Bioactive Compounds: Antioxidant, Antibacterial, Anti-inflammatory Modulation

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Natural and Synthetic Antioxidants".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 68399

Special Issue Editors


E-Mail Website
Guest Editor
Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile
Interests: natural products; bioactive compounds; secondary metabolites; phytochemistry; medicinal plants; bee products; antioxidants; hepatoprotection; bioaccessibility
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
Interests: bioactive compounds; organic synthesis; medicinal chemistry; neurodegeneration; anti-cancer compounds; nuclear magnetic resonance; natural products; antioxidants
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Bioactive compounds, including phenolic acids and flavonoids, are recognized as important natural antioxidants, as well as playing a key role in a wide variety of biological and/or pharmacological properties such as anti-inflammatory, antibacterial, anticancer, antiallergic, antiviral, antithrombotic, hepatoprotective, and signaling molecules, among others. These compounds are responsible for antioxidant capacity since they have a chemical structure that is particularly suitable for exerting this action because they act as free radical scavengers, neutralizing reactive oxygen species (ROS) and chelating metal ions. Moreover, the inflammation process is triggered by oxidative stress, as well as being involved in the antibacterial action of different bioactive compounds. Likewise, other bioactives (e.g., peptides, fatty acids, and selected carbohydrates) may exhibit antioxidant and/or anti-inflammatory properties. 

In this sense, we invite researchers to submit original articles or review articles on different aspects of the modulation of antioxidants, antibacterial, and/or anti-inflammatory properties by bioactive compounds present in natural matrices, obtained by semi-synthetic methods, or synthetically designed from compounds of natural origin.

Dr. Raquel Bridi
Dr. Christian Espinosa-Bustos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • antioxidants
  • inflammation
  • antibacterial
  • reactive oxygen species

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3351 KiB  
Article
Immunomodulatory Effects of Curcumin on CAR T-Cell Therapy
by Praopim Limsakul, Pemikar Srifa, Ziliang Huang, Linshan Zhu, Yiqian Wu and Krit Charupanit
Antioxidants 2025, 14(4), 454; https://doi.org/10.3390/antiox14040454 - 10 Apr 2025
Viewed by 747
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy has revolutionized the treatment of hematological malignancies, demonstrating high efficacy in targeting and eliminating cancer cells. However, its clinical application can be associated with the risk of acute adverse effects, including cytokine release syndrome (CRS), a severe [...] Read more.
Chimeric Antigen Receptor (CAR) T-cell therapy has revolutionized the treatment of hematological malignancies, demonstrating high efficacy in targeting and eliminating cancer cells. However, its clinical application can be associated with the risk of acute adverse effects, including cytokine release syndrome (CRS), a severe inflammatory response caused by excessive cytokine production. While anti-cytokine therapies are available to manage CRS, additional strategies are needed to optimize CAR T-cell efficacy with reduced toxicities. Curcumin, a bioactive polyphenol known for its anti-inflammatory and antioxidant properties, represents a promising adjunct for CAR T-cell therapy. In this study, we investigated the effects of curcumin on anti-CD19 CAR T-cells in vitro. Our results show that curcumin enhances the cytotoxic activity of CAR T-cells against Nalm-6, a B-cell acute lymphoblastic leukemia model, while reducing the production of pro-inflammatory cytokines, including IL-2 and IFN-γ. To explore its underlying mechanisms, network pharmacology and molecular docking analyses were performed, which revealed that curcumin interacts with key signaling pathways involved in T-cell activation and cytokine regulation. These findings support the potential of curcumin as a therapeutic adjunct to improve CAR T-cell efficacy while mitigating inflammatory toxicity. Full article
Show Figures

