Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols
Abstract
1. Introduction
2. Conventional Therapies and Therapeutic Effects
3. Oxidative Stress and Classical Biochemical Mechanisms as Inducers of Diabetic Retinopathy
4. Inflammation and Vascular Alterations
5. Polyphenols in the Treatment of Diabetic Retinopathy
5.1. Oxidative Stress and Antioxidant Defences in DR
5.2. Polyphenol Supplements Against DR
5.2.1. Resveratrol
5.2.2. Piceatannol
5.2.3. Quercetin
5.2.4. Anthocyanins
5.2.5. Epigallocatechin Gallate
5.2.6. Naringenin
5.2.7. Eriodictyol
5.2.8. Myrecetin/Galic Acid
5.2.9. Scutellarin
5.2.10. Rhaponticin
5.2.11. Curcumin
5.2.12. Ferulic Acid/Chlorogenic Acid/Arctiin/Rutin
5.2.13. Pterostilbene
5.3. Nanotechnology for Polyphenol Delivery
Polyphenol | Antioxidant Mechanism | Anti-Inflammatory Pathways Modulated | Comparative Effect vs. Conventional Therapies | Nanoparticle Type and Effect on Bioavailability | Limitations/Future Directions | Refs |
---|---|---|---|---|---|---|
Naringenin | VEGF inhibition, anti-angiogenic activity | Potential indirect inhibition of inflammatory mediators | Comparable efficacy to bevacizumab in animal models | Liposomal/solid lipid carriers; improved retinal penetration | Requires clinical validation; limited in vivo studies | [204] |
Ellagic acid | Downregulation of VEGF, HIF-1α, GFAP | Potential neuroprotective anti-inflammatory effects | Promising multitarget anti-angiogenic activity | Liposomes; adequate tissue retention | Few direct comparisons; limited in vivo evidence | [205] |
Curcumin | Reduces AGEs, enhances ATP synthesis | Decreases oxidative stress and pro-inflammatory cytokines | Complementary to insulin; systemic metabolic effects | Co-encapsulated in nanogels, liposomes, cyclodextrins | Low stability; lacks extensive clinical trials | [206,207] |
Resveratrol | ROS scavenging, lipid peroxidation inhibition | NF-κB, IL-6, IL-1β, TNF-α, VCAM-1, ICAM-1 | Multitarget effects; comparable to anti-VEGF in some aspects | Gold nanoparticles; markedly enhances ocular bioavailability | Formulation standardization needed | [211] |
Diosmin | Antioxidant activity in RPE cells | Reduces pro-inflammatory mediators | Potential topical ocular treatment | Nanostructured lipid carriers; improves aqueous solubility | Preclinical validation still lacking | [210] |
Myricetin | Sustained antioxidant ROS reduction | Antiproliferative and ocular anti-inflammatory effects | Comparable to bevacizumab in cell models | Thermosensitive nanoemulgel; high corneal retention and biocompatibility | Lacks in vivo human data | [216] |
Rutin | Increases SOD, CAT; lowers MDA | Indirect antioxidant activation with anti-inflammatory potential | Greater antioxidant effect than insulin-rutin combination | Phyto-reduced nanoparticles; enhanced delivery | Preliminary studies; not compared to standard therapies | [217] |
Quercetin | Enzyme-like antioxidant capacity | NF-κB, IL-6, VEGF (indirectly) | Combined anti-inflammatory and anti-angiogenic action | Complexed with low-toxicity iron; sustained release | Early-stage mechanistic research | [218] |
6. Relevance of Polyphenol Therapy Against DR
- -
- Dietary patterns linked to socioeconomic status. A pro-oxidative diet, rich in red meat, sugar, processed foods, and saturated and trans fats, and low in fruits, vegetables, and mono- and polyunsaturated fats, has been associated with the development of diabetes [222] and DR [223]. Furthermore, this association is reinforced by the fact that healthier eating habits, such as diets rich in polyphenols, are more common among people with a higher socioeconomic status [224].
- -
- Lack of trust in healthcare systems among low-income individuals, which may lead to lower engagement with healthcare services [224].
- -
- -
- Low health literacy, often tied to lower educational attainment and socioeconomic status. Understanding and appropriately applying health information is crucial for enabling individuals to make informed decisions and actively participate in disease prevention and treatment [227]. In this context, poor glycemic control, often associated with lack of awareness and financial limitations, has serious implications for the development of DR [228].
- -
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
References
- Harreiter, J.; Roden, M. Diabetes mellitus: Definition, classification, diagnosis, screening and prevention (Update 2023). Wien. Klin. Wochenschr. 2023, 135, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Banday, M.Z.; Sameer, A.S.; Nissar, S. Pathophysiology of Diabetes: An Overview. Avicenna J. Med. 2020, 10, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Global. Available online: https://diabetesatlas.org/data-by-location/global/ (accessed on 17 April 2025).
- Yu, M.; Ning, F.T.E.; Liu, C.; Liu, Y.-C. Interconnections between Diabetic Corneal Neuropathy and Diabetic Retinopathy: Diagnostic and Therapeutic Implications. Neural Regen. Res. 2025, 20, 2169. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.; Church, K.A.; Pietramale, A.N.; Cardona, S.M.; Vanegas, D.; Rorex, C.; Leary, M.C.; Muzzio, I.A.; Nash, K.R.; Cardona, A.E. Fractalkine Isoforms Differentially Regulate Microglia-Mediated Inflammation and Enhance Visual Function in the Diabetic Retina. J. Neuroinflamm. 2024, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.-T.K.S.; de Clerck, E.; Polivka, J.; Potuznik, P.; Polivka, J.; et al. Diabetic Retinopathy as the Leading Cause of Blindness and Early Predictor of Cascading Complications-Risks and Mitigation. EPMA J. 2023, 14, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Teo, Z.L.; Tham, Y.-C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-Analysis. Ophthalmology 2021, 128, 1580–1591. [Google Scholar] [CrossRef] [PubMed]
- Cloete, L. Diabetes Mellitus: An Overview of the Types, Symptoms, Complications and Management. Nurs. Stand. 2022, 37, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lo, A.C.Y. Diabetic Retinopathy: Pathophysiology and Treatments. Int. J. Mol. Sci. 2018, 19, 1816. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Tan, T.-E.; Shao, Y.; Wong, T.Y.; Li, X. Classification of Diabetic Retinopathy: Past, Present and Future. Front. Endocrinol. 2022, 13, 1079217. [Google Scholar] [CrossRef] [PubMed]
- Maniadakis, N.; Konstantakopoulou, E. Cost Effectiveness of Treatments for Diabetic Retinopathy: A Systematic Literature Review. Pharmacoeconomics 2019, 37, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Shukla, U.V.; Tripathy, K. Diabetic Retinopathy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Cioana, M.; Deng, J.; Nadarajah, A.; Hou, M.; Qiu, Y.; Chen, S.S.J.; Rivas, A.; Toor, P.P.; Banfield, L.; Thabane, L.; et al. Global Prevalence of Diabetic Retinopathy in Pediatric Type 2 Diabetes: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2023, 6, e231887. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, J.D.; Bourne, R.R.A.; Briant, P.S.; Flaxman, S.R.; Taylor, H.R.B.; Jonas, J.B.; Abdoli, A.A.; Abrha, W.A.; Abualhasan, A.; Abu-Gharbieh, E.G.; et al. Causes of Blindness and Vision Impairment in 2020 and Trends over 30 Years, and Prevalence of Avoidable Blindness in Relation to VISION 2020: The Right to Sight: An Analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef] [PubMed]
- Mounirou, B.A.M.; Adam, N.D.; Yakoura, A.K.H.; Aminou, M.S.M.; Liu, Y.T.; Tan, L.Y. Diabetic Retinopathy: An Overview of Treatments. Indian. J. Endocrinol. Metab. 2022, 26, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.-E.; Wong, T.Y. Diabetic Retinopathy: Looking Forward to 2030. Front. Endocrinol. 2023, 13, 1077669. [Google Scholar] [CrossRef] [PubMed]
- Simó-Servat, O.; Hernández, C.; Simó, R. Diabetic Retinopathy in the Context of Patients with Diabetes. Ophthalmic Res. 2019, 62, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Cecilia, O.-M.; José Alberto, C.-G.; José, N.-P.; Ernesto Germán, C.-M.; Ana Karen, L.-C.; Luis Miguel, R.-P.; Ricardo Raúl, R.-R.; Adolfo Daniel, R.-C. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. J. Diabetes Res. 2019, 2019, 8562408. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Yang, C. Oxidative Stress and Diabetic Retinopathy: Molecular Mechanisms, Pathogenetic Role and Therapeutic Implications. Redox Biol. 2020, 37, 101799. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A.; Mishra, M. Oxidative Stress, Mitochondrial Damage and Diabetic Retinopathy. Biochim. Biophys. Acta 2015, 1852, 2474–2483. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.L.; Pérez, S.; Mena-Mollá, S.; Desco, M.C.; Ortega, Á.L. Oxidative Stress and Microvascular Alterations in Diabetic Retinopathy: Future Therapies. Oxid. Med. Cell. Longev. 2019, 2019, 4940825. [Google Scholar] [CrossRef] [PubMed]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G.-S. Diabetic Retinopathy Preferred Practice Pattern®. Ophthalmology 2020, 127, P66–P145. [Google Scholar] [CrossRef] [PubMed]
- Diabetic Retinopathy: Management and Monitoring; National Institute for Health and Care Excellence: Clinical Guidelines; National Institute for Health and Care Excellence (NICE): London, UK, 2024; ISBN 978-1-4731-6324-9.
