreased the gastric damage index (GDI) by 50%, 40%, and 3%, respectively, as compared to IBP (GDI 100%). Histological analyses showed neutrophil infiltration and congested blood vessels in IBP-treated tissues; in contrast, the experimental diet groups showed lower infiltration for MQC > OMP > Q, respectively. A significant increase in SOD and CAT enzyme activity was observed in the MQC and Q groups as compared to the IBP group. We conclude that a reduction in the GDI and histological score was observed in IBP-induced murine models fed diets containing 20% MQC and 0.20% Q, demonstrating a preventive gastroprotective effect. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

21 pages, 2702 KiB  
Article
Piperine Induces Apoptosis and Cell Cycle Arrest via Multiple Oxidative Stress Mechanisms and Regulation of PI3K/Akt and MAPK Signaling in Colorectal Cancer Cells
by Wan-Ling Chang, Jyun-Yu Peng, Chain-Lang Hong, Pei-Ching Li, Soi Moi Chye, Fung-Jou Lu, Huei-Yu Lin and Ching-Hsein Chen
Antioxidants 2025, 14(7), 892; https://doi.org/10.3390/antiox14070892 - 21 Jul 2025
Viewed by 400
Abstract
Piperine, a phytochemical alkaloid, exhibits notable anticancer properties in several cancer cell types. In this study, we investigated the mechanisms by which piperine induces cell death and apoptosis in colorectal cancer (CRC) cells, focusing on oxidative stress and key signaling pathways. Using MTT [...] Read more.
Piperine, a phytochemical alkaloid, exhibits notable anticancer properties in several cancer cell types. In this study, we investigated the mechanisms by which piperine induces cell death and apoptosis in colorectal cancer (CRC) cells, focusing on oxidative stress and key signaling pathways. Using MTT assay, flow cytometry, gene overexpression, and Western blot analysis, we observed that piperine significantly reduced cell viability, triggered G1 phase cell cycle arrest, and promoted apoptosis in DLD-1 cells. In addition, piperine effectively suppressed cell viability and induced apoptosis in other CRC cell lines, including SW480, HT-29, and Caco-2 cells. These effects were associated with increased intracellular reactive oxygen species (ROS) generation, mediated by the regulation of mitochondrial complex III, NADPH oxidase, and xanthine oxidase. Additionally, piperine modulated signaling pathways by inhibiting phosphoinositide 3-kinase (PI3K)/Akt, activating p38 and p-extracellular signal-regulated kinase (ERK). Pretreatment with antimycin A, apocynin, allopurinol, and PD98059, and the overexpression of p-Akt significantly recovered cell viability and reduced apoptosis, confirming the involvement of these pathways. This study is the first to demonstrate piperine induces apoptosis in CRC cells through a multifaceted oxidative stress mechanism and by critically modulating PI3K/Akt and ERK signaling pathways. Full article
Show Figures

Figure 1

16 pages, 4128 KiB  
Article
Pemafibrate Ameliorates Steatotic Liver Disease Regardless of Endothelial Dysfunction in Mice
by Tomoyo Hara, Hiroki Yamagami, Ryoko Uemoto, Akiko Sekine, Yousuke Kaneko, Kohsuke Miyataka, Taiki Hori, Mayuko Ichimura-Shimizu, Masafumi Funamoto, Takeshi Harada, Tomoyuki Yuasa, Shingen Nakamura, Itsuro Endo, Ken-ichi Matsuoka, Yutaka Kawano, Koichi Tsuneyama, Yasumasa Ikeda and Ken-ichi Aihara
Antioxidants 2025, 14(7), 891; https://doi.org/10.3390/antiox14070891 - 20 Jul 2025
Viewed by 453
Abstract
Endothelial dysfunction contributes to the progression of metabolic-dysfunction-associated steatotic liver disease (MASLD). Pemafibrate has been shown to ameliorate MASLD in basic and clinical studies, but it is unclear whether it is also effective in the status of endothelial dysfunction. An MASLD animal model [...] Read more.
Endothelial dysfunction contributes to the progression of metabolic-dysfunction-associated steatotic liver disease (MASLD). Pemafibrate has been shown to ameliorate MASLD in basic and clinical studies, but it is unclear whether it is also effective in the status of endothelial dysfunction. An MASLD animal model was induced in male wild-type (WT) and endothelial nitric oxide synthase (eNOS)-deficient (eNOSKO) mice by feeding them a high-fat/cholesterol/cholate diet, and they were administered either a vehicle or pemafibrate at 0.17 mg/kg/day for 10 weeks. Although pemafibrate treatment did not change plasma lipid profiles in either WT or eNOSKO mice, pemafibrate reduced plasma AST levels in both WT and eNOSKO mice compared to the levels in the vehicle-treated mice. Histopathological analysis of the liver showed that MASLD was improved in the pemafibrate-treated groups in both WT and eNOSKO mice. Compared to vehicle treatment, pemafibrate treatment significantly reduced the expression levels of hepatic NADPH oxidase subunit genes, M1 macrophages, inflammatory-cytokine-related genes and profibrotic genes in both WT and eNOSKO mice, along with reduction in hepatic oxidative stress assessed by dihydroethidium staining and 4-hydroxynonenal protein levels. Thus, pemafibrate ameliorated MASLD with reduction in oxidative stress and inflammation even in vascular endothelial dysfunction. Full article
(This article belongs to the Special Issue Metabolic Dysfunction and Oxidative Stress)
Show Figures

Figure 1

37 pages, 1761 KiB  
Review
Iron–Immune Crosstalk at the Maternal–Fetal Interface: Emerging Mechanisms in the Pathogenesis of Preeclampsia
by Jieyan Zhong, Ruhe Jiang, Nan Liu, Qingqing Cai, Qi Cao, Yan Du and Hongbo Zhao
Antioxidants 2025, 14(7), 890; https://doi.org/10.3390/antiox14070890 - 19 Jul 2025
Viewed by 525
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron [...] Read more.
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron metabolism and its crosstalk with immune responses, particularly macrophage-mediated inflammation, in driving PE development. This review systematically explores the dynamic changes in iron metabolism during pregnancy, including increased maternal iron demand, placental iron transport mechanisms, and the molecular regulation of placental iron homeostasis. We further explore the contribution of ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, to trophoblast dysfunction and pregnancy-related diseases, including PE. Macrophages, pivotal immune regulators at the maternal–fetal interface, exhibit distinct polarization states that shape tissue remodeling and immune tolerance. We outline their origin, distribution, and polarization in pregnancy, and emphasize their aberrant phenotype and function in PE. The bidirectional crosstalk between iron and macrophages is also dissected: iron shapes macrophage polarization and function, while macrophages reciprocally modulate iron homeostasis. Notably, excessive reactive oxygen species (ROS) and pro-inflammatory cytokines secreted by M1-polarized macrophages may exacerbate trophoblast ferroptosis, amplifying placental injury. Within the context of PE, we delineate how iron overload and macrophage dysfunction synergize to potentiate placental inflammation and oxidative stress. Key iron-responsive immune pathways, such as the HO-1/hepcidin axis and IL-6/TNF-α signaling, are discussed in relation to disease severity. Finally, we highlight promising therapeutic strategies targeting the iron–immune axis, encompassing three key modalities—iron chelation therapy, precision immunomodulation, and metabolic reprogramming interventions—which may offer novel avenues for PE prevention and treatment. Full article
Show Figures