Figure 1

26 pages, 6815 KiB  
Article
Identifying Baicalein as a Key Bioactive Compound in XueBiJing Targeting KEAP1: Implications for Antioxidant Effects
by Ting-Syuan Lin, Xiao-Xuan Cai, Yi-Bing Wang, Jia-Tong Xu, Ji-Han Xiao, Hsi-Yuan Huang, Shang-Fu Li, Kun-Meng Liu, Ji-Hang Chen, Li-Ping Li, Jie Ni, Yi-Gang Chen, Zi-Hao Zhu, Jing Li, Yuan-Jia Hu, Hsien-Da Huang, Hua-Li Zuo and Yang-Chi-Dung Lin
Antioxidants 2025, 14(3), 248; https://doi.org/10.3390/antiox14030248 - 20 Feb 2025
Viewed by 801
Abstract
Background: XueBiJing injection (XBJ) is renowned for its multi-target pharmacological effects, including immunomodulatory, antithrombotic, and antioxidant activities, offering potential therapeutic benefits for patients with severe infections such as sepsis and Coronavirus disease 2019 (COVID-19). Despite its clinical effectiveness, the molecular targets and mechanisms [...] Read more.
Background: XueBiJing injection (XBJ) is renowned for its multi-target pharmacological effects, including immunomodulatory, antithrombotic, and antioxidant activities, offering potential therapeutic benefits for patients with severe infections such as sepsis and Coronavirus disease 2019 (COVID-19). Despite its clinical effectiveness, the molecular targets and mechanisms of XBJ remain unclear, warranting further investigation. Purpose: This study aimed to identify the key bioactive compounds in XBJ and elucidate their molecular targets and mechanisms. Methods: The zebrafish model was first used to evaluate the anti-inflammatory and antioxidant effects of XBJ, and the differentially expressed genes (DEGs) were identified by RNA sequencing and network analysis. Network pharmacology was used to analyze the relationship between bioactive compounds and molecular targets, and molecular docking and kinetic simulation were used to explore the target binding ability of key compounds. Cellular Thermal Shift Assay-Western Blot (CETSA-WB) and Surface Plasmon Resonance (SPR) further verified the interaction between compounds and targets; finally, the key pathways were confirmed by gene silencing experiments. Results: The zebrafish model results reveal that XBJ significantly reduced neutrophil and macrophage counts in a dose-dependent manner, emphasizing its potent anti-inflammatory effects. A transcriptomic analysis highlighted the differential expression of key genes in the KEAP1/NRF2 pathway, including HMOX1, SLC7A11, NQO1, and TXNRD1. A network analysis further pinpointed KEAP1 as a central molecular target, with tanshinone IIA, baicalein, and luteolin identified as key active compounds modulating this pathway. Among these, tanshinone IIA and baicalein exhibited strong binding interactions with KEAP1, which were confirmed through molecular docking and kinetic simulations. Further validation showed that baicalein directly targets KEAP1, as demonstrated by CETSA-WB and SPR analysis. Additionally, the gene silencing experiments of KEAP1 and NRF2 reinforced their crucial roles in activating the KEAP1/NRF2 pathway. Conclusion: These findings collectively establish baicalein as a critical bioactive compound in XBJ, driving its antioxidant and anti-inflammatory effects via KEAP1/NRF2 pathway activation through direct binding to KEAP1, providing new insights into the mechanism of action of XBJ. Full article
Show Figures

Figure 1

21 pages, 5036 KiB  
Article
Vanillin Has Potent Antibacterial, Antioxidant, and Anti-Inflammatory Activities In Vitro and in Mouse Colitis Induced by Multidrug-Resistant Escherichia coli
by Jiaxue Wang, Wei An, Zhenlong Wang, Ya Zhao, Bing Han, Hui Tao, Jinquan Wang and Xiumin Wang
Antioxidants 2024, 13(12), 1544; https://doi.org/10.3390/antiox13121544 - 17 Dec 2024
Cited by 2 | Viewed by 1534
Abstract
A large number of cases of infectious colitis caused by multidrug-resistant (MDR) bacteria, such as Escherichia coli, can result in colon damage and severe inflammation. Vanilla, a widely utilized flavor and fragrance compound, is extensively used in various food. However, the effect [...] Read more.
A large number of cases of infectious colitis caused by multidrug-resistant (MDR) bacteria, such as Escherichia coli, can result in colon damage and severe inflammation. Vanilla, a widely utilized flavor and fragrance compound, is extensively used in various food. However, the effect of vanilla on MDR E. coli-induced infectious colitis has received less attention. In this study, the antibacterial activity of vanillin against MDR E. coli and other bacteria was determined by the microtiter broth dilution method. The antioxidant and anti-inflammatory capacity of vanillin was assessed in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and MDR E. coli-induced mouse colitis. The results demonstrated that vanillin exhibited potent antibacterial activity against various strains of MDR E. coli, Salmonella, and Staphylococcus aureus, with a minimal inhibitory concentration (MIC) of 1.25–2.5 mg/mL and a minimum bactericidal concentration (MBC) of 5–10 mg/mL; it effectively inhibited cell division in E. coli. Vanillin also displayed remarkable antioxidant activity by suppressing the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) in LPS-stimulated RAW 264.7 cell; it significantly reduced the production of inflammatory mediators including nitroxide (NO), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β), while increasing interleukin 10 (IL-10). In an MDR E. coli-induced mouse colitis model, vanillin effectively inhibited inflammation by suppressing inflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor κ-B (NF-κB) cell signaling pathway activation; it ameliorated changes in intestinal microflora characterized by decreased Firmicutes richness alongside increased Bacteroides richness, rebalancing the dysbiosis caused by E. coli. These findings highlight the potential pharmacological applicability of vanillin as a promising bioactive molecule for treating infectious colitis. Full article
Show Figures