- Wilkinson, C.P.; Ferris, F.L.; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T.; et al. Proposed International Clinical Diabetic Retinopathy and Diabetic Macular Edema Disease Severity Scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hua, R.; Zhao, Y.; Liu, L. Laser Treatment for Diabetic Retinopathy: History, Mechanism, and Novel Technologies. J. Clin. Med. 2024, 13, 5439. [Google Scholar] [CrossRef] [PubMed]
- Moutray, T.; Evans, J.R.; Lois, N.; Armstrong, D.J.; Peto, T.; Azuara-Blanco, A. Different Lasers and Techniques for Proliferative Diabetic Retinopathy. Cochrane Database Syst. Rev. 2018, 3, CD012314. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.U.; Danis, R.P.; Bressler, S.B.; Bressler, N.M.; Browning, D.J.; Qin, H. Diabetic Retinopathy Clinical Research Network. Effect of Focal/Grid Photocoagulation on Visual Acuity and Retinal Thickening in Eyes with Non-Center-Involved Diabetic Macular Edema. Retina 2009, 29, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Glassman, A.R.; Baker, C.W.; Beaulieu, W.T.; Bressler, N.M.; Punjabi, O.S.; Stockdale, C.R.; Wykoff, C.C.; Jampol, L.M.; Sun, J.K.; for the DRCR Retina Network. Assessment of the DRCR Retina Network Approach to Management with Initial Observation for Eyes with Center-Involved Diabetic Macular Edema and Good Visual Acuity: A Secondary Analysis of a Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Sakini, A.S.A.; Hamid, A.K.; Alkhuzaie, Z.A.; Al-Aish, S.T.; Al-Zubaidi, S.; Tayem, A.A.; Alobi, M.A.; Sakini, A.S.A.; Al-Aish, R.T.; Al-Shami, K.; et al. Diabetic Macular Edema (DME): Dissecting Pathogenesis, Prognostication, Diagnostic Modalities along with Current and Futuristic Therapeutic Insights. Int. J. Retin. Vitr. 2024, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Bressler, N.M.; Kaiser, P.K.; Do, D.V.; Nguyen, Q.D.; Park, K.H.; Woo, S.J.; Sagong, M.; Bradvica, M.; Kim, M.Y.; Kim, S.; et al. Biosimilars of Anti-Vascular Endothelial Growth Factor for Ophthalmic Diseases: A Review. Surv. Ophthalmol. 2024, 69, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Penha, F.M.; Masud, M.; Khanani, Z.A.; Thomas, M.; Fong, R.D.; Smith, K.; Chand, A.; Khan, M.; Gahn, G.; Melo, G.B.; et al. Review of Real-World Evidence of Dual Inhibition of VEGF-A and ANG-2 with Faricimab in NAMD and DME. Int. J. Retin. Vitr. 2024, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Virgili, G.; Curran, K.; Lucenteforte, E.; Peto, T.; Parravano, M. Anti-vascular Endothelial Growth Factor for Diabetic Macular Oedema: A Network Meta-analysis. Cochrane Database Syst. Rev. 2023, 2023, CD007419. [Google Scholar] [CrossRef] [PubMed]
- Wykoff, C.C.; Garweg, J.G.; Regillo, C.; Souied, E.; Wolf, S.; Dhoot, D.S.; Agostini, H.T.; Chang, A.; Laude, A.; Wachtlin, J.; et al. KESTREL and KITE Phase 3 Studies: 100-Week Results With Brolucizumab in Patients With Diabetic Macular Edema. Am. J. Ophthalmol. 2024, 260, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Barakat, M.R.; Ip, M.S.; Wykoff, C.C.; Eichenbaum, D.A.; Joshi, S.; Warrow, D.; Sheth, V.S.; Stefanickova, J.; Kim, Y.S.; et al. Efficacy and Safety of Brolucizumab for Diabetic Macular Edema: The KINGFISHER Randomized Clinical Trial. JAMA Ophthalmol. 2023, 141, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Mehta, H.; Gabrielle, P.-H.; Hashimoto, Y.; Kibret, G.D.; Arnold, J.; Guillaumie, T.; Kheir, W.J.; Kok, G.; Vujosevic, S.; O’Toole, L.; et al. One-Year Anti-VEGF Therapy Outcomes in Diabetic Macular Edema Based on Treatment Intensity: Data from the Fight Retinal Blindness! Registry. Ophthalmol. Retin. 2024, 8, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Dervenis, P.; Dervenis, N.; Smith, J.M.; Steel, D.H. Anti-Vascular Endothelial Growth Factors in Combination with Vitrectomy for Complications of Proliferative Diabetic Retinopathy. Cochrane Database Syst. Rev. 2023, 5, CD008214. [Google Scholar] [CrossRef] [PubMed]
- Maturi, R.K.; Glassman, A.R.; Josic, K.; Baker, C.W.; Gerstenblith, A.T.; Jampol, L.M.; Meleth, A.; Martin, D.F.; Melia, M.; Punjabi, O.S.; et al. Four-Year Visual Outcomes in the Protocol W Randomized Trial of Intravitreous Aflibercept for Prevention of Vision-Threatening Complications of Diabetic Retinopathy. JAMA 2023, 329, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.G.; Glassman, A.R.; Liu, D.; Sun, J.K.; Antoszyk, A.N.; Baker, C.W.; Bressler, N.M.; Elman, M.J.; Ferris, F.L.; Gardner, T.W.; et al. Five-Year Outcomes of Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA Ophthalmol. 2018, 136, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Hutton, D.W.; Stein, J.D.; Glassman, A.R.; Bressler, N.M.; Jampol, L.M.; Sun, J.K.; for the DRCR Retina Network. Five-Year Cost-Effectiveness of Intravitreous Ranibizumab Therapy vs Panretinal Photocoagulation for Treating Proliferative Diabetic Retinopathy: A Secondary Analysis of a Randomized Clinical Trial. JAMA Ophthalmol. 2019, 137, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Sivaprasad, S.; Prevost, A.T.; Vasconcelos, J.C.; Riddell, A.; Murphy, C.; Kelly, J.; Bainbridge, J.; Tudor-Edwards, R.; Hopkins, D.; Hykin, P.; et al. Clinical Efficacy of Intravitreal Aflibercept versus Panretinal Photocoagulation for Best Corrected Visual Acuity in Patients with Proliferative Diabetic Retinopathy at 52 Weeks (CLARITY): A Multicentre, Single-Blinded, Randomised, Controlled, Phase 2b, Non-Inferiority Trial. Lancet 2017, 389, 2193–2203. [Google Scholar] [CrossRef] [PubMed]
- Chatziralli, I.; Touhami, S.; Cicinelli, M.V.; Agapitou, C.; Dimitriou, E.; Theodossiadis, G.; Theodossiadis, P. Disentangling the Association between Retinal Non-Perfusion and Anti-VEGF Agents in Diabetic Retinopathy. Eye 2022, 36, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Obeid, A.; Gao, X.; Ali, F.S.; Talcott, K.E.; Aderman, C.M.; Hyman, L.; Ho, A.C.; Hsu, J. Loss to Follow-Up in Patients with Proliferative Diabetic Retinopathy after Panretinal Photocoagulation or Intravitreal Anti-VEGF Injections. Ophthalmology 2018, 125, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Munk, M.R.; Somfai, G.M.; de Smet, M.D.; Donati, G.; Menke, M.N.; Garweg, J.G.; Ceklic, L. The Role of Intravitreal Corticosteroids in the Treatment of DME: Predictive OCT Biomarkers. Int. J. Mol. Sci. 2022, 23, 7585. [Google Scholar] [CrossRef] [PubMed]
- Gascon, P.; Borget, I.; Comet, A.; Carton, L.; Matonti, F.; Dupont-Benjamin, L. Costs Comparison of Treating Diabetic Macular Edema with Aflibercept, Ranibizumab or Dexamethasone at 1 Year in France (INVICOST Study). Eur. J. Ophthalmol. 2022, 32, 1702–1709. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, A.S.; Haritoglou, C.; Ulbig, M.W. Cost Comparison of Licensed Intravitreal Therapies for Insufficiently Anti-VEGF Responding Fovea Involving Diabetic Macular Edema in Germany. Klin. Monbl Augenheilkd. 2019, 236, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Hutton, D.W.; Glassman, A.R.; Liu, D.; Sun, J.K.; DRCR Retina Network. Cost-Effectiveness of Aflibercept Monotherapy vs Bevacizumab First Followed by Aflibercept If Needed for Diabetic Macular Edema. JAMA Ophthalmol. 2023, 141, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Lauer, A.K.; Wilson, D.J.; Flaxel, C.J.; Pope, S.I.; Lundquist, A.D.; Toomey, M.D.; Ira, S.D.; Vahrenwald, D.R.; Nolte, S.K.; Steinkamp, P.N.; et al. Vitrectomy Outcomes in Eyes with Diabetic Macular Edema and Vitreomacular Traction. Ophthalmology 2010, 117, 1087–1093.e3. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson-Berka, J.L.; Rana, I.; Armani, R.; Agrotis, A. Reactive Oxygen Species, Nox and Angiotensin II in Angiogenesis: Implications for Retinopathy. Clin. Sci. 2013, 124, 597–615. [Google Scholar] [CrossRef] [PubMed]