Figure 1

25 pages, 1330 KiB  
Review
Cardioprotection Reloaded: Reflections on 40 Years of Research
by Pasquale Pagliaro, Giuseppe Alloatti and Claudia Penna
Antioxidants 2025, 14(7), 889; https://doi.org/10.3390/antiox14070889 - 18 Jul 2025
Viewed by 631
Abstract
Over the past four decades, cardioprotective research has revealed an extraordinary complexity of cellular and molecular mechanisms capable of mitigating ischemia/reperfusion injury (IRI). Among these, ischemic conditioning has emerged as one of the most influential discoveries: brief episodes of ischemia followed by reperfusion [...] Read more.
Over the past four decades, cardioprotective research has revealed an extraordinary complexity of cellular and molecular mechanisms capable of mitigating ischemia/reperfusion injury (IRI). Among these, ischemic conditioning has emerged as one of the most influential discoveries: brief episodes of ischemia followed by reperfusion activate protective programs that reduce myocardial damage. These effects can be elicited locally (pre- or postconditioning) or remotely (remote conditioning), acting mainly through paracrine signaling and mitochondria-linked kinase pathways, with both early and delayed windows of protection. We have contributed to clarifying the roles of mitochondria, oxidative stress, prosurvival kinases, connexins, extracellular vesicles, and sterile inflammation, particularly via activation of the NLRP3 inflammasome. Despite robust preclinical evidence, clinical translation of these approaches has remained disappointing. The challenges largely stem from experimental models that poorly reflect real-world clinical settings—such as advanced age, comorbidities, and multidrug therapy—as well as the reliance on surrogate endpoints that do not reliably predict clinical outcomes. Nevertheless, interest in multi-target protective strategies remains strong. New lines of investigation are focusing on emerging mediators—such as gasotransmitters, extracellular vesicles, and endogenous peptides—as well as targeted modulation of inflammatory responses. Future perspectives point toward personalized cardioprotection tailored to patient metabolic and immune profiles, with special attention to high-risk populations in whom IRI continues to represent a major clinical challenge. Full article
Show Figures

Figure 1

12 pages, 1174 KiB  
Article
The Influence of Diabetes Mellitus and Kidney Dysfunction on Oxidative Stress, a Reflection of the Multisystem Interactions in Aortic Stenosis
by Laura Mourino-Alvarez, Inés Perales-Sánchez, Germán Hernández-Fernández, Gabriel Blanco-López, Emilio Blanco-López, Rocío Eiros, Cristian Herrera-Flores, Miryam González-Cebrian, Teresa Tejerina, Jesús Piqueras-Flores, Pedro Luis Sánchez, Luis F. López-Almodóvar, Luis R. Padial and Maria G. Barderas
Antioxidants 2025, 14(7), 888; https://doi.org/10.3390/antiox14070888 - 18 Jul 2025
Viewed by 305
Abstract
Progression of aortic stenosis (AS) is aggravated by type 2 Diabetes Mellitus (T2DM) and kidney dysfunction (KD). Oxidative stress is one of the main mechanisms that triggers AS and is also disturbed among subjects with T2DM and KD. Consequently, we studied the redox [...] Read more.
Progression of aortic stenosis (AS) is aggravated by type 2 Diabetes Mellitus (T2DM) and kidney dysfunction (KD). Oxidative stress is one of the main mechanisms that triggers AS and is also disturbed among subjects with T2DM and KD. Consequently, we studied the redox homeostasis in four groups of patients, also classifying each patient based on their kidney function: control subjects, T2DM, AS, and AS+T2DM. Free reduced thiols in plasma were analyzed using a colorimetric assay, and the redox state of human serum albumin (HSA) was assessed by immunodetection and PEG-PCMal labeling. Lower levels of thiols were evident in patients with AS and AS+T2DM, while reduced and mildly oxidized HSA was more abundant in T2DM and AS+T2DM patients, reflecting less protection against oxidation. Moreover, the thiol levels decreased as KD increased in patients with AS and AS+T2DM. Differences also exist in reduced and mildly oxidized HSA between patients with normal and severely impaired kidney function, whereas AS patients with severe KD had more strongly oxidized HSA. Our results confirm an imbalance in oxidative stress associated with AS that is aggravated by the coexistence of T2DM and KD. Moreover, T2DM treatment might mitigate this dysfunction, opening the door to new therapeutic approaches for these patients. Full article
Show Figures

Figure 1

20 pages, 2314 KiB  
Article
Effects of 2-Hydroxypropyl-β-Cyclodextrin on the Antioxidant Efficiency of Some Gallic Acid Derivatives in Soybean Oil-in-Water Emulsions
by Tamara Martínez-Senra, Sonia Losada-Barreiro and Carlos Bravo-Díaz
Antioxidants 2025, 14(7), 887; https://doi.org/10.3390/antiox14070887 - 18 Jul 2025
Viewed by 282
Abstract
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for [...] Read more.
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for the formation of host–guest complexes, modifying their physicochemical properties and their location in multiphasic systems. Here, we investigated the effects of 2-hydroxypropyl-β-cyclodextrin (HPCD) on the efficiency of a series of gallic acid derivatives (propyl (PG), butyl (BG), octyl (OG), and lauryl (LG) gallates) in inhibiting the oxidation of soybean oil-in-water emulsions. For this purpose, we investigated the effects of HPCD on both the kinetics of lipid oxidation and the distribution of antioxidants in the same intact emulsions. The results show that in an aqueous solution, the antioxidants form 1:1 inclusion complexes with HPCD, with inclusion constants ranging from 383 M−1 (PG) to 1946 M−1 (OG). The results also show that the addition of HPCD to emulsions containing antioxidants does not lead to significant changes in their antioxidant effectiveness, with their efficiency being similar to that when no HPCD molecules are present. The results are interpreted in terms of the blocking effect exerted by the Tween 20 molecules, which act as effective guest competitors capable of removing the antioxidants from the HPCD cavity. The Tween 20 surfactant molecules need to be employed to stabilize the emulsions kinetically. This blocking effect, as a primary consequence, indicates that the interfacial concentration of the antioxidants, which is the region where the inhibition reaction takes place, remains constant; thus, their efficiency is not altered. Full article
(This article belongs to the Special Issue Antioxidants for the Oxidative Stabilisation of Food Lipids)
Show Figures

Figure 1

21 pages, 3223 KiB  
Article
Roles of 670 nm Photobiomodulation on Rat Anterior Ischemic Optic Neuropathy: Enhancing RGC Survival, Mitochondrial Function, and Anti-Inflammatory Response
by Tu-Wen Chen, Yao-Tseng Wen, Pei-Kang Liu, Monir Hossen and Rong-Kung Tsai
Antioxidants 2025, 14(7), 886; https://doi.org/10.3390/antiox14070886 - 18 Jul 2025
Viewed by 384
Abstract
Non-arteritic anterior ischemic optic neuropathy (NAION) leads to retinal ganglion cell (RGC) loss and visual impairment, with no effective treatment. This study investigated the neuroprotective effect of 670 nm photobiomodulation (PBM) in a rat NAION model (rNAION). Wistar rats received 670 nm light [...] Read more.
Non-arteritic anterior ischemic optic neuropathy (NAION) leads to retinal ganglion cell (RGC) loss and visual impairment, with no effective treatment. This study investigated the neuroprotective effect of 670 nm photobiomodulation (PBM) in a rat NAION model (rNAION). Wistar rats received 670 nm light exposure (10-min, 3000 lux) twice daily for 3 days after rAION injury, followed by 4 days of light treatment once a day. This study evaluated the neuroprotective effects of 670 nm light in an rNAION model. Rats received 670 nm light therapy (10 min/day, 3000 lux) for seven days post-injury. Treatment improved visual function (a 3.36-fold increase in FVEP amplitude), enhanced RGC survival (1.55-fold), and reduced apoptosis (a 15.86-fold reduction in TUNEL-positive cells). Inflammatory cytokines and ED1+ macrophage infiltration were significantly decreased. Oxidative stress was attenuated, with increased ATP, Nrf2, and PGC-1α levels and improved mitochondrial dynamics. These findings support 670 nm light as a potential therapy for NAION. Full article
Show Figures