Figure 1

16 pages, 4027 KiB  
Article
First Report on Cationic Triphenylphosphonium Compounds as Mitochondriotropic H3R Ligands with Antioxidant Properties
by Tobias Werner, Tito Añazco, Paula Osses-Mendoza, Alejandro Castro-Álvarez, Cristian O. Salas, Raquel Bridi, Holger Stark and Christian Espinosa-Bustos
Antioxidants 2024, 13(11), 1345; https://doi.org/10.3390/antiox13111345 - 1 Nov 2024
Viewed by 1354
Abstract
Neurodegenerative diseases are a major public health problem due to the aging population and multifaceted pathology; therefore, the search for new therapeutic alternatives is of the utmost importance. In this sense, a series of six 1-(3-phenoxypropyl)piperidines alkyl-linked to a triphenylphosphonium cation derivative were [...] Read more.
Neurodegenerative diseases are a major public health problem due to the aging population and multifaceted pathology; therefore, the search for new therapeutic alternatives is of the utmost importance. In this sense, a series of six 1-(3-phenoxypropyl)piperidines alkyl-linked to a triphenylphosphonium cation derivative were synthesized as H3R ligands with antioxidant properties to regulate excessive mitochondrial oxidative stress and contribute to potential new therapeutic approaches for neurodegenerative diseases. Radioligand displacement studies revealed high affinity for H3R with Ki values in the low to moderate two-digit nanomolar range for all compounds. Compound 6e showed the highest affinity (Ki H3R = 14.1 nM), comparable to that of pitolisant. Antioxidative effects were evaluated as radical-scavenging properties using the ORAC assay, in which all derivatives showed low to moderate activity. On the other hand, cytotoxic effects in SH-SY5Y neuroblastoma cells were investigated using the colorimetric alamar blue assay, which revealed significant effects on cell viability with an unequivocally structure–toxicity relationship. Finally, docking and molecular simulation studies were used to determine the H3R binding form, which will allow us to further modify the compounds to establish a robust structure-activity relationship and find a lead compound with therapeutic utility in neurodegenerative diseases. Full article
Show Figures

Figure 1

17 pages, 4526 KiB  
Article
Exploration of New Drug Candidate Derived from Antioxidants of Korean Native Halophytes: Control of Acinetobacter baumannii with Antipathogenic Activity
by Jihee Lee, Ho Sung Kim, Jeong Woo Park, Bohyun Yun, Woo Young Bang, Ki Hwan Moon and Youngwan Seo
Antioxidants 2024, 13(11), 1334; https://doi.org/10.3390/antiox13111334 - 31 Oct 2024
Viewed by 1289
Abstract
The rise of antibiotic-resistant bacteria poses a significant challenge to the treatment of bacterial infections, necessitating the development of novel antibiotics or strategies to preserve the efficacy of existing ones. This study investigates the role of oxidative stress modulation in the pathogenicity of [...] Read more.
The rise of antibiotic-resistant bacteria poses a significant challenge to the treatment of bacterial infections, necessitating the development of novel antibiotics or strategies to preserve the efficacy of existing ones. This study investigates the role of oxidative stress modulation in the pathogenicity of multidrug-resistant (MDR) bacterial strains, aiming to identify potential avenues for new drug design. Specifically, the anti-biofilm effects of crude extracts and fractions from seven halophyte species native to Jeju Island, South Korea, were evaluated against Acinetobacter baumannii ATCC 17978. Notably, the 85% aqueous methanol fraction of Peucedanum japonicum Thunb. (Pj) and the n-hexane fraction of Lysimachia mauritiana Lam. (Lm) demonstrated significant anti-biofilm activity. Further assessments revealed that these fractions also exhibited notable antioxidant and anti-inflammatory properties, with the Pj fraction showing a lifespan extension effect in the Caenorhabditis elegans model. These findings suggest that Pj and Lm hold promise as potential candidates for the development of new therapeutic agents targeting MDR bacteria. Full article
Show Figures