- Coucha, M.; Elshaer, S.L.; Eldahshan, W.S.; Mysona, B.A.; El-Remessy, A.B. Molecular Mechanisms of Diabetic Retinopathy: Potential Therapeutic Targets. Middle East. Afr. J. Ophthalmol. 2015, 22, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Yumnamcha, T.; Guerra, M.; Singh, L.P.; Ibrahim, A.S. Metabolic Dysregulation and Neurovascular Dysfunction in Diabetic Retinopathy. Antioxidants 2020, 9, 1244. [Google Scholar] [CrossRef] [PubMed]
- Sahajpal, N.S.; Goel, R.K.; Chaubey, A.; Aurora, R.; Jain, S.K. Pathological Perturbations in Diabetic Retinopathy: Hyperglycemia, AGEs, Oxidative Stress and Inflammatory Pathways. Curr. Protein Pept. Sci. 2019, 20, 92–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Eshwaran, R.; Beck, S.C.; Hammes, H.-P.; Wieland, T.; Feng, Y. Contribution of the Hexosamine Biosynthetic Pathway in the Hyperglycemia-Dependent and -Independent Breakdown of the Retinal Neurovascular Unit. Mol. Metab. 2023, 73, 101736. [Google Scholar] [CrossRef] [PubMed]
- Geraldes, P.; King, G.L. Activation of Protein Kinase C Isoforms and Its Impact on Diabetic Complications. Circ. Res. 2010, 106, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, L.-J.; Yu, J.; Wang, H.-J.; Zhang, F.; Liu, Q.; Wu, J. Involvement of Advanced Glycation End Products in the Pathogenesis of Diabetic Retinopathy. Cell. Physiol. Biochem. 2018, 48, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, N.; Arora, P.; Sandhir, R. Perturbed Biochemical Pathways and Associated Oxidative Stress Lead to Vascular Dysfunctions in Diabetic Retinopathy. Oxid. Med. Cell. Longev. 2019, 2019, 8458472. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Buonfiglio, F.; Böhm, E.W.; Zhang, L.; Pfeiffer, N.; Korb, C.A.; Gericke, A. Diabetic Retinopathy: New Treatment Approaches Targeting Redox and Immune Mechanisms. Antioxidants 2024, 13, 594. [Google Scholar] [CrossRef] [PubMed]
- Gui, F.; You, Z.; Fu, S.; Wu, H.; Zhang, Y. Endothelial Dysfunction in Diabetic Retinopathy. Front. Endocrinol. 2020, 11, 591. [Google Scholar] [CrossRef] [PubMed]
- Zafar, S.; Sachdeva, M.; Frankfort, B.J.; Channa, R. Retinal Neurodegeneration as an Early Manifestation of Diabetic Eye Disease and Potential Neuroprotective Therapies. Curr. Diabetes Rep. 2019, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Xu, G.-T.; Zhang, J.-F. Inflammation in Diabetic Retinopathy: Possible Roles in Pathogenesis and Potential Implications for Therapy. Neural Regen. Res. 2022, 18, 976–982. [Google Scholar] [CrossRef]
- Lorenzi, M. The Polyol Pathway as a Mechanism for Diabetic Retinopathy: Attractive, Elusive, and Resilient. Exp. Diabetes Res. 2007, 2007, 61038. [Google Scholar] [CrossRef] [PubMed]
- Dagher, Z.; Park, Y.S.; Asnaghi, V.; Hoehn, T.; Gerhardinger, C.; Lorenzi, M. Studies of Rat and Human Retinas Predict a Role for the Polyol Pathway in Human Diabetic Retinopathy. Diabetes 2004, 53, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Hohman, T.C.; Nishimura, C.; Robison, W.G. Aldose Reductase and Polyol in Cultured Pericytes of Human Retinal Capillaries. Exp. Eye Res. 1989, 48, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Sima, A.A.; Nakajima, T.; Yagihashi, S.; Greene, D.A. Aldose Reductase in the BB Rat: Isolation, Immunological Identification and Localization in the Retina and Peripheral Nerve. Diabetologia 1987, 30, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Dănilă, A.-I.; Ghenciu, L.A.; Stoicescu, E.R.; Bolintineanu, S.L.; Iacob, R.; Săndesc, M.-A.; Faur, A.C. Aldose Reductase as a Key Target in the Prevention and Treatment of Diabetic Retinopathy: A Comprehensive Review. Biomedicines 2024, 12, 747. [Google Scholar] [CrossRef] [PubMed]
- Mathebula, S.D. Polyol Pathway: A Possible Mechanism of Diabetes Complications in the Eye. Afr. Vis. Eye Health 2015, 74, 5. [Google Scholar] [CrossRef]
- Mishra, B.; Swaroop, A.; Kandpal, R.P. Genetic Components in Diabetic Retinopathy. Indian J. Ophthalmol. 2016, 64, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.-J. Redox Imbalance Stress in Diabetes Mellitus: Role of the Polyol Pathway. Anim. Model. Exp. Med. 2018, 1, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-J.; Silverman, S.M.; Liu, Y.; Wordinger, R.J.; Pang, I.-H.; Clark, A.F. In Vitro and In Vivo Neuroprotective Effects of cJun N-Terminal Kinase Inhibitors on Retinal Ganglion Cells. Mol. Neurodegener. 2016, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Gurel, Z.; Sheibani, N. O-Linked β-N-Acetylglucosamine (O-GlcNAc) Modification: A New Pathway to Decode Pathogenesis of Diabetic Retinopathy. Clin. Sci. 2018, 132, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Das Evcimen, N.; King, G.L. The Role of Protein Kinase C Activation and the Vascular Complications of Diabetes. Pharmacol. Res. 2007, 55, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.S.; Sorenson, C.M.; Sheibani, N. Diabetes and Retinal Vascular Dysfunction. J. Ophthalmic Vis. Res. 2014, 9, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, S.; Ueda, S.; Matsui, T.; Nakamura, K.; Okuda, S. Role of Advanced Glycation End Products (AGEs) and Oxidative Stress in Diabetic Retinopathy. Curr. Pharm. Des. 2008, 14, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Bierhaus, A.; Humpert, P.M.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.M.; Nawroth, P.P. Understanding RAGE, the Receptor for Advanced Glycation End Products. J. Mol. Med. 2005, 83, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Caillaud, M.; Chantemargue, B.; Richard, L.; Vignaud, L.; Favreau, F.; Faye, P.-A.; Vignoles, P.; Sturtz, F.; Trouillas, P.; Vallat, J.-M.; et al. Local Low Dose Curcumin Treatment Improves Functional Recovery and Remyelination in a Rat Model of Sciatic Nerve Crush through Inhibition of Oxidative Stress. Neuropharmacology 2018, 139, 98–116. [Google Scholar] [CrossRef] [PubMed]
- Ido, Y.; Williamson, J.R. Hyperglycemic Cytosolic Reductive Stress “Pseudohypoxia”: Implications for Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. 1997, 38, 1467–1470. [Google Scholar] [PubMed]
- Eichler, W.; Savković-Cvijić, H.; Bürger, S.; Beck, M.; Schmidt, M.; Wiedemann, P.; Reichenbach, A.; Unterlauft, J.D. Müller Cell-Derived PEDF Mediates Neuroprotection via STAT3 Activation. Cell. Physiol. Biochem. 2017, 44, 1411–1424. [Google Scholar] [CrossRef] [PubMed]
- Simó-Servat, O.; Hernández, C.; Simó, R. Genetics in Diabetic Retinopathy: Current Concepts and New Insights. Curr. Genom. 2013, 14, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Tewari, S.; Zhong, Q.; Santos, J.M.; Kowluru, R.A. Mitochondria DNA Replication and DNA Methylation in the Metabolic Memory Associated with Continued Progression of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4881–4888. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Kowluru, R.A. Regulation of Matrix Metalloproteinase-9 by Epigenetic Modifications and the Development of Diabetic Retinopathy. Diabetes 2013, 62, 2559–2568. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A.; Santos, J.M.; Zhong, Q. Sirt1, a Negative Regulator of Matrix Metalloproteinase-9 in Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. 2014, 55, 5653–5660. [Google Scholar] [CrossRef] [PubMed]