Figure 1

20 pages, 1903 KiB  
Article
Study on the Regulatory Effect of Water Extract of Artemisia annua L. on Antioxidant Function of Mutton Sheep via the Keap1/Nrf2 Signaling Pathway
by Gen Gang, Ruiheng Gao, Ruizhen Li, Xiao Jin, Yuanyuan Xing, Sumei Yan, Yuanqing Xu and Binlin Shi
Antioxidants 2025, 14(7), 885; https://doi.org/10.3390/antiox14070885 - 18 Jul 2025
Viewed by 307
Abstract
This study was conducted through in vivo and in vitro experiments and aimed to reveal the regulatory effect of water extract of Artemisia annua L. (WEAA) on the antioxidant function of mutton sheep and the underlying mechanism. In the in vivo experiment, 32 [...] Read more.
This study was conducted through in vivo and in vitro experiments and aimed to reveal the regulatory effect of water extract of Artemisia annua L. (WEAA) on the antioxidant function of mutton sheep and the underlying mechanism. In the in vivo experiment, 32 Dorper × Han female sheep (3 months old; avg. body weight: 24 ± 0.09 kg) were allocated to four groups (eight lambs/group) and fed a diet containing 0, 500, 1000, and 1500 mg/kg WEAA, respectively. In the in vitro experiments, peripheral blood lymphocytes (PBLs) were cultured with different doses of WEAA (0, 25, 50, 100, 200, 400 µg/mL) to determine the optimal concentration, followed by a 2 × 2 factorial experiment with four treatment groups (six replicates per treatment group): the ML385(−)/WEAA(−) group, the ML385(−)/WEAA(+) group, the ML385(+)/WEAA(−) group, and the ML385(+)/WEAA(+) group. The results showed that WEAA supplementation dose-dependently increased serum, liver and spleen tissue total antioxidant capacity, glutathione peroxidase (GSH-Px), and catalase (CAT) activity while reducing malondialdehyde level (p < 0.05). Moreover, WEAA supplementation significantly upregulated the liver and spleen expression of nuclear factor erythroid 2-related factor 2, superoxide dismutase 2, GSH-Px, CAT and NAD(P)H quinone dehydrogenase 1 (p < 0.05) while significantly downregulating the kelch-like ECH associated protein 1 expression in a dose-dependent manner (p < 0.05), thereby activating the Keap1/Nrf2 pathway with the peak effect observed in the 1000 mg/kg WEAA group. Additionally, supplementation with 100 µg/mL of WEAA had significant antioxidation activity in the culture medium of PBLs. Its action mechanism involved the Keap1/Nrf2 pathway; specifically, WEAA exerted its antioxidant effect by upregulating the gene expression related to the Keap1/Nrf2 pathway. In conclusion, WEAA enhances sheep’s antioxidant capacity by up-regulating Keap1/Nrf2 pathway genes and boosting antioxidant enzyme activity. The results provided experimental support for the potential application of WEAA in intensive mutton sheep farming. Full article
Show Figures

Figure 1

17 pages, 3083 KiB  
Article
Antioxidant and Photoprotective Activities of Viola philippica Polyol Extracts
by Jiang Li, Jiancheng Ma, Ya Li, Lan Luo, Wenhuan Zhang, Yong Tian, Yuncai Tian, Yi Li, Zhongjuan Wang and Mingyi Wu
Antioxidants 2025, 14(7), 884; https://doi.org/10.3390/antiox14070884 - 18 Jul 2025
Viewed by 336
Abstract
Viola philippica (VP), a traditional Chinese medicinal herb widely used for its antibacterial and antioxidant properties, has recently garnered attention for its potential in skin photoprotection. VP was extracted using glycerol (GLY), 1,3-propanediol (PDO), and 1,3-butanediol (BDO) at concentrations of 30%, 60%, and [...] Read more.
Viola philippica (VP), a traditional Chinese medicinal herb widely used for its antibacterial and antioxidant properties, has recently garnered attention for its potential in skin photoprotection. VP was extracted using glycerol (GLY), 1,3-propanediol (PDO), and 1,3-butanediol (BDO) at concentrations of 30%, 60%, and 90% (w/w) to evaluate its antioxidant and UV-protective properties. The total phenolic content (TPC) and total flavonoid content (TFC) of the nine extracts ranged from 34.73 to 71.45 mg GAEs/g and from 26.68 to 46.68 mg REs/g, respectively, with the highest TPC observed in 90% PDO and the highest TFC in 60% GLY. Antioxidant assays revealed IC50 values of 0.49–1.26 mg/mL (DPPH), 0.10–0.19 mg/mL (ABTS), and 1.58–460.95 mg/mL (OH). Notably, the 60% GLY, 30% PDO, and 90% PDO extracts demonstrated notable protective effects against UVB-induced cell damage, reducing intracellular ROS levels and preventing DNA damage. RNA-seq analysis revealed that the protective effects were associated with the modulation of key molecular pathways, including neutrophil extracellular trap formation and TNF, IL-17, and HIF-1 signaling. These findings suggest that Viola philippica polyol extracts, particularly those using 60% GLY, 30% PDO, and 90% PDO, have promising potential for skin photoprotection and could be utilized as natural antioxidants in cosmetic formulations. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

19 pages, 5092 KiB  
Article
Salvianolic Acid B Alleviates LPS-Induced Spleen Injury by Remodeling Redox Status and Suppressing NLRP3 Inflammasome
by Hao Wang, Xiao Dou, Ruixue Wang, Yuxin Jiang, Jinsong Zhang, Xianjuan Qiao, Yingjun Liu, Hao Zhang, Chenhuan Lai, Yanan Chen and Qiang Yong
Antioxidants 2025, 14(7), 883; https://doi.org/10.3390/antiox14070883 - 18 Jul 2025
Viewed by 320
Abstract
Background: The spleen is the primary reservoir of immune cells in mammals. Diverse stimuli can disrupt spleen homeostasis, resulting in spleen injury and immune dysfunction. This study employed a porcine model to assess the therapeutic potential of salvianolic acid B (SAB) against [...] Read more.
Background: The spleen is the primary reservoir of immune cells in mammals. Diverse stimuli can disrupt spleen homeostasis, resulting in spleen injury and immune dysfunction. This study employed a porcine model to assess the therapeutic potential of salvianolic acid B (SAB) against lipopolysaccharide (LPS)-induced splenic injury. Methods: Seventy-two male weanling piglets were randomly assigned to one of four groups: CON-SS, SAB-SS, CON-LPS, and SAB-LPS. The CON-SS and CON-LPS groups received a basal diet, while SAB-SS and SAB-LPS groups received a SAB-supplemented diet. After 14 d, the CON-SS and SAB-SS groups received an intraperitoneal injection of sterile saline, whereas the CON-LPS and SAB-LPS groups were injected with LPS. Blood and spleen tissues were harvested 6 h post-injection for biochemical analysis. Results: LPS induced systemic immune disorders in piglets, as evidenced by increased immune organ indices and decreased white blood cell, lymphocyte, and basophil counts in blood (p < 0.05). LPS also caused histoarchitectural disruption, cell apoptosis, oxidative stress, and inflammation in the spleen (p < 0.05). Conversely, SAB improved splenic histopathology and reduced splenic apoptosis and pro-inflammatory mediators in piglets (p < 0.05). SAB significantly mitigated peroxidation accumulation by facilitating the nuclear translocation of nuclear factor erythroid 2-related factor 2 and strengthening the antioxidant system, and inhibited nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome activation (p < 0.05). Mechanistically, SAB attenuated LPS-induced splenic oxidative stress and NLRP3 inflammasome activation by restoring mitochondrial structure and function (p < 0.05). Conclusions: This research unveils that SAB alleviates LPS-induced spleen disorder by reinforcing antioxidant system and suppressing NLRP3 inflammasome, highlighting SAB’s potential as a prospective therapeutic agent for spleen disorders. Full article
(This article belongs to the Special Issue The OxInflammation Process and Tissue Repair)
Show Figures