Graphical abstract

17 pages, 4961 KiB  
Article
Tamarixetin Protects Chondrocytes against IL-1β-Induced Osteoarthritis Phenotype by Inhibiting NF-κB and Activating Nrf2 Signaling
by Seung-Ho Lee, Min Kyoung Shin and Jung-Suk Sung
Antioxidants 2024, 13(10), 1166; https://doi.org/10.3390/antiox13101166 - 25 Sep 2024
Viewed by 1647
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage breakdown and chronic inflammation in joints. As the most prevalent form of arthritis, OA affects around 600 million people globally. Despite the increasing number of individuals with OA risk factors, such as aging [...] Read more.
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage breakdown and chronic inflammation in joints. As the most prevalent form of arthritis, OA affects around 600 million people globally. Despite the increasing number of individuals with OA risk factors, such as aging and obesity, there is currently no effective cure for the disease. In this context, this study investigated the therapeutic effects of tamarixetin, a flavonoid with antioxidative and anti-inflammatory properties, against OA pathology and elucidated the underlying molecular mechanism. In interleukin-1β (IL-1β)-treated chondrocytes, tamarixetin inhibited the OA phenotypes, restoring cell viability and chondrogenic properties while reducing hypertrophic differentiation and dedifferentiation. Tamarixetin alleviated oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation and inhibited mitogen-activated protein kinase and nuclear factor-κB (NF-κB). Furthermore, tamarixetin attenuated pyroptosis, a programmed cell death caused by excessive inflammation, by suppressing inflammasome activation. We confirmed that the chondroprotective effects of tamarixetin are mediated by the concurrent upregulation of Nrf2 signaling and downregulation of NF-κB signaling, which are key players in balancing antioxidative and inflammatory responses. Overall, our study demonstrated that tamarixetin possesses chondroprotective properties by alleviating IL-1β-induced cellular stress in chondrocytes, suggesting its therapeutic potential to relieve OA phenotype. Full article
Show Figures

Figure 1

11 pages, 2136 KiB  
Article
Antioxidant Activity of Planar Catechin Conjugated with Trolox
by Wakana Shimizu, Yoshimi Shoji, Kei Ohkubo, Hiromu Ito, Ikuo Nakanishi and Kiyoshi Fukuhara
Antioxidants 2024, 13(10), 1165; https://doi.org/10.3390/antiox13101165 - 25 Sep 2024
Viewed by 1752
Abstract
Planar catechin (PCat), a natural antioxidant with a fixed 3D catechin structure on a plane, exhibits radical-scavenging activity approximately five times stronger than the conventional catechin. We synthesized a compound, PCat-TrOH, by binding Trolox (TrOH), an α-tocopherol analog, to PCat to enhance its [...] Read more.
Planar catechin (PCat), a natural antioxidant with a fixed 3D catechin structure on a plane, exhibits radical-scavenging activity approximately five times stronger than the conventional catechin. We synthesized a compound, PCat-TrOH, by binding Trolox (TrOH), an α-tocopherol analog, to PCat to enhance its antioxidant effect against oxidative stress, such as lipid peroxidation. TrOH shows radical-scavenging activity about 6.5 times greater than PCat, and PCat-TrOH exhibited a similar level of radical-scavenging activity to TrOH. Additionally, PCat-TrOH demonstrated twice the radical-scavenging activity against reactive oxygen species compared to PCat or TrOH. This compound is also expected to exhibit an excellent antioxidant effect against lipid peroxidation caused by radical chain reactions, through interactions with vitamin C, similar to that in the case of α-tocopherol. Full article
Show Figures

Graphical abstract

15 pages, 1533 KiB  
Article
10-Gingerol Increases Antioxidant Enzymes and Attenuates Lipopolysaccharide-Induced Inflammation by Modulating Adipokines in 3T3-L1 Adipocytes
by María Elizabeth Preciado-Ortiz, Erika Martínez-López, José Pedraza-Chaverri, Omar Noel Medina-Campos, Roberto Rodríguez-Echevarría, Samantha Desireé Reyes-Pérez and Juan José Rivera-Valdés
Antioxidants 2024, 13(9), 1093; https://doi.org/10.3390/antiox13091093 - 7 Sep 2024
Cited by 1 | Viewed by 2250
Abstract
Background: Obesity increases reactive oxygen species production and alters adipokines levels, resulting in a low-grade chronic inflammation state, which contributes to tissue metabolic dysfunction. 10-gingerol, a phenol present in ginger, has shown potential anti-obesogenic effects in vitro. However, the antioxidant and anti-inflammatory properties [...] Read more.
Background: Obesity increases reactive oxygen species production and alters adipokines levels, resulting in a low-grade chronic inflammation state, which contributes to tissue metabolic dysfunction. 10-gingerol, a phenol present in ginger, has shown potential anti-obesogenic effects in vitro. However, the antioxidant and anti-inflammatory properties of 10-gingerol have not been approached. The aim of this study was to investigate the effects of 10-gingerol on antioxidant enzymes’ expression and adipokine production in 3T3-L1 adipocytes in response to lipopolysaccharide (LPS)-induced inflammation. Methods: 10-gingerol antioxidant capacity was assessed through Oxygen Radical Absorbance Capacity (ORAC) , Ferric Reducing Antioxidant Power (FRAP), and radical scavenging activity of 2,2-diphenyl-2-picrylhydrazyl (DPPH) assays. 3T3-L1 cells were differentiated and stimulated with 100 ng/mL LPSs. Then, 15 µg/mL 10-gingerol was added for 48 h. The mRNA expression and protein abundance of antioxidant enzymes were evaluated by qPCR and Western blot, respectively. Adipokine levels were determined by ELISA. Results: 10-gingerol showed low FRAP and DPPH values but a moderate ORAC value. Moreover, 10-gingerol increased Gpx1 and Sod1 but downregulated Cat expression. Additionally, 10-gingerol significantly increased CAT and GPx1 levels but not SOD-1. Finally, adiponectin and leptin concentrations were increased while resistin and tumor necrosis factor alpha (TNFα) were decreased by 10-gingerol. Conclusions: 10-gingerol presented antioxidant potential by increasing antioxidant enzymes and attenuated LPS-induced inflammation by modulating adipokines in 3T3-L1 adipocytes. Full article
Show Figures