- Agardh, E.; Lundstig, A.; Perfilyev, A.; Volkov, P.; Freiburghaus, T.; Lindholm, E.; Rönn, T.; Agardh, C.-D.; Ling, C. Genome-Wide Analysis of DNA Methylation in Subjects with Type 1 Diabetes Identifies Epigenetic Modifications Associated with Proliferative Diabetic Retinopathy. BMC Med. 2015, 13, 182. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A.; Mohammad, G.; dos Santos, J.M.; Zhong, Q. Abrogation of MMP-9 Gene Protects against the Development of Retinopathy in Diabetic Mice by Preventing Mitochondrial Damage. Diabetes 2011, 60, 3023–3033. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Kowluru, R.A. DNA Methylation—A Potential Source of Mitochondria DNA Base Mismatch in the Development of Diabetic Retinopathy. Mol. Neurobiol. 2019, 56, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, G.; Abdelaziz, G.M.; Siddiquei, M.M.; Ahmad, A.; De Hertogh, G.; Abu El-Asrar, A.M. Cross-Talk between Sirtuin 1 and the Proinflammatory Mediator High-Mobility Group Box-1 in the Regulation of Blood-Retinal Barrier Breakdown in Diabetic Retinopathy. Curr. Eye Res. 2019, 44, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Al-Shabrawey, M.; Smith, S. Prediction of Diabetic Retinopathy: Role of Oxidative Stress and Relevance of Apoptotic Biomarkers. EPMA J. 2010, 1, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J.; Liu, Z. Crosstalk of Reactive Oxygen Species and NF-κB Signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, S.; Kitamura, M. Bidirectional Regulation of NF-κB by Reactive Oxygen Species: A Role of Unfolded Protein Response. Free Radic. Biol. Med. 2013, 65, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, K.; Sandoval, H.; Yamamoto, S.; Jaiswal, M.; Sanz, E.; Li, Z.; Hui, J.; Graham, B.H.; Quintana, A.; et al. Glial Lipid Droplets and ROS Induced by Mitochondrial Defects Promote Neurodegeneration. Cell 2015, 160, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Njie-Mbye, Y.F.; Kulkarni-Chitnis, M.; Opere, C.A.; Barrett, A.; Ohia, S.E. Lipid Peroxidation: Pathophysiological and Pharmacological Implications in the Eye. Front. Physiol. 2013, 4, 366. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhou, K.K.; Lee, K.; Gao, G.; Lyons, T.J.; Kowluru, R.; Ma, J. The Role of Lipid Peroxidation Products and Oxidative Stress in Activation of the Canonical Wingless-Type MMTV Integration Site (WNT) Pathway in a Rat Model of Diabetic Retinopathy. Diabetologia 2011, 54, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Soto, I.; Krebs, M.P.; Reagan, A.M.; Howell, G.R. Vascular Inflammation Risk Factors in Retinal Disease. Annu. Rev. Vis. Sci. 2019, 5, 99–122. [Google Scholar] [CrossRef] [PubMed]
- Shafabakhsh, R.; Aghadavod, E.; Mobini, M.; Heidari-Soureshjani, R.; Asemi, Z. Association between microRNAs Expression and Signaling Pathways of Inflammatory Markers in Diabetic Retinopathy. J. Cell. Physiol. 2019, 234, 7781–7787. [Google Scholar] [CrossRef] [PubMed]
- Al-Kharashi, A.S. Role of Oxidative Stress, Inflammation, Hypoxia and Angiogenesis in the Development of Diabetic Retinopathy. Saudi J. Ophthalmol. 2018, 32, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Jialal, I.; Kaur, H. The Role of Toll-Like Receptors in Diabetes-Induced Inflammation: Implications for Vascular Complications. Curr. Diab Rep. 2012, 12, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Capitão, M.; Soares, R. Angiogenesis and Inflammation Crosstalk in Diabetic Retinopathy. J. Cell. Biochem. 2016, 117, 2443–2453. [Google Scholar] [CrossRef] [PubMed]
- Yue, T.; Shi, Y.; Luo, S.; Weng, J.; Wu, Y.; Zheng, X. The Role of Inflammation in Immune System of Diabetic Retinopathy: Molecular Mechanisms, Pathogenetic Role and Therapeutic Implications. Front. Immunol. 2022, 13, 1055087. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, F.; Morescalchi, F.; Cancarini, A.; Russo, A.; Rezzola, S.; Costagliola, C. Diabetic Retinopathy, a Vascular and Inflammatory Disease: Therapeutic Implications. Diabetes Metab. 2019, 45, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Kotwani, A. Exploring the Various Aspects of the Pathological Role of Vascular Endothelial Growth Factor (VEGF) in Diabetic Retinopathy. Pharmacol. Res. 2015, 99, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Yang, H.-L.; Gu, C.-J.; Liu, Y.-K.; Shao, J.; Zhu, R.; He, Y.-Y.; Zhu, X.-Y.; Li, M.-Q. Melatonin Restricts the Viability and Angiogenesis of Vascular Endothelial Cells by Suppressing HIF-1α/ROS/VEGF. Int. J. Mol. Med. 2019, 43, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Yerramothu, P.; Vijay, A.K.; Willcox, M.D.P. Inflammasomes, the Eye and Anti-Inflammasome Therapy. Eye 2018, 32, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-H.; Roh, K.-H.; Lim, N.-Y.; Park, S.J.; Park, S.; Kim, H.W. Role of the JAK/STAT Pathway in a Streptozotocin-Induced Diabetic Retinopathy Mouse Model. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 3553–3563. [Google Scholar] [CrossRef] [PubMed]
- Vanlandingham, P.A.; Nuno, D.J.; Quiambao, A.B.; Phelps, E.; Wassel, R.A.; Ma, J.-X.; Farjo, K.M.; Farjo, R.A. Inhibition of Stat3 by a Small Molecule Inhibitor Slows Vision Loss in a Rat Model of Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. 2017, 58, 2095–2105. [Google Scholar] [CrossRef] [PubMed]
- Dehdashtian, E.; Mehrzadi, S.; Yousefi, B.; Hosseinzadeh, A.; Reiter, R.J.; Safa, M.; Ghaznavi, H.; Naseripour, M. Diabetic Retinopathy Pathogenesis and the Ameliorating Effects of Melatonin; Involvement of Autophagy, Inflammation and Oxidative Stress. Life Sci. 2018, 193, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Browning, D.J.; Stewart, M.W.; Lee, C. Diabetic Macular Edema: Evidence-Based Management. Indian. J. Ophthalmol. 2018, 66, 1736–1750. [Google Scholar] [CrossRef] [PubMed]
- Romero-Aroca, P.; Baget-Bernaldiz, M.; Pareja-Rios, A.; Lopez-Galvez, M.; Navarro-Gil, R.; Verges, R. Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory. J. Diabetes Res. 2016, 2016, 2156273. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, T. Current Treatments for Diabetic Macular Edema. Int. J. Mol. Sci. 2023, 24, 9591. [Google Scholar] [CrossRef] [PubMed]
- Stitt, A.W.; Lois, N.; Medina, R.J.; Adamson, P.; Curtis, T.M. Advances in Our Understanding of Diabetic Retinopathy. Clin. Sci. 2013, 125, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yanyali, A.; Aytug, B.; Horozoglu, F.; Nohutcu, A.F. Bevacizumab (Avastin) for Diabetic Macular Edema in Previously Vitrectomized Eyes. Am. J. Ophthalmol. 2007, 144, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, M.; Geng, Z.; Khattak, S.; Ji, X.; Wu, D.; Dang, Y. Role of Oxidative Stress in Retinal Disease and the Early Intervention Strategies: A Review. Oxid. Med. Cell. Longev. 2022, 2022, 7836828. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Classification of Oxidative Stress Based on Its Intensity. EXCLI J. 2014, 13, 922–937. [Google Scholar] [PubMed]
- Chen, Y.; Mehta, G.; Vasiliou, V. Antioxidant Defenses in the Ocular Surface. Ocul. Surf. 2009, 7, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Brieger, K.; Schiavone, S.; Miller, F.J., Jr.; Krause, K.H. Reactive Oxygen Species: From Health to Disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef] [PubMed]
- Rossino, M.G.; Casini, G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients 2019, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Veenstra, A.; Palczewski, K.; Kern, T.S. Photoreceptor Cells Are Major Contributors to Diabetes-Induced Oxidative Stress and Local Inflammation in the Retina. Proc. Natl. Acad. Sci. USA 2013, 110, 16586–16591. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, M.; Chan, P.-S.; Kern, T.S.; Kowluru, R.A. Oxidative Damage in the Retinal Mitochondria of Diabetic Mice: Possible Protection by Superoxide Dismutase. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3805–3811. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Miller, C.M.; Kern, T.S. Hyperglycemia Increases Mitochondrial Superoxide in Retina and Retinal Cells. Free Radic. Biol. Med. 2003, 35, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Millán, I.; Desco, M.D.C.; Torres-Cuevas, I.; Pérez, S.; Pulido, I.; Mena-Mollá, S.; Mataix, J.; Asensi, M.; Ortega, Á.L. Pterostilbene Prevents Early Diabetic Retinopathy Alterations in a Rabbit Experimental Model. Nutrients 2019, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Haydinger, C.D.; Oliver, G.F.; Ashander, L.M.; Smith, J.R. Oxidative Stress and Its Regulation in Diabetic Retinopathy. Antioxidants 2023, 12, 1649. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A.; Atasi, L.; Ho, Y.-S. Role of Mitochondrial Superoxide Dismutase in the Development of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1594–1599. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A.; Kowluru, V.; Xiong, Y.; Ho, Y.-S. Overexpression of Mitochondrial Superoxide Dismutase in Mice Protects the Retina from Diabetes-Induced Oxidative Stress. Free Radic. Biol. Med. 2006, 41, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.; de Lorgeril, M. Wine, Alcohol, Platelets, and the French Paradox for Coronary Heart Disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative Stress and Antioxidants—A Critical Review on In Vitro Antioxidant Assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Li, Z.; Wang, W.; Liu, S.; Li, Y.; Sun, X.; Sutton, R.; Deng, L.; Liu, T.; Xia, Q.; et al. Resveratrol in Animal Models of Pancreatitis and Pancreatic Cancer: A Systematic Review with Machine Learning. Phytomedicine 2025, 139, 156538. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, M.; Momenai, R.; Karami-Mohajeri, S.; Ohadi, M.; Estabragh, M.A.R. Curcumin as a Natural Therapeutic Agent: A Rapid Review of Potential Clinical Uses and Mechanisms of Action. Iran. J. Pharm. Res. 2025, 24, e156983. [Google Scholar] [CrossRef]