Figure 1

25 pages, 6270 KiB  
Article
Ethanolic Extract of Glycine Semen Preparata Prevents Oxidative Stress-Induced Muscle Damage in C2C12 Cells and Alleviates Dexamethasone-Induced Muscle Atrophy and Weakness in Experimental Mice
by Aeyung Kim, Jinhee Kim, Chang-Seob Seo, Yu Ri Kim, Kwang Hoon Song and No Soo Kim
Antioxidants 2025, 14(7), 882; https://doi.org/10.3390/antiox14070882 - 18 Jul 2025
Viewed by 383
Abstract
Skeletal muscle atrophy is a debilitating condition characterized by the loss of muscle mass and function. It is commonly associated with aging, chronic diseases, disuse, and prolonged glucocorticoid therapy. Oxidative stress and catabolic signaling pathways play significant roles in the progression of muscle [...] Read more.
Skeletal muscle atrophy is a debilitating condition characterized by the loss of muscle mass and function. It is commonly associated with aging, chronic diseases, disuse, and prolonged glucocorticoid therapy. Oxidative stress and catabolic signaling pathways play significant roles in the progression of muscle degradation. Despite its clinical relevance, few effective therapeutic options are currently available. In this study, we investigated the protective effects of an ethanolic extract of Glycine Semen Preparata (GSP), i.e., fermented black soybeans, using in vitro and in vivo models of dexamethasone (Dexa)-induced muscle atrophy. In C2C12 myoblasts and myotubes, GSP significantly attenuated both oxidative stress-induced and Dexa-induced damages by reducing reactive oxygen species levels and by suppressing the expression of the muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1. Moreover, GSP upregulated key genes involved in muscle regeneration (Myod1 and Myog) and mitochondrial biogenesis (PGC1α), indicating its dual role in muscle protection and regeneration. Oral administration of GSP to mice with Dexa-induced muscle atrophy resulted in improved muscle fiber integrity, increased proportion of large cross-sectional area fibers, and partial recovery of motor function. Isoflavone aglycones, such as daidzein and genistein, were identified as active compounds that contribute to the beneficial effects of GSP through antioxidant activity and gene promoter enhancement. Thus, GSP is a promising nutraceutical that prevents or mitigates muscle atrophy by targeting oxidative stress and promoting myogenesis and mitochondrial function. Further studies are warranted to standardize the bioactive components and explore their clinical applications. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

16 pages, 5315 KiB  
Article
Guarana, Selenium, and L-Carnitine Supplementation Improves the Oxidative Profile but Fails to Reduce Tissue Damage in Rats with Osteoarthritis
by Aline Zuanazzi Pasinato, José Eduardo Vargas, Julia Spanhol da Silva, Joana Grandó Moretto, Cibele Ferreira Teixeira, Verônica Farina Azzolin, Ivana Beatrice Mânica da Cruz, Camile da Rosa Trevisan, Emanuele Cristina Zub, Renato Puga, Verónica Inés Vargas, Grethel León-Mejía and Rômulo Pillon Barcelos
Antioxidants 2025, 14(7), 881; https://doi.org/10.3390/antiox14070881 - 18 Jul 2025
Viewed by 369
Abstract
Osteoarthritis (OA) is a progressive joint disease that is commonly managed with palliative drugs, many of which are associated with undesirable side effects. This study investigated the therapeutic potential of a novel supplementation with guarana, selenium, and L-carnitine (GSC) in a rat model [...] Read more.
Osteoarthritis (OA) is a progressive joint disease that is commonly managed with palliative drugs, many of which are associated with undesirable side effects. This study investigated the therapeutic potential of a novel supplementation with guarana, selenium, and L-carnitine (GSC) in a rat model of chemically induced OA. Forty male Wistar rats (8–9 weeks old) received intra-articular sodium monoiodoacetate (Mia) to induce OA, and were subsequently treated with GSC. Inflammatory and oxidative stress parameters were analyzed at the end of the experiment. GSC supplementation enhanced endogenous antioxidant defenses, suggesting systemic antioxidant activity. However, no histological improvement was observed. In silico analyses indicated that Mia-induced OA may involve a complex molecular environment that GSC, at the tested dose, failed to modulate at the site of injury. Despite the limited local effects, these findings support the systemic benefits of GSC and highlight the potential of natural compound-based strategies in OA management. Given the adverse effects of conventional pharmacotherapy, the development of alternative, naturally derived treatments remains a promising avenue for future research. Full article
(This article belongs to the Special Issue The OxInflammation Process and Tissue Repair)
Show Figures

Graphical abstract

23 pages, 2748 KiB  
Article
Relationships Between H2S and OT/OTR Systems in Preeclampsia
by Tamara Merz, Sarah Ecker, Nicole Denoix, Oscar McCook, Stefanie Kranz, Ulrich Wachter, Edit Rottler, Thomas Papadopoulos, Christoph Fusch, Cosima Brucker, Jakob Triebel, Thomas Bertsch, Peter Radermacher and Christiane Waller
Antioxidants 2025, 14(7), 880; https://doi.org/10.3390/antiox14070880 - 18 Jul 2025
Viewed by 257
Abstract
Pre-eclampsia (PE) is a hypertensive pregnancy complication. Oxidative stress is hypothesized to contribute to the pathophysiology of PE. Both the hydrogen sulfide (H2S) and oxytocin (OT) systems might play a role in the pathophysiology of PE, like their antioxidant and hypotensive [...] Read more.
Pre-eclampsia (PE) is a hypertensive pregnancy complication. Oxidative stress is hypothesized to contribute to the pathophysiology of PE. Both the hydrogen sulfide (H2S) and oxytocin (OT) systems might play a role in the pathophysiology of PE, like their antioxidant and hypotensive effects. Thus, the role of the interaction of the OT and H2S systems in the context of PE was further elucidated in the present clinical case–control study “NU-HOPE” (Nürnberg-Ulm: The role of H2S and Oxytocin Receptor in Pre-Eclampsia; ethical approval by the Landesärztekammer Bayern, file number 19033, 29 August 2019), comparing uncomplicated pregnancies, early onset PE (ePE, onset < 34 weeks gestational age) and late onset PE (lPE, onset > 34 weeks gestational age). Routine clinical data, serum H2S and homocysteine levels, and tissue protein expression, as well as nitrotyrosine formation, were determined. The main findings were (i) unchanged plasma sulfide levels, (ii) significantly elevated homocysteine levels in ePE, but not lPE, (iii) significantly elevated expression of H2S enzymes and OT receptor in the placenta in lPE, and (iv) significantly elevated nitrotyrosine formation in the lPE myometrium. Taken together, these findings suggest a role for the interaction of the endogenous H2S- and OT/OTR systems in the pathophysiology of pre-eclampsia, possibly linked to impaired antioxidant protection. Full article
Show Figures