Figure 1

13 pages, 1125 KiB  
Article
A Novel BD2-Selective Inhibitor of BRDs Mitigates ROS Production and OA Pathogenesis
by Hyemi Lee, Jihye Choe, Min-Hee Son, In-Hyun Lee, Min Ju Lim, Jimin Jeon and Siyoung Yang
Antioxidants 2024, 13(8), 943; https://doi.org/10.3390/antiox13080943 - 2 Aug 2024
Cited by 1 | Viewed by 1562
Abstract
Bromodomain and extra-terminal domain (BET) family proteins regulate transcription and recognize lysine residues in histones. Selective BET inhibitors targeting one domain have attracted attention because they maintain normal physiological activities, whereas pan (nonselective) BET inhibitors do not. Osteoarthritis (OA) is a joint disorder [...] Read more.
Bromodomain and extra-terminal domain (BET) family proteins regulate transcription and recognize lysine residues in histones. Selective BET inhibitors targeting one domain have attracted attention because they maintain normal physiological activities, whereas pan (nonselective) BET inhibitors do not. Osteoarthritis (OA) is a joint disorder characterized by cartilage degeneration for which no treatment currently exists. Here, we investigated whether the selective inhibition of BET proteins is an appropriate therapeutic strategy for OA. We focused on the development and characterization of 2-(4-(2-(dimethylamino)ethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one (BBC0906), a novel bromodomain 2 (BD2)-specific inhibitor designed to suppress OA progression. Using a DNA-encoded chemical library (DEL) screening approach, BBC0906 was identified because of its high affinity with the BD2 domain of BET proteins. BBC0906 effectively reduced reactive oxygen species (ROS) production and suppressed catabolic factor expression in chondrocytes in vitro. Moreover, in an OA mouse model induced by the destabilization of the medial meniscus (DMM), BBC0906 intra-articular injection attenuated cartilage degradation and alleviated OA. Importantly, BBC0906 selectively inhibits the BD2 domain, thus minimizing its potential side effects. We highlighted the therapeutic potential of targeting BET proteins to modulate oxidative stress and suppress cartilage degradation in OA. BBC0906 is a promising candidate for OA treatment, offering improved safety and efficacy. Full article
Show Figures

Figure 1

14 pages, 3181 KiB  
Article
Tisochrysis lutea Fucoxanthin Suppresses NF-κB, JNK, and p38-Associated MMP Expression in Arthritis Pathogenesis via Antioxidant Activity
by Hyemi Lee, Hahyeong Jang, Dahyoon Heo, Jae-In Eom, Cheol-Ho Han, Se-Min Kim, Yoo-Seob Shin, Cheol-Ho Pan and Siyoung Yang
Antioxidants 2024, 13(8), 941; https://doi.org/10.3390/antiox13080941 - 2 Aug 2024
Cited by 1 | Viewed by 1386
Abstract
Tisochrysis lutea is a highly nutritious marine microalga that has various applications in aquaculture and biotechnology. However, the effects of T. lutea extract (TLE) on osteoarthritis (OA) pathogenesis remain unexplored. In this study, we aimed to determine the effects of TLE on OA [...] Read more.
Tisochrysis lutea is a highly nutritious marine microalga that has various applications in aquaculture and biotechnology. However, the effects of T. lutea extract (TLE) on osteoarthritis (OA) pathogenesis remain unexplored. In this study, we aimed to determine the effects of TLE on OA development. We found that TLE inhibits the expression of matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity in an OA mouse model generated by the destabilization of the medial meniscus (DMM) surgery. In vivo assays of the OA model mice demonstrated that TLE has a protective effect against cartilage destruction by inhibiting MMP3 and MMP13 expression. To enable the medical use of TLE, the components of TLE were characterized using high-performance liquid chromatography (HPLC) analysis. Interestingly, we found that Fucoxanthin accounts for 41.2% of TLE and showed anti-catabolic and antioxidant effects under IL-1β-treated in vitro conditions. RNA sequencing analysis showed that fucoxanthin decreased p38, NF-κB, and JNK signaling pathway gene expression, all of which are activated by IL-1β. Furthermore, in vivo analysis showed that fucoxanthin inhibited the IL-1β-stimulated phosphorylation of p65, JNK, and p38. These results highlight new possibilities for the use of TLE as a source of fucoxanthin, an antioxidant, for OA treatment. Full article
Show Figures