- Ho, C.-H.; Fan, C.-K.; Chu, Y.-C.; Liu, S.-P.; Cheng, P.-C. Effects of Pterostilbene on Inducing Apoptosis in Normal Bladder and Bladder Cancer Cells. Tissue Cell 2025, 94, 102794. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Sha, M.; Zhou, J.; Huang, Y. Quercetin Affects Apoptosis and Autophagy in Pediatric Acute Myeloid Leukaemia Cells by Inhibiting PI3K/AKT Signaling Pathway Activation through Regulation of miR-224-3p/PTEN Axis. BMC Cancer 2025, 25, 318. [Google Scholar] [CrossRef] [PubMed]
- Markowska, A.; Antoszczak, M.; Markowska, J.; Huczyński, A. Role of Epigallocatechin Gallate in Selected Malignant Neoplasms in Women. Nutrients 2025, 17, 212. [Google Scholar] [CrossRef] [PubMed]
- Delpino, F.M.; Figueiredo, L.M. Resveratrol Supplementation and Type 2 Diabetes: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 4465–4480. [Google Scholar] [CrossRef] [PubMed]
- Marton, L.T.; Pescinini-E-Salzedas, L.M.; Camargo, M.E.C.; Barbalho, S.M.; Haber, J.F.D.S.; Sinatora, R.V.; Detregiachi, C.R.P.; Girio, R.J.S.; Buchaim, D.V.; Cincotto Dos Santos Bueno, P. The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Front. Endocrinol. 2021, 12, 669448. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.; Aswar, U.; Vyas, N. Pterostilbene Ameliorates Type-2 Diabetes Mellitus—Induced Depressive-like Behavior by Mitigating Insulin Resistance, Inflammation and Ameliorating HPA Axis Dysfunction in Rat Brain. Brain Res. 2023, 1817, 148494. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Vaghari-Tabari, M.; Malakoti, F.; Moein, S.; Qujeq, D.; Yousefi, B.; Asemi, Z. Quercetin: An Effective Polyphenol in Alleviating Diabetes and Diabetic Complications. Crit. Rev. Food Sci. Nutr. 2023, 63, 9163–9186. [Google Scholar] [CrossRef] [PubMed]
- Yurtseven, K.; Yücecan, S. Exploring the Potential of Epigallocatechin Gallate in Combating Insulin Resistance and Diabetes. Nutrients 2024, 16, 4360. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Nafady, M.H.; Islam, M.R.; Saha, S.; Rashid, S.; Akter, A.; Or-Rashid, M.H.-; Akhtar, M.F.; Perveen, A.; Md Ashraf, G.; et al. Resveratrol and Neuroprotection: An Insight into Prospective Therapeutic Approaches against Alzheimer’s Disease from Bench to Bedside. Mol. Neurobiol. 2022, 59, 4384–4404. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Ye, X.; Su, W.; Wang, Y. Curcumin Alleviates Alzheimer’s Disease by Inhibiting Inflammatory Response, Oxidative Stress and Activating the AMPK Pathway. J. Chem. Neuroanat. 2023, 134, 102363. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, J.; Jia, L.; Zhou, Y.; Fu, Q.; Wang, Y.; Mu, D.; Wang, D.; Li, N.; Hou, Y. Pterostilbene Nanoemulsion Promotes Nrf2 Signaling Pathway to Downregulate Oxidative Stress for Treating Alzheimer’s Disease. Int. J. Pharm. 2024, 655, 124002. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules 2019, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Valverde-Salazar, V.; Ruiz-Gabarre, D.; García-Escudero, V. Alzheimer’s Disease and Green Tea: Epigallocatechin-3-Gallate as a Modulator of Inflammation and Oxidative Stress. Antioxidants 2023, 12, 1460. [Google Scholar] [CrossRef] [PubMed]
- Kubota, S.; Ozawa, Y.; Kurihara, T.; Sasaki, M.; Yuki, K.; Miyake, S.; Noda, K.; Ishida, S.; Tsubota, K. Roles of AMP-Activated Protein Kinase in Diabetes-Induced Retinal Inflammation. Invest. Ophthalmol. Vis. Sci. 2011, 52, 9142–9148. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Wang, Y.; Huang, L.; Song, Y.; Yu, X.; Deng, B.; Zhou, X. Resveratrol Inhibits Neural Apoptosis and Regulates RAX/P-PKR Expression in Retina of Diabetic Rats. Nutr. Neurosci. 2022, 25, 2560–2569. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Wang, Y.; Yang, N.; Wang, D.; Li, S.; Ming, J.; Wang, J.; Yu, X.; Song, Y.; Zhou, X.; et al. Resveratrol Inhibits Diabetic-Induced Müller Cells Apoptosis through MicroRNA-29b/Specificity Protein 1 Pathway. Mol. Neurobiol. 2017, 54, 4000–4014. [Google Scholar] [CrossRef] [PubMed]
- Al-Hussaini, H.; Kittaneh, R.S.; Kilarkaje, N. Effects of Trans-Resveratrol on Type 1 Diabetes-Induced up-Regulation of Apoptosis and Mitogen-Activated Protein Kinase Signaling in Retinal Pigment Epithelium of Dark Agouti Rats. Eur. J. Pharmacol. 2021, 904, 174167. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, S.-Y.; Song, Y.; Wang, Y.; Wan, Z.-W.; Sun, P.; Yu, X.-M.; Deng, B.; Zeng, K.-H. Resveratrol Protects Müller Cells Against Ferroptosis in the Early Stage of Diabetic Retinopathy by Regulating the Nrf2/GPx4/PTGS2 Pathway. Mol. Neurobiol. 2025, 62, 3412–3427. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Meng, J.; Li, H.; Wei, H.; Bi, F.; Liu, S.; Tang, K.; Guo, H.; Liu, W. Resveratrol Exhibits an Effect on Attenuating Retina Inflammatory Condition and Damage of Diabetic Retinopathy via PON1. Exp. Eye Res. 2019, 181, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Ghadiri Soufi, F.; Arbabi-Aval, E.; Rezaei Kanavi, M.; Ahmadieh, H. Anti-Inflammatory Properties of Resveratrol in the Retinas of Type 2 Diabetic Rats. Clin. Exp. Pharmacol. Physiol. 2015, 42, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Losso, J.N.; Truax, R.E.; Richard, G. Trans-Resveratrol Inhibits Hyperglycemia-Induced Inflammation and Connexin Downregulation in Retinal Pigment Epithelial Cells. J. Agric. Food Chem. 2010, 58, 8246–8252. [Google Scholar] [CrossRef] [PubMed]
- Soufi, F.G.; Mohammad-nejad, D.; Ahmadieh, H. Resveratrol Improves Diabetic Retinopathy Possibly through Oxidative Stress—Nuclear Factor κB—Apoptosis Pathway. Pharmacol. Rep. 2012, 64, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Liu, J.; Wang, Z.; Yu, L.; Wang, J. Piceatannol Protects Human Retinal Pigment Epithelial Cells against Hydrogen Peroxide Induced Oxidative Stress and Apoptosis through Modulating PI3K/Akt Signaling Pathway. Nutrients 2019, 11, 1515. [Google Scholar] [CrossRef] [PubMed]
- Medoro, A.; Davinelli, S.; Scuderi, L.; Scuderi, G.; Scapagnini, G.; Fragiotta, S. Targeting Senescence, Oxidative Stress, and Inflammation: Quercetin-Based Strategies for Ocular Diseases in Older Adults. CIA 2025, 20, 791–813. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, L.; Yao, G.-M.; Yan, H.-L.; Wang, L. Effects of Quercetin on Diabetic Retinopathy and Its Association with NLRP3 Inflammasome and Autophagy. Int. J. Ophthalmol. 2021, 14, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Chai, G.-R.; Liu, S.; Yang, H.-W.; Chen, X.-L. Quercetin Protects against Diabetic Retinopathy in Rats by Inducing Heme Oxygenase-1 Expression. Neural Regen. Res. 2021, 16, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; He, T.; Xing, Y.; Cao, T. Effects of Quercetin on the Expression of MCP-1, MMP-9 and VEGF in Rats with Diabetic Retinopathy. Exp. Ther. Med. 2017, 14, 6022–6026. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Huang, L.; Yu, J. Effects of Blueberry Anthocyanins on Retinal Oxidative Stress and Inflammation in Diabetes through Nrf2/HO-1 Signaling. J. Neuroimmunol. 2016, 301, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Du, S.; Ye, Z.; Yang, W.; Liu, Y. Blueberry Anthocyanin Extracts (BAEs) Protect Retinal and Retinal Pigment Epithelium Function from High-Glucose-Induced Apoptosis by Activating GLP-1R/Akt Signaling. J. Agric. Food Chem. 2025, 73, 5886–5898. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Gupta, S.K.; Nag, T.C.; Srivastava, S.; Saxena, R. Green Tea Prevents Hyperglycemia-Induced Retinal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Ophthalmic Res. 2011, 47, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.C.; Rosales, M.A.B.; Hamassaki, D.E.; Saito, K.C.; Faria, A.M.; Ribeiro, P.A.O.; Lopes de Faria, J.B.; Lopes de Faria, J.M. Green Tea Is Neuroprotective in Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. 2013, 54, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-M.; Huang, J.-H.; Chiang, H.-S.; Wu, W.-B.; Lin, H.-H.; Hong, J.-Y.; Hung, C.-F. Effects of (-)-Epigallocatechin Gallate on RPE Cell Migration and Adhesion. Mol. Vis. 2010, 16, 586–595. [Google Scholar] [PubMed]