Figure 1

25 pages, 4169 KiB  
Article
In Vitro Effects of Rumex confertus Extracts on Cell Viability and Molecular Pathways in MCF-7 Breast Cancer Cells
by Levent Gülüm, Emrah Güler, Fatma Lale Aktaş, Ayşe Büşranur Çelik, Hilal Yılmaz and Yusuf Tutar
Antioxidants 2025, 14(7), 879; https://doi.org/10.3390/antiox14070879 - 18 Jul 2025
Viewed by 447
Abstract
Rumex confertus (RC), a plant known for its traditional medicinal uses, has shown potential anticancer properties, particularly due to its rich phenolic content. Despite its promising bioactivity, its effects on breast cancer cells remain underexplored. Here, we investigated the cytotoxic effects of RC [...] Read more.
Rumex confertus (RC), a plant known for its traditional medicinal uses, has shown potential anticancer properties, particularly due to its rich phenolic content. Despite its promising bioactivity, its effects on breast cancer cells remain underexplored. Here, we investigated the cytotoxic effects of RC extracts on MCF-7 breast cancer cells, employing various solvents for extraction. This study revealed that the hexane extract significantly reduced the cell viability, with an IC50 of 9.40 µg/mL after 96 h. The gene expression analysis indicated a substantial modulation of transcriptional networks, including the upregulation of pluripotency-related genes and the downregulation of differentiation markers. The findings suggest that the RC extract may induce a shift towards a less differentiated, stem-like state in cancer cells, potentially enhancing malignancy resistance. This study underscores the potential of RC as a candidate for breast cancer treatment, and a further investigation into its therapeutic applications is suggested. Full article
(This article belongs to the Special Issue Anti-Cancer Potential of Plant-Based Antioxidants)
Show Figures

Figure 1

18 pages, 2792 KiB  
Article
Anti-Inflammatory Pathways Modulated by Microbial Polysaccharides from Euganean Thermal Muds in Zebrafish
by Micol Caichiolo, Raffaella Margherita Zampieri, Francesca Terrin, Annachiara Tesoriere, Fabrizio Caldara, Nicoletta La Rocca, Paolo Martini and Luisa Dalla Valle
Antioxidants 2025, 14(7), 878; https://doi.org/10.3390/antiox14070878 - 17 Jul 2025
Viewed by 430
Abstract
Thermal mud produced by spas of the Euganean Thermal District (Italy) has been used since ancient times for therapeutic purposes. Recently, the anti-inflammatory activity of microbial polysaccharides (M-PS), extracted from traditionally maturated muds, was demonstrated using the zebrafish model organism. However, the downstream [...] Read more.
Thermal mud produced by spas of the Euganean Thermal District (Italy) has been used since ancient times for therapeutic purposes. Recently, the anti-inflammatory activity of microbial polysaccharides (M-PS), extracted from traditionally maturated muds, was demonstrated using the zebrafish model organism. However, the downstream signalling pathways regulated by M-PS remain largely unknown. In this study, to investigate the underlying mechanisms of inflammation resolution, we performed a transcriptome analysis on zebrafish larvae inflamed with copper sulphate and treated with M-PS. Our findings revealed that M-PS treatment down-regulated the expression of key genes involved in several inflammatory pathways. Gene Set Enrichment Analysis identified eleven up-regulated pathways (e.g., TNF-α signalling via NFκB, IL6–JAK–STAT signalling, p53 pathway, apoptosis, and interferon response) with components reduced in number and expression level in M-PS-treated larvae compared to the inflamed ones. Additionally, seven down-regulated pathways were identified (e.g., transcription factors E2F, MYC, and the G2M checkpoint). DEG-pseudotime analysis further confirmed the association of these genes with the pathways identified by GSEA. These results provide valuable insights into the anti-inflammatory properties of M-PS and the therapeutic potential of Euganean thermal muds for inflammatory diseases. Full article
Show Figures

Figure 1

37 pages, 911 KiB  
Review
Expression of Free Radicals and Reactive Oxygen Species in Endometriosis: Current Knowledge and Its Implications
by Jeongmin Lee, Seung Geun Yeo, Jae Min Lee, Sung Soo Kim, Jin-Woo Lee, Namhyun Chung and Dong Choon Park
Antioxidants 2025, 14(7), 877; https://doi.org/10.3390/antiox14070877 - 17 Jul 2025
Viewed by 366
Abstract
This review explores the dual role of reactive oxygen species (ROS) and free radicals in the pathogenesis of endometriosis, aiming to deepen our understanding of these processes through a systematic literature review. To assess the induction and involvement of ROS in endometriosis, we [...] Read more.
This review explores the dual role of reactive oxygen species (ROS) and free radicals in the pathogenesis of endometriosis, aiming to deepen our understanding of these processes through a systematic literature review. To assess the induction and involvement of ROS in endometriosis, we conducted a comprehensive literature review using Cochrane Libraries, EMBASE, Google Scholar, PubMed, and SCOPUS databases. Of 30 qualifying papers ultimately reviewed, 28 reported a significant contribution of ROS to the pathogenesis of endometriosis, while two found no association. The presence of ROS in endometriosis is associated with infertility, irregular menstrual cycles, painful menstruation, and chronic pelvic discomfort. Among individual ROS types studied, hydrogen peroxide was most frequently investigated, followed by lipid peroxides and superoxide radicals. Notable polymorphisms associated with ROS in endometriosis include those for AT-rich interactive domain 1A (ARID1A) and quinone oxidoreductase 1 (NQO1) isoforms. Key enzymes for ROS scavenging and detoxification include superoxide dismutase, glutathione, and glutathione peroxidase. Effective inhibitors of ROS related to endometriosis are vitamins C and E, astaxanthin, fatty acid-binding protein 4, cerium oxide nanoparticles (nanoceria), osteopontin, sphingosine 1-phosphate, N-acetyl-L-cysteine, catalase, and a high-antioxidant diet. Elevated levels of ROS and free radicals are involved in the pathogenesis of endometriosis, suggesting that targeting these molecules could offer potential therapeutic strategies. Full article
Show Figures