Figure 1

26 pages, 11524 KiB  
Article
Linalool and Geraniol Defend Neurons from Oxidative Stress, Inflammation, and Iron Accumulation in In Vitro Parkinson’s Models
by Edina Pandur, Balázs Major, Tibor Rák, Katalin Sipos, Adrienne Csutak and Györgyi Horváth
Antioxidants 2024, 13(8), 917; https://doi.org/10.3390/antiox13080917 - 29 Jul 2024
Cited by 3 | Viewed by 1907
Abstract
Parkinson’s disease is one of the most prevalent neurological disorders affecting millions of people worldwide. There is a growing demand for novel and natural substances as complementary therapies. Essential oils and their various compounds are highly investigated natural plant-based products as potential treatment [...] Read more.
Parkinson’s disease is one of the most prevalent neurological disorders affecting millions of people worldwide. There is a growing demand for novel and natural substances as complementary therapies. Essential oils and their various compounds are highly investigated natural plant-based products as potential treatment options for common human diseases, such as microbial infections, chronic diseases, and neurodegenerative disorders. The present study focuses on the beneficial effects of linalool and geraniol, the major compounds of lavender (Lavandula angustifolia L.) and geranium (Pelargonium graveolens L’Hér. in Aiton) essential oils, on oxidative stress, inflammation, and iron metabolism of the rotenone and 6-hydroxydopamine-induced in vitro Parkinson’s models. The experiments were carried out on all-trans retinoic acid differentiated SH-SY5Y cells. The effects of linalool and geraniol were compared to rasagiline, an MAO-B inhibitor. The results revealed that both essential oil compounds reduce the level of reactive oxygen species and alter the antioxidant capacity of the cells. They lower the secretion of IL-6, IL-8, and IL-1β pro-inflammatory cytokines. Moreover, linalool and geraniol change the expression of iron-related genes, such as the iron importer transferrin receptor 1, heme-oxygenase-1, and ferroportin iron exporter, and influence the intracellular iron contents. In addition, it has been unveiled that iron availability is concatenated with the actions of the essential oil compounds. Based on the results, linalool and geraniol are vigorous candidates as an alternative therapy for Parkinson’s disease. Full article
Show Figures

Figure 1

16 pages, 4742 KiB  
Article
Isolation, Characterization, and Functional Properties of Antioxidant Peptides from Mulberry Leaf Enzymatic Hydrolysates
by Yichen Zhou, Rijun Zhang, Junyong Wang, Yucui Tong, Jing Zhang, Zhenzhen Li, Haosen Zhang, Zaheer Abbas, Dayong Si and Xubiao Wei
Antioxidants 2024, 13(7), 854; https://doi.org/10.3390/antiox13070854 - 16 Jul 2024
Cited by 4 | Viewed by 2156
Abstract
Recent evidence suggests that mulberry leaves have good antioxidant activity. However, what the antioxidant ingredient is and how the ingredient works are still not well understood. In this study, we enzymatically hydrolyze mulberry leaf proteins (MLPs) using neutral protease and find that the [...] Read more.
Recent evidence suggests that mulberry leaves have good antioxidant activity. However, what the antioxidant ingredient is and how the ingredient works are still not well understood. In this study, we enzymatically hydrolyze mulberry leaf proteins (MLPs) using neutral protease and find that the mulberry leaf protein hydrolysates (MLPHs) have stronger antioxidant activity compared to MLPs. We separate the core antioxidant components in MLPHs by ion-exchange columns and molecular sieves and identify 798 antioxidant peptides by LC-MS/MS. Through bioinformatics analysis and biochemical assays, we screen two previously unreported peptides, P6 and P7, with excellent antioxidant activities. P6 and P7 not only significantly reduce ROS in cells but also improve the activities of the antioxidant enzymes SOD and CAT. In addition, both peptides are found to exert protective effects against H2O2-induced chromatin damage and cell apoptosis. Collectively, these results provide support for the application of mulberry leaf peptides as antioxidants in the medical, food and livestock industries. Full article
Show Figures