- Wang, L.; Sun, X.; Zhu, M.; Du, J.; Xu, J.; Qin, X.; Xu, X.; Song, E. Epigallocatechin-3-Gallate Stimulates Autophagy and Reduces Apoptosis Levels in Retinal Müller Cells under High-Glucose Conditions. Exp. Cell Res. 2019, 380, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Al-Dosari, D.I.; Ahmed, M.M.; Al-Rejaie, S.S.; Alhomida, A.S.; Ola, M.S. Flavonoid Naringenin Attenuates Oxidative Stress, Apoptosis and Improves Neurotrophic Effects in the Diabetic Rat Retina. Nutrients 2017, 9, 1161. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zuo, Z.; Lu, S.; Liu, A.; Liu, X. Naringin Attenuates Diabetic Retinopathy by Inhibiting Inflammation, Oxidative Stress and NF-κB Activation In Vivo and In Vitro. Iran. J. Basic. Med. Sci. 2017, 20, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jin, H.; Sun, H.; Zhang, Z.; Zheng, J.; Li, S.; Han, S. Eriodictyol Attenuates Cisplatin-Induced Kidney Injury by Inhibiting Oxidative Stress and Inflammation. Eur. J. Pharmacol. 2016, 772, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.-F.; Guo, H.-J.; Huang, Y.; Wu, C.-T.; Zhang, X.-F. Eriodictyol, a Plant Flavonoid, Attenuates LPS-Induced Acute Lung Injury through Its Antioxidative and Anti-Inflammatory Activity. Exp. Ther. Med. 2015, 10, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Bucolo, C.; Leggio, G.M.; Drago, F.; Salomone, S. Eriodictyol Prevents Early Retinal and Plasma Abnormalities in Streptozotocin-Induced Diabetic Rats. Biochem. Pharmacol. 2012, 84, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Yu, J.; Xu, X.; Lu, T.; Xu, F. Eriodictyol Inhibits High Glucose-Induced Oxidative Stress and Inflammation in Retinal Ganglial Cells. J. Cell. Biochem. 2019, 120, 5644–5651. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, B.; Palanisamy, U.D.; Chua, K.H.; Kuppusamy, U.R. Protective Effect of Myricetin Derivatives from Syzygium Malaccense against Hydrogen Peroxide-Induced Stress in ARPE-19 Cells. Mol. Vis. 2019, 25, 47–59. [Google Scholar] [PubMed]
- Kim, Y.S.; Kim, J.; Kim, K.M.; Jung, D.H.; Choi, S.; Kim, C.-S.; Kim, J.S. Myricetin Inhibits Advanced Glycation End Product (AGE)-Induced Migration of Retinal Pericytes through Phosphorylation of ERK1/2, FAK-1, and Paxillin In Vitro and In Vivo. Biochem. Pharmacol. 2015, 93, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Nahar, N.; Mohamed, S.; Mustapha, N.M.; Fong, L.S.; Mohd Ishak, N.I. Gallic Acid and Myricetin-Rich Labisia Pumila Extract Mitigated Multiple Diabetic Eye Disorders in Rats. J. Food Biochem. 2021, 45, e13948. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, Z.; Fang, J. Scutellarin Alleviates Diabetic Retinopathy via the Suppression of Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptor Pyrin Domain Containing Protein 3 Inflammasome Activation. Curr. Eye Res. 2024, 49, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Guo, X.-L.; Xu, M.; Chen, J.-L.; Wang, Y.-F.; Jie-Sun; Xiao, Y.-G.; Gao, A.-S.; Zhang, L.-C.; Liu, X.-Z.; et al. Network Pharmacology Mechanism of Scutellarin to Inhibit RGC Pyroptosis in Diabetic Retinopathy. Sci. Rep. 2023, 13, 6504. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Li, Y.; Yu, S.; Li, X.; Hu, Y.; Long, T.; Wang, L.; Li, W.; Ye, X.; Ke, Z.; et al. Scutellarin Prevents Angiogenesis in Diabetic Retinopathy by Downregulating VEGF/ERK/FAK/Src Pathway Signaling. J. Diabetes Res. 2019, 2019, 4875421. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Zhang, T.; Ouyang, H.; Lu, B.; Wang, Z.; Ji, L. Scutellarin Alleviates Blood-Retina-Barrier Oxidative Stress Injury Initiated by Activated Microglia Cells during the Development of Diabetic Retinopathy. Biochem. Pharmacol. 2019, 159, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Cheng, Y.; Dong, X.; Zhang, M.; Pei, C.; Zhang, M. Effects of Rhaponticin on Retinal Oxidative Stress and Inflammation in Diabetes through NRF2/HO-1/NF-κB Signalling. J. Biochem. Mol. Toxicol. 2020, 34, e22568. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Osorio, A.S.; González-Reyes, S.; Pedraza-Chaverri, J. Natural Nrf2 Activators in Diabetes. Clin. Chim. Acta 2015, 448, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.-F.; Zhang, Q.; Liu, X.-Z. Protective Effects of Curcumin on Retinal Müller Cell in Early Diabetic Rats. Int. J. Ophthalmol. 2013, 6, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yu, J.; Ke, F.; Lan, M.; Li, D.; Tan, K.; Ling, J.; Wang, Y.; Wu, K.; Li, D. Curcumin Alleviates Diabetic Retinopathy in Experimental Diabetic Rats. Ophthalmic Res. 2018, 60, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Mrudula, T.; Suryanarayana, P.; Srinivas, P.N.B.S.; Reddy, G.B. Effect of Curcumin on Vascular Endothelial Growth Factor Expression in Diabetic Rat Retina. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2939. [Google Scholar]
- Khimmaktong, W.; Petpiboolthai, H.; Sriya, P.; Anupunpisit, V. Effects of Curcumin on Restoration and Improvement of Microvasculature Characteristic in Diabetic Rat’s Choroid of Eye. J. Med. Assoc. Thai 2014, 97 (Suppl. S2), S39–S46. [Google Scholar] [PubMed]
- Amini, S.; Dehghani, A.; Sahebkar, A.; Iraj, B.; Rezaeian-Ramsheh, A.; Askari, G.; Majeed, M.; Bagherniya, M. The Efficacy of Curcumin-Piperine Supplementation in Patients with Nonproliferative Diabetic Retinopathy: An Optical Coherence Tomography Angiography-Based Randomized Controlled Trial. J. Res. Med. Sci. 2024, 29, 64. [Google Scholar] [CrossRef] [PubMed]
- Khatun, M.M.; Bhuia, M.S.; Chowdhury, R.; Sheikh, S.; Ajmee, A.; Mollah, F.; Al Hasan, M.S.; Coutinho, H.D.M.; Islam, M.T. Potential Utilization of Ferulic Acid and Its Derivatives in the Management of Metabolic Diseases and Disorders: An Insight into Mechanisms. Cell Signal. 2024, 121, 111291. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; He, Y.; Wang, S.; He, Y.; Wang, W.; Li, Q.; Cao, X. Ferulic Acid Inhibits Advanced Glycation End Products (AGEs) Formation and Mitigates the AGEs-Induced Inflammatory Response in HUVEC Cells. J. Funct. Foods 2018, 48, 19–26. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Tan, H.; Zhang, Y.; Feng, Y. Protective Effect of a Chinese Medicine Formula He-Ying-Qing-Re Formula on Diabetic Retinopathy. J. Ethnopharmacol. 2015, 169, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, Y.; Tan, H.-Y.; Li, S.; Wang, N.; Zhang, Y.; Feng, Y. Neuroprotective Effect of He-Ying-Qing-Re Formula on Retinal Ganglion Cell in Diabetic Retinopathy. J. Ethnopharmacol. 2018, 214, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zou, W.; Cao, X.; Xu, W.; Lu, Z.; Zhu, Y.; Hu, X.; Hu, J.; Zhu, Q. Ferulic Acid Attenuates High Glucose-Induced Apoptosis in Retinal Pigment Epithelium Cells and Protects Retina in Db/Db Mice. PeerJ 2022, 10, e13375. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, R.A. Effect of Reinstitution of Good Glycemic Control on Retinal Oxidative Stress and Nitrative Stress in Diabetic Rats. Diabetes 2003, 52, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Miwa, K.; Nakamura, J.; Hamada, Y.; Naruse, K.; Nakashima, E.; Kato, K.; Kasuya, Y.; Yasuda, Y.; Kamiya, H.; Hotta, N. The Role of Polyol Pathway in Glucose-Induced Apoptosis of Cultured Retinal Pericytes. Diabetes Res. Clin. Pract. 2003, 60, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tanito, M.; Anderson, R. Dual Roles of Polyunsaturated Fatty Acids in Retinal Physiology and Pathophysiology Associated with Retinal Degeneration. Clin. Lipidol. 2009, 4, 821–827. [Google Scholar] [CrossRef]