Figure 1

15 pages, 1866 KiB  
Article
A High-Fat Diet Induces Oxidative Stress in OPA1+/− Mouse Cortices: A Critical Double Challenge
by Camille Champigny, Marlène Botella, Djamaa Atamena, Sébastien Bullich, Corentin Coustham, Bruno Guiard, Pascale Belenguer and Noélie Davezac
Antioxidants 2025, 14(7), 876; https://doi.org/10.3390/antiox14070876 - 17 Jul 2025
Viewed by 303
Abstract
A high-fat diet (HFD) has significant effects on health, leading to cardiovascular, metabolic, neurodegenerative, and psychiatric conditions and contributing to obesity and type 2 diabetes. Mitochondria, essential for energy production and oxidative metabolism, are adversely affected by a HFD, causing oxidative stress and [...] Read more.
A high-fat diet (HFD) has significant effects on health, leading to cardiovascular, metabolic, neurodegenerative, and psychiatric conditions and contributing to obesity and type 2 diabetes. Mitochondria, essential for energy production and oxidative metabolism, are adversely affected by a HFD, causing oxidative stress and impaired cellular function. Mutations in the OPA1 (OPtic Atrophy 1) gene, crucial for mitochondrial dynamics and functions, are responsible for dominant optic atrophy (DOA), a mitochondrial neurodegenerative disease associated with increased reactive oxygen species (ROS). The expressivity of DOA is highly variable, even within the same family. This suggests that both modifying genetics and environmental factors could influence the penetrance of the disease. We previously demonstrated that genetic background modulates DOA expressivity and now ask if this is also the case for external cues. We thus explore how OPA1 deficiency interacts with HFD-induced metabolic disturbances, hypothesizing that long-term HFD consumption impairs brain mitochondrial function and disrupts oxidative metabolism. OPA1+/− mice were thus subjected to a HFD for a period of 12 weeks, and ROS levels and the expression of antioxidant genes were evaluated by Western blot and spectrophotometry. Cortices from high-fat diet-fed OPA1+/− mice showed lower aconitase activity than those of their wild-type (WT) litter mates, indicative of an unbalanced increase in mitochondrial ROS. Accordingly, OPA1+/− mice present lower levels of the antioxidant enzyme superoxide dismutase 2 compared to WT mice. Therefore, this study (i) reveals the onset of oxidative stress in brain cortices from OPA1+/− mice challenged with a HFD, (ii) shows that diet is a modifying factor for DOA, and (iii) suggests that food control could be used to moderate the severity of the disease. Full article
(This article belongs to the Special Issue Redox Signaling in Brain Aging and Neurodegeneration)
Show Figures

Figure 1

29 pages, 922 KiB  
Review
Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols
by Verónica Gómez-Jiménez, Raquel Burggraaf-Sánchez de las Matas and Ángel Luis Ortega
Antioxidants 2025, 14(7), 875; https://doi.org/10.3390/antiox14070875 - 17 Jul 2025
Viewed by 582
Abstract
Diabetic retinopathy (DR), a leading cause of blindness in working-age adults, arises from chronic hyperglycemia-induced oxidative stress, inflammation, and vascular dysfunction. Current therapies such as laser photocoagulation, intravitreal anti-vascular endothelial growth factor (VEGF) agents, and steroids target advanced stages but fail to prevent [...] Read more.
Diabetic retinopathy (DR), a leading cause of blindness in working-age adults, arises from chronic hyperglycemia-induced oxidative stress, inflammation, and vascular dysfunction. Current therapies such as laser photocoagulation, intravitreal anti-vascular endothelial growth factor (VEGF) agents, and steroids target advanced stages but fail to prevent early neuronal and microvascular damage. Emerging evidence highlights oxidative stress as a key driver of DR pathogenesis, disrupting the blood-retinal barrier (BRB), promoting neurodegeneration and angiogenesis. Advances in imaging, particularly optical coherence tomography angiography (OCTA), enable earlier detection of neurodegeneration and microvascular changes, underscoring DR as a neurovascular disorder. Polyphenols, such as resveratrol, curcumin, and pterostilbene, exhibit multitarget antioxidant, anti-inflammatory, and anti-angiogenic effects, showing promise in preclinical and limited clinical studies. However, their low bioavailability limits therapeutic efficacy. Nanotechnology-based delivery systems enhance drug stability, tissue targeting, and sustained release, offering potential for early intervention. Future strategies should integrate antioxidant therapies and precision diagnostics to prevent early irreversible retinal damage in diabetic patients. Full article
Show Figures

Figure 1

16 pages, 6631 KiB  
Article
Green Tea Extract Containing Epigallocatechin-3-Gallate Facilitates Bone Formation and Mineralization by Alleviating Iron-Overload-Induced Oxidative Stress in Human Osteoblast-like (MG-63) Cells
by Honghong Xu, Orawan Khantamat, Woranontee Korsieporn, Narisara Paradee, Jin Li, Yanping Zhong, Somdet Srichairatanakool and Pimpisid Koonyosying
Antioxidants 2025, 14(7), 874; https://doi.org/10.3390/antiox14070874 - 17 Jul 2025
Viewed by 298
Abstract
Secondary iron overload exacerbates osteoporosis by elevating reactive oxygen species (ROS), which suppress osteoblast function and enhance osteoclast activity, disrupting bone remodeling. Reducing iron overload and oxidative stress may improve bone health. Epigallocatechin-3-gallate (EGCG), the main bioactive compound in green tea extract (GTE), [...] Read more.
Secondary iron overload exacerbates osteoporosis by elevating reactive oxygen species (ROS), which suppress osteoblast function and enhance osteoclast activity, disrupting bone remodeling. Reducing iron overload and oxidative stress may improve bone health. Epigallocatechin-3-gallate (EGCG), the main bioactive compound in green tea extract (GTE), is recognized for its antioxidant and iron-chelating properties. This study examined the effect of GTE on bone formation and mineralization in iron-overloaded human osteoblast-like MG-63 cells. An iron-overloaded model was established using ferric ammonium citrate (FAC), followed by treatment with GTE, deferiprone (DFP), or their combination. GTE significantly reduced intracellular iron, ROS levels, and lipid peroxidation while upregulating the osteogenic marker BGLAP, the anti-resorptive marker OPG, and osteogenic mineralization, indicating restored bone health. These results suggest that EGCG-containing GTE mitigates iron-induced oxidative stress and promotes osteogenesis, highlighting its potential as a natural therapeutic supplement for managing iron-overload-associated osteoporosis. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

19 pages, 733 KiB  
Article
Characterization, Antioxidant Capacity, and In Vitro Bioaccessibility of Ginger (Zingiber officinale Roscoe) in Different Pharmaceutical Formulations
by Lucía Plana, Javier Marhuenda, Raúl Arcusa, Ana María García-Muñoz, Pura Ballester, Begoña Cerdá, Desirée Victoria-Montesinos and Pilar Zafrilla
Antioxidants 2025, 14(7), 873; https://doi.org/10.3390/antiox14070873 - 17 Jul 2025
Viewed by 469
Abstract
Ginger (Zingiber officinale Roscoe) has been widely recognized for its antioxidant properties, primarily attributed to its phenolic compounds such as gingerols and shogaols. However, limited data exist regarding how different pharmaceutical forms influence the bioaccessibility and antioxidant efficacy of these compounds. [...] Read more.
Ginger (Zingiber officinale Roscoe) has been widely recognized for its antioxidant properties, primarily attributed to its phenolic compounds such as gingerols and shogaols. However, limited data exist regarding how different pharmaceutical forms influence the bioaccessibility and antioxidant efficacy of these compounds. This study aimed to evaluate the antioxidant capacity and bioaccessibility of ginger in different pharmaceutical forms—capsules (20 mg, 40 mg, and 80 mg), a pure powdered extract, and a liquid formulation—standardized to ≥6% gingerols. The phenolic profile of each formulation was characterized using HPLC-DAD (High-Performance Liquid Chromatography with Diode Array Detection), followed by the evaluation of antioxidant capacity through DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ORAC (Oxygen Radical Absorbance Capacity) assays, and the assessment of bioaccessibility via an in vitro digestion model. The results demonstrated that antioxidant activity was positively correlated with extract concentration and was highest in the liquid formulation (426.0 ± 0.05 µmol Trolox equivalents (TE) and 11,336.7 ± 0.20 µmol TE in the DPPH and ORAC assays, respectively). The bioaccessibility of 6-gingerol and 6-shogaol significantly increased in the liquid form, reaching 23.44% and 11.31%, respectively, compared to ≤4% in the pure extract. These findings highlight the influence of the formulation matrix on compound release and support the use of liquid preparations to enhance the functional efficacy of ginger-derived nutraceuticals. This standardized comparative approach, using formulations derived from the same extract, offers new insights into how the delivery matrix influences the functional performance of ginger compounds, providing guidance for the development of more effective nutraceutical strategies. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