Figure 1

16 pages, 13431 KiB  
Article
Scutellarein Suppresses the Production of ROS and Inflammatory Mediators of LPS-Activated Bronchial Epithelial Cells and Attenuates Acute Lung Injury in Mice
by Ximeng Li, Xiaoyu Zhang, Yuan Kang, Min Cai, Jingjing Yan, Chenchen Zang, Yuan Gao and Yun Qi
Antioxidants 2024, 13(6), 710; https://doi.org/10.3390/antiox13060710 - 12 Jun 2024
Cited by 4 | Viewed by 1932
Abstract
Scutellarein is a key active constituent present in many plants, especially in Scutellaria baicalensis Georgi and Erigeron breviscapus (vant.) Hand-Mazz which possesses both anti-inflammatory and anti-oxidative activities. It also is the metabolite of scutellarin, with the ability to relieve LPS-induced acute lung injury [...] Read more.
Scutellarein is a key active constituent present in many plants, especially in Scutellaria baicalensis Georgi and Erigeron breviscapus (vant.) Hand-Mazz which possesses both anti-inflammatory and anti-oxidative activities. It also is the metabolite of scutellarin, with the ability to relieve LPS-induced acute lung injury (ALI), strongly suggesting that scutellarein could suppress respiratory inflammation. The present study aimed to investigate the effects of scutellarein on lung inflammation by using LPS-activated BEAS-2B cells (a human bronchial epithelial cell line) and LPS-induced ALI mice. The results showed that scutellarein could reduce intracellular reactive oxygen species (ROS) accumulation through inhibiting the activation of NADPH oxidases, markedly downregulating the transcription and translation of pro-inflammatory cytokines, including interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and C-X-C motif chemokine ligand (CXCL) 8 in LPS-activated BEAS-2B cells. The mechanism study revealed that it suppressed the phosphorylation and degradation of IκBα, consequently hindering the translocation of p65 from the cytoplasm to the nucleus and its subsequent binding to DNA, thereby decreasing NF-κB-regulated gene transcription. Notably, scutellarein had no impact on the activation of AP-1 signaling. In LPS-induced ALI mice, scutellarein significantly decreased IL-6, CCL2, and tumor necrosis factor-α (TNF-α) levels in the bronchoalveolar lavage fluid, attenuated lung injury, and inhibited neutrophil infiltration. Our findings suggest that scutellarein may be a beneficial agent for the treatment of infectious pneumonia by virtue of its anti-oxidative and anti-inflammatory activities. Full article
Show Figures