- Liu, A.; Chang, J.; Lin, Y.; Shen, Z.; Bernstein, P.S. Long-Chain and Very Long-Chain Polyunsaturated Fatty Acids in Ocular Aging and Age-Related Macular Degeneration. J. Lipid Res. 2010, 51, 3217–3229. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M. Tissue Levels of Polyunsaturated Fatty Acids during Early Human Development. J. Pediatr. 1992, 120, S129–S138. [Google Scholar] [CrossRef] [PubMed]
- Suzumura, A.; Terao, R.; Kaneko, H. Protective Effects and Molecular Signaling of N-3 Fatty Acids on Oxidative Stress and Inflammation in Retinal Diseases. Antioxidants 2020, 9, 920. [Google Scholar] [CrossRef] [PubMed]
- Signorini, C.; De Felice, C.; Galano, J.-M.; Oger, C.; Leoncini, S.; Cortelazzo, A.; Ciccoli, L.; Durand, T.; Hayek, J.; Lee, J.C.-Y. Isoprostanoids in Clinical and Experimental Neurological Disease Models. Antioxidants 2018, 7, 88. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hu, J.; Du, S.; Chen, Y.; Wang, S.; Wu, Q. ERK1/2/COX-2/PGE2 Signaling Pathway Mediates GPR91-Dependent VEGF Release in Streptozotocin-Induced Diabetes. Mol. Vis. 2014, 20, 1109–1121. [Google Scholar] [PubMed]
- Ayalasomayajula, S.P.; Kompella, U.B. Celecoxib, a Selective Cyclooxygenase-2 Inhibitor, Inhibits Retinal Vascular Endothelial Growth Factor Expression and Vascular Leakage in a Streptozotocin-Induced Diabetic Rat Model. Eur. J. Pharmacol. 2003, 458, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Torres-Cuevas, I.; Millán, I.; Asensi, M.; Vento, M.; Oger, C.; Galano, J.-M.; Durand, T.; Ortega, Á.L. Analysis of Lipid Peroxidation by UPLC-MS/MS and Retinoprotective Effects of the Natural Polyphenol Pterostilbene. Antioxidants 2021, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Wang, D.; Wang, J.; Huang, Q.; Zhang, H.; Liu, C.; Liu, X.; Ye, H. Study on the Mechanism of Plant Metabolites to Intervene Oxidative Stress in Diabetic Retinopathy. Front. Pharmacol. 2025, 16, 1517964. [Google Scholar] [CrossRef] [PubMed]
- Burggraaf-Sánchez de Las Matas, R.; Torres-Cuevas, I.; Millán, I.; Desco, M.D.C.; Oblaré-Delgado, C.; Asensi, M.; Mena-Mollá, S.; Oger, C.; Galano, J.-M.; Durand, T.; et al. Potential of Pterostilbene as an Antioxidant Therapy for Delaying Retinal Damage in Diabetic Retinopathy. Antioxidants 2025, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Baghban, R.; Namvar, E.; Attar, A.; Mortazavi, M. Progressing Nanotechnology to Improve Diagnosis and Targeted Therapy of Diabetic Retinopathy. Biomed. Pharmacother. 2025, 183, 117786. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, N. Progress of Nanotechnology in Diabetic Retinopathy Treatment. Int. J. Nanomed. 2021, 16, 1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Borodina, T.; Kostyushev, D.; Zamyatnin, A.A.; Parodi, A. Nanomedicine for Treating Diabetic Retinopathy Vascular Degeneration. Int. J. Transl. Med. 2021, 1, 306–322. [Google Scholar] [CrossRef]
- du Toit, L.C.; Choonara, Y.E.; Pillay, V. An Injectable Nano-Enabled Thermogel to Attain Controlled Delivery of P11 Peptide for the Potential Treatment of Ocular Angiogenic Disorders of the Posterior Segment. Pharmaceutics 2021, 13, 176. [Google Scholar] [CrossRef] [PubMed]
- Radwan, S.E.-S.; El-Kamel, A.; Zaki, E.I.; Burgalassi, S.; Zucchetti, E.; El-Moslemany, R.M. Hyaluronic-Coated Albumin Nanoparticles for the Non-Invasive Delivery of Apatinib in Diabetic Retinopathy. Int. J. Nanomed. 2021, 16, 4481–4494. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Nguyen, H.K.; Lee, J.E.; Suh, W. Therapeutic Effect of Apatinib-Loaded Nanoparticles on Diabetes-Induced Retinal Vascular Leakage. Int. J. Nanomed. 2016, 11, 3101–3109. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Sun, J.-G.; Yao, J.; Shan, K.; Liu, B.-H.; Yao, M.-D.; Ge, H.-M.; Jiang, Q.; Zhao, C.; Yan, B. Effect of Nanoencapsulation Using Poly (Lactide-Co-Glycolide) (PLGA) on Anti-Angiogenic Activity of Bevacizumab for Ocular Angiogenesis Therapy. Biomed. Pharmacother. 2018, 107, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Supe, S.; Upadhya, A.; Tripathi, S.; Dighe, V.; Singh, K. Liposome-Polyethylenimine Complexes for the Effective Delivery of HuR siRNA in the Treatment of Diabetic Retinopathy. Drug Deliv. Transl. Res. 2023, 13, 1675–1698. [Google Scholar] [CrossRef] [PubMed]
- Salimi, A.; Makhmalzadeh, B.S.; Feghhi, M.; Rezai, A.; Bagheri, F. Evaluation of the Eff Ect of Naringenin Liposomal Formulation on Retinopathy in an Experimental Rabbit Model. Kafkas Univ. Vet. Fak. Derg. 2022, 28, 469–479. [Google Scholar] [CrossRef]
- Li, Z.; Yu, H.; Liu, C.; Wang, C.; Zeng, X.; Yan, J.; Sun, Y. Efficiency Co-Delivery of Ellagic Acid and Oxygen by a Non-Invasive Liposome for Ameliorating Diabetic Retinopathy. Int. J. Pharm. 2023, 641, 122987. [Google Scholar] [CrossRef] [PubMed]
- Ganugula, R.; Arora, M.; Dwivedi, S.; Chandrashekar, D.S.; Varambally, S.; Scott, E.M.; Kumar, M.N.V.R. Systemic Anti-Inflammatory Therapy Aided by Curcumin-Laden Double-Headed Nanoparticles Combined with Injectable Long-Acting Insulin in a Rodent Model of Diabetes Eye Disease. ACS Nano 2023, 17, 6857–6874. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Oliveira, D.; Cabral-Marques, H. Curcumin in Ophthalmology: Mechanisms, Challenges, and Emerging Opportunities. Molecules 2025, 30, 457. [Google Scholar] [CrossRef] [PubMed]
- Srinivasarao, D.A.; Sreenivasa Reddy, S.; Bhanuprakash Reddy, G.; Katti, D.S. Simultaneous Amelioration of Diabetic Ocular Complications in Lens and Retinal Tissues Using a Non-Invasive Drug Delivery System. Int. J. Pharm. 2021, 608, 121045. [Google Scholar] [CrossRef] [PubMed]
- Campanero, M.A.; Escolar, M.; Perez, G.; Garcia-Quetglas, E.; Sadaba, B.; Azanza, J.R. Simultaneous Determination of Diosmin and Diosmetin in Human Plasma by Ion Trap Liquid Chromatography–Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry: Application to a Clinical Pharmacokinetic Study. J. Pharm. Biomed. Anal. 2010, 51, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Zingale, E.; Rizzo, S.; Bonaccorso, A.; Consoli, V.; Vanella, L.; Musumeci, T.; Spadaro, A.; Pignatello, R. Optimization of Lipid Nanoparticles by Response Surface Methodology to Improve the Ocular Delivery of Diosmin: Characterization and In-Vitro Anti-Inflammatory Assessment. Pharmaceutics 2022, 14, 1961. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wan, G.; Yan, P.; Qian, C.; Li, F.; Peng, G. Fabrication of Resveratrol Coated Gold Nanoparticles and Investigation of Their Effect on Diabetic Retinopathy in Streptozotocin Induced Diabetic Rats. J. Photochem. Photobiol. B Biol. 2019, 195, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Fangueiro, J.F.; Calpena, A.C.; Clares, B.; Andreani, T.; Egea, M.A.; Veiga, F.J.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Biopharmaceutical Evaluation of Epigallocatechin Gallate-Loaded Cationic Lipid Nanoparticles (EGCG-LNs): In Vivo, In Vitro and Ex Vivo Studies. Int. J. Pharm. 2016, 502, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Panda, S.P. Nexus of NFκB/VEGF/MMP9 Signaling in Diabetic Retinopathy-Linked Dementia: Management by Phenolic Acid-Enabled Nanotherapeutics. Life Sci. 2024, 358, 123123. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Geng, K.; Lu, X.; Shen, X.; Guo, Q. ROS-Responsive Nanoparticles with Antioxidative Effect for the Treatment of Diabetic Retinopathy. J. Biomater. Sci. Polym. Ed. 2025, 36, 440–461. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Meng, T.; Chen, Q.; Zhou, K.; Shao, Y.; Matlock, G.; Ma, X.; Wu, W.; Du, Y.; Wang, X.; et al. Fenofibrate-Loaded Biodegradable Nanoparticles for the Treatment of Experimental Diabetic Retinopathy and Neovascular Age-Related Macular Degeneration. Mol. Pharm. 2019, 16, 1958–1970. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kushwaha, P.; Gupta, S. In Situ Forming Nanoemulgel for Diabetic Retinopathy: Development, Characterization, and in vitro Efficacy Assessment. Drug Res. 2025, 75, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, M.; Păpurică, A.-M.; Muntean, M.; Bungărdean, R.M.; Gheban, D.; Moldovan, B.; Katona, G.; David, L.; Filip, G.A. Effects of Gold Nanoparticles Phytoreduced with Rutin in an Early Rat Model of Diabetic Retinopathy and Cataracts. Metabolites 2023, 13, 955. [Google Scholar] [CrossRef] [PubMed]