20 pages, 3500 KiB  
Article
Adaptive Responses of Large Yellow Croaker Larimichthys crocea to Ocean Acidification: Integrative Analysis of Gill and Kidney Transcriptomics and Antioxidant Enzyme Activities
by Ting Ye, Xiaoyan Zhang, Feng Liu, Xiao Liang, Dandan Guo, Bao Lou and Zhigang Xie
Antioxidants 2025, 14(7), 872; https://doi.org/10.3390/antiox14070872 - 16 Jul 2025
Viewed by 377
Abstract
Anthropogenic acidification is a long-term challenge to marine ecosystems. Though coastal acidification is intensifying, the large yellow croaker (Larimichthys crocea) exhibits good adaptability to pH fluctuations, the underlying mechanisms of which remain poorly understood. This study investigated the morphology, antioxidant enzyme [...] Read more.
Anthropogenic acidification is a long-term challenge to marine ecosystems. Though coastal acidification is intensifying, the large yellow croaker (Larimichthys crocea) exhibits good adaptability to pH fluctuations, the underlying mechanisms of which remain poorly understood. This study investigated the morphology, antioxidant enzyme activity, and gene expression of L. crocea under varying acidification conditions (pH 8.1 (H group), 7.8 (M group), and 7.4 (L group)). Water pH fluctuations were also monitored to explore the physiological responses and potential adaptive molecular mechanisms of L. crocea under various acidified environments. The results indicated that the water pH decreased in the H group, significantly increased in the L group (p < 0.05), and remained stable in the M group during the experiment. The lowest MDA content and the highest antioxidant enzyme activities (CAT, SOD, GSH-Px) were observed in L. crocea at pH 7.8, suggesting pH 7.8 was optimal for L. crocea. Transcriptomic analysis revealed distinct gene expression patterns between the gills and kidneys under acidification stress. Differentially expressed genes (DEGs) in the gills were primarily observed between the M and L groups (62.3%), whereas in the kidneys, the majority of DEGs were observed between the M and H groups (43.2%). These findings suggested that the gills play a critical role in adapting to low pH in L. crocea, while the kidneys were more responsive to high pH. Enrichment analysis identified critical pathways, including vasopressin-regulated water reabsorption, mineral reabsorption, and aldosterone-regulated sodium reabsorption, which are associated with water and ion metabolism. These pathways play a pivotal role in the acid–base homeostasis and metabolism of L. crocea. These results provide insights into the adaptive mechanisms of L. crocea to acidified environments, with implications for aquaculture management and future ocean acidification adaptation. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

14 pages, 481 KiB  
Review
Coenzyme Q10 and Obesity: An Overview
by David Mantle, Sofia Kozhevnikova and Steen Larsen
Antioxidants 2025, 14(7), 871; https://doi.org/10.3390/antiox14070871 - 16 Jul 2025
Viewed by 918
Abstract
There is evidence for the involvement of mitochondrial dysfunction, oxidative stress, ferroptosis, and inflammation in the pathogenesis of obesity. This, in turn, indicates a novel potential therapeutic role for supplemental coenzyme Q10 (CoQ10) in the management of obesity, due to the role of [...] Read more.
There is evidence for the involvement of mitochondrial dysfunction, oxidative stress, ferroptosis, and inflammation in the pathogenesis of obesity. This, in turn, indicates a novel potential therapeutic role for supplemental coenzyme Q10 (CoQ10) in the management of obesity, due to the role of CoQ10 in promoting normal mitochondrial function, as an antioxidant, and as an anti-ferroptotic and anti-inflammatory agent. In the present article we have, therefore, reviewed the potential role of CoQ10 in the prevention and treatment of obesity. A potential role for supplementary CoQ10 (in combination with selenium) in preserving skeletal muscle mass in obese individuals undergoing weight loss procedures is also discussed. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

9 pages, 861 KiB  
Perspective
Mitigating Doxorubicin-Induced Skeletal Muscle Toxicity: A Review of Oxidative Stress Mechanisms and the Therapeutic Role of Exercise
by Quinten W. Pigg, Dillon R. Harris, Daniela Sayuri Inoue and Mariana Janini Gomes
Antioxidants 2025, 14(7), 870; https://doi.org/10.3390/antiox14070870 - 16 Jul 2025
Viewed by 394
Abstract
Doxorubicin (DOX) is a highly effective chemotherapy drug used in the treatment of many cancers, including solid tumors, hematological malignancies, and soft tissue sarcomas. Despite its potent antitumor effects, DOX is known to have toxic effects in non-tumorous tissues, such as skeletal muscle. [...] Read more.
Doxorubicin (DOX) is a highly effective chemotherapy drug used in the treatment of many cancers, including solid tumors, hematological malignancies, and soft tissue sarcomas. Despite its potent antitumor effects, DOX is known to have toxic effects in non-tumorous tissues, such as skeletal muscle. Potential mediators of DOX-induced skeletal muscle toxicity are reactive oxygen species (ROS). An overproduction of ROS can disrupt the balance between oxidants and antioxidants in a cell, leading to oxidative stress. Chronic oxidative stress has been shown to upregulate proteolysis, ultimately leading to muscle wasting. Exercise stands as a potent nonpharmacological therapy capable of attenuating muscle wasting by enhancing metabolic function and antioxidant defenses while suppressing harmful ROS production. This review focuses on the current understanding of the role of oxidative stress in DOX-induced skeletal muscle toxicity. In addition, we highlight the effects of various exercise types on oxidative stress and muscle remodeling during DOX chemotherapy. Full article
Show Figures

Figure 1

12 pages, 422 KiB  
Review
Inhaled and Systemic Steroids for Bronchopulmonary Dysplasia: Targeting Inflammation and Oxidative Stress
by Francesca Galletta, Alessandra Li Pomi, Sara Manti and Eloisa Gitto
Antioxidants 2025, 14(7), 869; https://doi.org/10.3390/antiox14070869 - 16 Jul 2025
Viewed by 305
Abstract
Bronchopulmonary dysplasia (BPD) remains a significant complication of preterm birth, characterized by impaired alveolar and vascular development, chronic lung inflammation, and long-term respiratory morbidity. Corticosteroids, both systemic and inhaled, have been widely investigated as potential therapeutic agents due to their anti-inflammatory properties and [...] Read more.
Bronchopulmonary dysplasia (BPD) remains a significant complication of preterm birth, characterized by impaired alveolar and vascular development, chronic lung inflammation, and long-term respiratory morbidity. Corticosteroids, both systemic and inhaled, have been widely investigated as potential therapeutic agents due to their anti-inflammatory properties and their emerging role in modulating oxidative stress. This narrative review explores the current evidence regarding the use of inhaled and systemic corticosteroids in the prevention and management of BPD, analyzing their efficacy, safety profiles, and long-term outcomes. While systemic corticosteroids, particularly dexamethasone, have demonstrated benefits in reducing ventilator dependence and lung inflammation, concerns regarding adverse neurodevelopmental effects have limited their routine use. Inhaled steroids have been proposed as a safer alternative, but their role in altering the disease trajectory remains controversial. A better understanding of the optimal timing, dosage, and patient selection is essential to maximize benefits while minimizing risks. Future research should focus on optimizing dosing strategies and identifying subgroups of preterm infants who may derive the greatest benefit from corticosteroid therapy. Full article
(This article belongs to the Special Issue Oxidative Stress in the Newborn)
Show Figures