Figure 1

22 pages, 8811 KiB  
Article
Chitosan-Loaded Lagenaria siceraria and Thymus vulgaris Potentiate Antibacterial, Antioxidant, and Immunomodulatory Activities against Extensive Drug-Resistant Pseudomonas aeruginosa and Vancomycin-Resistant Staphylococcus aureus: In Vitro and In Vivo Approaches
by Selwan M. Taha, Norhan K. Abd El-Aziz, Adel Abdelkhalek, Ioan Pet, Mirela Ahmadi and Sameh M. El-Nabtity
Antioxidants 2024, 13(4), 428; https://doi.org/10.3390/antiox13040428 - 30 Mar 2024
Cited by 2 | Viewed by 2072
Abstract
Antimicrobial resistance poses considerable issues for current clinical care, so the modified use of antimicrobial agents and public health initiatives, coupled with new antimicrobial approaches, may help to minimize the impact of multidrug-resistant (MDR) bacteria in the future. This study aimed to evaluate [...] Read more.
Antimicrobial resistance poses considerable issues for current clinical care, so the modified use of antimicrobial agents and public health initiatives, coupled with new antimicrobial approaches, may help to minimize the impact of multidrug-resistant (MDR) bacteria in the future. This study aimed to evaluate the antimicrobial, antioxidant, and immunomodulatory activities of Lagenaria siceraria, Thymus vulgaris, and their chitosan nanocomposites against extensive drug-resistant (XDR) Pseudomonas aeruginosa and vancomycin-resistant Staphylococcus aureus (VRSA) using both in vitro and in vivo assays. The in vitro antimicrobial susceptibilities of P. aeruginosa and VRSA strains revealed 100% sensitivity to imipenem (100%). All P. aeruginosa strains were resistant to cefoxitin, cefepime, trimethoprim + sulfamethoxazole, and fosfomycin. However, S. aureus strains showed a full resistance to cefoxitin, amoxicillin, ampicillin, erythromycin, chloramphenicol, and fosfomycin (100% each). Interestingly, all S. aureus strains were vancomycin-resistant (MIC = 32–512 μg/mL), and 90% of P. aeruginosa and S. aureus strains were XDR. The antimicrobial potential of Lagenaria siceraria and Thymus vulgaris nanocomposites with chitosan nanoparticles demonstrated marked inhibitory activities against XDR P. aeruginosa and VRSA strains with inhibition zones’ diameters up to 50 mm and MIC values ranging from 0.125 to 1 μg/mL and 1 to 8 μg/mL, respectively. The results of the in vivo approach in male Sprague Dawley rats revealed that infection with P. aeruginosa and S. aureus displayed significant changes in biochemical, hematological, and histopathological findings compared to the negative control group. These values returned to the normal range after treatment by chitosan nanoparticles, either loaded with Lagenaria siceraria or Thymus vulgaris. Real-time quantitative polymerase chain reaction (RT-qPCR) findings presented significant upregulation of the relative expression of the IL10 gene and downregulation of the IFNG gene throughout the experimental period, especially after treatment with chitosan nanoparticles loaded either with Lagenaria siceraria or Thymus vulgaris in comparison to the positive control groups. In conclusion, this is the first report suggesting the use of Lagenaria siceraria and Thymus vulgaris nanocomposites with chitosan nanoparticles as a promising contender for combating XDR P. aeruginosa and VRSA infections as well as a manager for inflammatory situations and oxidative stress-related disorders. Full article
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 2065 KiB  
Review
Mechanistic Insights into the Multiple Functions of Niacinamide: Therapeutic Implications and Cosmeceutical Applications in Functional Skincare Products
by Cíntia Marques, Farid Hadjab, Alexandre Porcello, Kelly Lourenço, Corinne Scaletta, Philippe Abdel-Sayed, Nathalie Hirt-Burri, Lee Ann Applegate and Alexis Laurent
Antioxidants 2024, 13(4), 425; https://doi.org/10.3390/antiox13040425 - 30 Mar 2024
Cited by 23 | Viewed by 41149
Abstract
Niacinamide (or nicotinamide) is a small-molecule hydrosoluble vitamin with essential metabolic functions in mammalian cells. Niacinamide has become a key functional ingredient in diverse skincare products and cosmetics. This vitamin plays a pivotal role in NAD+ synthesis, notably contributing to redox reactions [...] Read more.
Niacinamide (or nicotinamide) is a small-molecule hydrosoluble vitamin with essential metabolic functions in mammalian cells. Niacinamide has become a key functional ingredient in diverse skincare products and cosmetics. This vitamin plays a pivotal role in NAD+ synthesis, notably contributing to redox reactions and energy production in cutaneous cells. Via diversified biochemical mechanisms, niacinamide is also known to influence human DNA repair and cellular stress responses. Based on decades of safe use in cosmetics, niacinamide recently gained widespread popularity as an active ingredient which aligns with the “Kligman standards” in skincare. From a therapeutic standpoint, the intrinsic properties of niacinamide may be applied to managing acne vulgaris, melasma, and psoriasis. From a cosmeceutical standpoint, niacinamide has been widely leveraged as a multipurpose antiaging ingredient. Therein, it was shown to significantly reduce cutaneous oxidative stress, inflammation, and pigmentation. Overall, through multimodal mechanisms, niacinamide may be considered to partially prevent and/or reverse several biophysical changes associated with skin aging. The present narrative review provides multifactorial insights into the mechanisms of niacinamide’s therapeutic and cosmeceutical functions. The ingredient’s evolving role in skincare was critically appraised, with a strong focus on the biochemical mechanisms at play. Finally, novel indications and potential applications of niacinamide in dermal fillers and alternative injectable formulations were prospectively explored. Full article
Show Figures

Figure 1

45 pages, 5387 KiB  
Review
Sesquiterpenes and Sesquiterpene Derivatives from Ferula: Their Chemical Structures, Biosynthetic Pathways, and Biological Properties
by Junchi Wang, Qi Zheng, Huaxiang Wang, Leiling Shi, Guoping Wang, Yaqin Zhao, Congzhao Fan and Jianyong Si
Antioxidants 2024, 13(1), 7; https://doi.org/10.3390/antiox13010007 - 19 Dec 2023
Cited by 4 | Viewed by 2626
Abstract
Ferula is a genus of flowering plants known for its edible and medicinal properties. Since ancient times, many species of Ferula have been used in traditional medicine to treat various health issues across countries, such as digestive disorders, respiratory problems, and even as [...] Read more.
Ferula is a genus of flowering plants known for its edible and medicinal properties. Since ancient times, many species of Ferula have been used in traditional medicine to treat various health issues across countries, such as digestive disorders, respiratory problems, and even as a remedy for headaches and toothaches. In addition, they are also used as a flavoring agent in various cuisines. As the main active ingredients in Ferula, sesquiterpenes and their derivatives, especially sesquiterpene coumarins, sesquiterpene phenylpropanoids, and sesquiterpene chromones, have attracted the attention of scientists due to the diversity of their chemical structures, as well as their extensive and promising biological properties, such as antioxidative, anti-inflammatory, antibacterial properties. However, there has not been a comprehensive review of sesquiterpenes and their derivatives from this plant. This review aims to provide an overview of the chemical structures, biosynthetic pathways, and biological properties of sesquiterpenes and sesquiterpene derivatives from Ferula, which may help guide future research directions and possible application methods for this valuable edible and medicinal plant. Full article
Show Figures

Figure 1

Back to TopTop