- Gui, S.; Tang, W.; Huang, Z.; Wang, X.; Gui, S.; Gao, X.; Xiao, D.; Tao, L.; Jiang, Z.; Wang, X. Ultrasmall Coordination Polymer Nanodots Fe-Quer Nanozymes for Preventing and Delaying the Development and Progression of Diabetic Retinopathy. Adv. Funct. Mater. 2023, 33, 2300261. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, Z.; Chen, H.; Gu, C. Association of Socioeconomic Status with Diabetic Microvascular Complications: A UK Biobank Prospective Cohort Study. Diabetol. Metab. Syndr. 2025, 17, 24. [Google Scholar] [CrossRef] [PubMed]
- Low, J.R.; Gan, A.T.L.; Fenwick, E.K.; Gupta, P.; Wong, T.Y.; Teo, Z.L.; Thakur, S.; Tham, Y.C.; Sabanayagam, C.; Cheng, C.-Y.; et al. Role of Socio-Economic Factors in Visual Impairment and Progression of Diabetic Retinopathy. Br. J. Ophthalmol. 2021, 105, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Hanna, A.; Martinez, D.L.; Schlenker, M.B.; Ahmed, I.I.K. Socioeconomic Status and Vision Care Utilization in Canada: A Systematic Review. Can. J. Ophthalmol. 2025, 60, e541–e547. [Google Scholar] [CrossRef] [PubMed]
- Oza, M.J.; Laddha, A.P.; Gaikwad, A.B.; Mulay, S.R.; Kulkarni, Y.A. Role of Dietary Modifications in the Management of Type 2 Diabetic Complications. Pharmacol. Res. 2021, 168, 105602. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, C.; Jiang, H. Association of Dietary Inflammatory Index with Ocular Diseases: A Population-Based Cross-Sectional Study. Eur. J. Med. Res. 2025, 30, 62. [Google Scholar] [CrossRef] [PubMed]
- Lazar, M.; Davenport, L. Barriers to Health Care Access for Low Income Families: A Review of Literature. J. Community Health Nurs. 2018, 35, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.Y.; Rustam, Z.; Tran, D.; Han, D.; Bahrainian, M.; Channa, R.; Cai, C.X. Association of Neighborhood Socioeconomic Disadvantage with Proliferative Diabetic Retinopathy. Ophthalmol. Retin. 2025, 9, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Atta, S.; Zaheer, H.A.; Clinger, O.; Liu, P.J.; Waxman, E.L.; McGinnis-Thomas, D.; Sahel, J.-A.; Williams, A.M. Characteristics Associated with Barriers to Eye Care: A Cross-Sectional Survey at a Free Vision Screening Event. Ophthalmic Res. 2023, 66, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Niyazmand, N.; Alam, K.; Wood, H.; Charng, J.; Gerritsma, S.; Niyazmand, H. Eye Health Literacy across the World and in Australia. Clin. Exp. Optom. 2025, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yarahmadi, S.; Nikkhoo, B.; Miraki, P.; Rahmani, K. Investigating Metabolic Control and Complications in Type 2 Diabetic Patients with Low Income in Northwest of Iran, 2023. J. Health Popul. Nutr. 2025, 44, 38. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.-P.; Buys, Y.M.; Hatch, W.; Trope, G.E. De-Insurance in Ontario Has Reduced Use of Eye Care Services by the Socially Disadvantaged. Can. J. Ophthalmol. 2012, 47, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Zooravar, D.; Soltani, P.; Khezri, S. Mediterranean Diet and Diabetic Microvascular Complications: A Systematic Review and Meta-Analysis. BMC Nutr. 2025, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Del Bo’, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is There Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients 2019, 11, 1355. [Google Scholar] [CrossRef] [PubMed]
- Sohn, E.H.; van Dijk, H.W.; Jiao, C.; Kok, P.H.B.; Jeong, W.; Demirkaya, N.; Garmager, A.; Wit, F.; Kucukevcilioglu, M.; van Velthoven, M.E.J.; et al. Retinal Neurodegeneration May Precede Microvascular Changes Characteristic of Diabetic Retinopathy in Diabetes Mellitus. Proc. Natl. Acad. Sci. USA 2016, 113, E2655–E2664. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Nie, C.; Gong, Y.; Zhang, Y.; Jin, X.; Wei, S.; Zhang, M. Peripapillary Retinal Nerve Fiber Layer Changes in Preclinical Diabetic Retinopathy: A Meta-Analysis. PLoS ONE 2015, 10, e0125919. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.B.; Shin, Y.I.; Lee, M.W.; Park, G.S.; Kim, J.Y. Longitudinal Changes in the Peripapillary Retinal Nerve Fiber Layer Thickness of Patients With Type 2 Diabetes. JAMA Ophthalmol. 2019, 137, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Aschauer, J.; Pollreisz, A.; Karst, S.; Hülsmann, M.; Hajdu, D.; Datlinger, F.; Egner, B.; Kriechbaum, K.; Pablik, E.; Schmidt-Erfurth, U.M. Longitudinal Analysis of Microvascular Perfusion and Neurodegenerative Changes in Early Type 2 Diabetic Retinal Disease. Br. J. Ophthalmol. 2022, 106, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Barber, A.J. A New View of Diabetic Retinopathy: A Neurodegenerative Disease of the Eye. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2003, 27, 283–290. [Google Scholar] [CrossRef] [PubMed]
Intravitreal Drug | Year of Approval by the FDA/EMA | Drug Type | Approximated Cost per Injection (USA Dollars) | Biosimilars for Anti-VEGF (Approval Date and Agency) |
---|---|---|---|---|
Bevacizumab 1.25 mg (Avastin®) | 2004/2005 (off-label for ocular pathologies) | Humanized monoclonal antibody (anti-VEGF-A) | 50 $ | Mvasi (2017, FDA) Zirabev (2019, FDA) |
Ranibizumab 0.3 or 0.5 mg (Lucentis®) | 2006/2007 | Humanized monoclonal antibody (anti-VEGF-A) | 1950 $ | Byooviz (2021 FDA/EMA) Cimerli (2022, FDA) Ranivisio (2022 EMA) Ximluci (2022 EMA) Epruvi (2024 EMA) |
Dexamethasone implant 0.7 mg (Ozurdex®) | 2010/2010 | Synthetic steroid | 1500 $ | |
Aflibercept 2 mg (Eylea® 2 mg) | 2011/2012 | Fusion protein (soluble VEGF receptor) | 1850–2000 $ | Yesafili (2024 FDA/2023 EMA) Opuviz (2024 FDA/EMA) Pavblu (2024 FDA/2025 EMA) Ahzantive (2024 FDA/2025 EMA) Baiama (2025 EMA) Eydenzelt (2025 EMA) Afqlir (2024 EMA) Vgenfli (Authorization pending EMA) |
Fluocinolone Acetonide 0.19 mg implant (Iluvien®) | 2014/2019 | Synthetic steroid | 6000–7000 $ | |
Brolucizumab 6.0 mg (Beovu®) | 2019/2020 | Humanized monoclonal antibody (anti-VEGF-A) | 1850–2000 $ | Not available |
Faricimab 6.0 mg (Vabysmo®) | 2022/2022 | Humanized bispecific monoclonal antibody (anti-VEGF-A and anti-Ang-2) | 2289 $ | Not available |
Aflibercept 8 mg (Eylea® HD) | 2023/2014 | Fusion protein (soluble VEGF receptor) | 3000–4000 $ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Jiménez, V.; Burggraaf-Sánchez de las Matas, R.; Ortega, Á.L. Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols. Antioxidants 2025, 14, 875. https://doi.org/10.3390/antiox14070875
Gómez-Jiménez V, Burggraaf-Sánchez de las Matas R, Ortega ÁL. Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols. Antioxidants. 2025; 14(7):875. https://doi.org/10.3390/antiox14070875
Chicago/Turabian StyleGómez-Jiménez, Verónica, Raquel Burggraaf-Sánchez de las Matas, and Ángel Luis Ortega. 2025. "Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols" Antioxidants 14, no. 7: 875. https://doi.org/10.3390/antiox14070875
APA StyleGómez-Jiménez, V., Burggraaf-Sánchez de las Matas, R., & Ortega, Á. L. (2025). Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols. Antioxidants, 14(7), 875. https://doi.org/10.3390/antiox14070875