Figure 1

16 pages, 1500 KiB  
Article
Nitric Oxide Does Not Improve Liver Mitochondrial Function 48 Hours After Cecal Ligation and Perforation in Experimental Sepsis
by Pierre Eyenga and Shey-Shing Sheu
Antioxidants 2025, 14(7), 868; https://doi.org/10.3390/antiox14070868 - 16 Jul 2025
Viewed by 232
Abstract
Nitric oxide (NO) has a dual effect on mitochondria. Incubating liver mitochondria with NO improves oxidative phosphorylation (OXPHOS) efficiency by decreasing state 4 respiration more than ATP synthesis and preventing mitochondrial permeability transition pore (mPTP) opening. We evaluated the effect of L-arginine (L-arg), [...] Read more.
Nitric oxide (NO) has a dual effect on mitochondria. Incubating liver mitochondria with NO improves oxidative phosphorylation (OXPHOS) efficiency by decreasing state 4 respiration more than ATP synthesis and preventing mitochondrial permeability transition pore (mPTP) opening. We evaluated the effect of L-arginine (L-arg), an NO donor, on isolated liver mitochondrial respiration and mPTP in sepsis. Male mice were subjected to cecal ligation and perforation (CLP) with saline resuscitation or sham. After 8, 24, and 48 h, with and without L-arg, we measured isolated liver mitochondrial respiration and cytochrome c oxidase (COX) activity using polarographic methods and calcium retention capacity (CRC) to assess the mPTP and NO metabolites via the Griess reaction. Mitochondrial NO synthase (mtNOS) was identified by Western blot. CLP decreased state 3 respiration at 24 and 48 h, decreased COX activity at 8, 24, and 48 h, and increased state 4 respiration and decreased the respiratory control ratio (RCR) and CRC at 48 h. L-arg increased NO levels at 8 h, decreased state 4 respiration more than state 3 respiration (−39% versus −12%) at 48 h, decreased the CRC in the CLP groups at 24 and 48 h, but did not improve RCR. Our data suggests that L-arg does not restore liver mitochondrial OXPHOS efficiency or prevent mPTP opening in the late or recovery phases of sepsis. Full article
(This article belongs to the Special Issue Oxidative Stress and Liver Disease)
Show Figures

Figure 1

19 pages, 1637 KiB  
Article
High-Tyrosol/Hydroxytyrosol Extra Virgin Olive Oil Enhances Antioxidant Activity in Elderly Post-Myocardial Infarction Patients
by Mojgan Morvaridzadeh, Mehdi Alami, Nada Zoubdane, Hawa Sidibé, Hicham Berrougui, Tamàs Fülöp, Michel Nguyen and Abdelouahed Khalil
Antioxidants 2025, 14(7), 867; https://doi.org/10.3390/antiox14070867 - 16 Jul 2025
Viewed by 371
Abstract
Cardiovascular disease (CVD), particularly atherosclerotic cardiovascular disease (ASCVD), is the leading cause of death worldwide, driven by factors like oxidative stress, inflammation, and lipid metabolism disorders. Although phenolic compounds such as Tyrosol (Tyr) and Hydroxytyrosol (HTyr) found in extra virgin olive oil (EVOO) [...] Read more.
Cardiovascular disease (CVD), particularly atherosclerotic cardiovascular disease (ASCVD), is the leading cause of death worldwide, driven by factors like oxidative stress, inflammation, and lipid metabolism disorders. Although phenolic compounds such as Tyrosol (Tyr) and Hydroxytyrosol (HTyr) found in extra virgin olive oil (EVOO) have shown promising antioxidant and anti-inflammatory effects, their specific roles in modulating oxidative stress biomarkers and high-density lipoprotein (HDL) functionality in elderly populations, especially in those with prior myocardial infarction, are not fully understood. This study aimed to investigate the effects of EVOO phenolic compounds on oxidative stress biomarkers and HDL functionality, and related metabolic outcomes in both healthy and post-myocardial infarction (post-MI) elderly individuals. This pilot randomized clinical trial study included healthy and post-MI participants aged 65–85 years. Participants in each group were randomly assigned to consume 25 mL per day of one of three types of olive oils: high phenolic (HTyr/Tyr) extra virgin olive oil (HP-EVOO), extra virgin olive oil (EVOO), or refined olive oil (ROO) for a period of 26 weeks. Blood samples were collected at baseline and post-intervention to assess key biomarkers. Plasma levels of (poly)phenols, malondialdehyde (MDA), total antioxidant capacity (FRAP), lecithin-cholesterol acyltransferase activity (LCAT), and serum paraoxonase-1 (PON-1) activity were measured. A total of 34 individuals completed the study (mean age: 74 years). Baseline characteristics, including sex, age, body mass index (BMI), weight, blood pressure, and inflammatory markers like C-reactive protein (CRP) levels, did not differ significantly between the two groups. A significant increase in both FRAP levels and PON-1 activity was observed in post-MI participants following HP-EVOO consumption compared to baseline (p = 0.014). No significant changes were observed in MDA levels, LCAT activity, or plasma (poly)phenols. These results indicate that HP-EVOO may enhance antioxidant capacity, particularly FRAP and PON-1 activity, in elderly post-MI individuals. The observed differences between groups suggest that underlying cardiometabolic status may influence the response to olive oil phenolic compounds. Further studies are needed to explore the long-term cardiovascular effects. Full article
Show Figures

Figure 1

17 pages, 3780 KiB  
Article
Selenomethionine Counteracts T-2 Toxin-Induced Liver Injury by Mitigating Oxidative Stress Damage Through the Enhancement of Antioxidant Enzymes
by Yan Wang, Mingxia Zhou, Suisui Gao, Pishun Li, Xiaofeng Zheng, Di Tu and Lingchen Yang
Antioxidants 2025, 14(7), 866; https://doi.org/10.3390/antiox14070866 - 15 Jul 2025
Viewed by 311
Abstract
T-2 toxin, a highly toxic feed contaminant, poses a significant health risk to both humans and animals, particularly targeting the liver. This study aimed to investigate the protective effects and underlying mechanisms of selenomethionine (SeMet) against T-2-induced liver injury in mice. We pretreated [...] Read more.
T-2 toxin, a highly toxic feed contaminant, poses a significant health risk to both humans and animals, particularly targeting the liver. This study aimed to investigate the protective effects and underlying mechanisms of selenomethionine (SeMet) against T-2-induced liver injury in mice. We pretreated mice with SeMet before exposing them to an acute liver injury model induced by T-2. By assessing indicators related to liver injury, oxidative stress, inflammatory response, and mitochondrial disorder, we found that SeMet mitigated T-2-induced liver damage. Specifically, SeMet upregulated the gene expression and activity of antioxidant enzymes like glutathione peroxidase 1 (GPX1), which consequently reduced reactive oxygen species (ROS), inflammatory cytokines levels, and normalized mitochondrial biogenesis. Conclusively, SeMet effectively alleviated T-2-induced mitochondrial overproduction, inflammatory responses, and oxidative stress damage in hepatocyte primarily by enhancing GPX1 and other antioxidant enzymes, thereby exerting a protective effect on the liver. This study provides theoretical and experimental support for further research and application of SeMet in the livestock industry. Full article
(This article belongs to the Special Issue Oxidative Stress in Hepatic Diseases)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop