Previous Issue
Volume 16, April
 
 

Micromachines, Volume 16, Issue 5 (May 2025) – 47 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 2960 KiB  
Article
Electrode Design Based on Porous MnO2/PPy Hybrid Nanocomposite and Its Application in Zinc-Ion Batteries
by Shilin Li, Taoyun Zhou, Muzhou Liu, Qiaomei Zhao, Yi Liu, Yun Cheng and Xinyu Li
Micromachines 2025, 16(5), 536; https://doi.org/10.3390/mi16050536 (registering DOI) - 29 Apr 2025
Abstract
The development of safe, cost-effective, and environmentally friendly energy storage systems has spurred growing interest in aqueous ZIBs. However, the poor cycling stability of cathode materials—mainly due to manganese dissolution and structural degradation—remains a major bottleneck. In this work, a porous MnO2 [...] Read more.
The development of safe, cost-effective, and environmentally friendly energy storage systems has spurred growing interest in aqueous ZIBs. However, the poor cycling stability of cathode materials—mainly due to manganese dissolution and structural degradation—remains a major bottleneck. In this work, a porous MnO2/PPy hybrid nanocomposite is successfully synthesized via an in situ co-precipitation strategy. The conductive PPy buffer layer not only alleviates Mn dissolution and buffers volume expansion during cycling but also enhances ion/electron transport and facilitates electrolyte infiltration due to its high surface area. Electrochemical evaluation reveals that the MnO2/PPy electrode delivers excellent cycling stability, retaining 75% of its initial capacity after 1000 cycles at a current density of 1 A·g−1. Comparative performance analysis shows that MnO2/PPy exhibits superior capacity retention and rate capability, especially under high current densities and prolonged cycling. These results underscore the effectiveness of the PPy interfacial layer in improving structural integrity and electrochemical performance, offering a promising route for designing high-performance cathode materials for aqueous ZIBs. Full article
15 pages, 6002 KiB  
Article
Effect of Flow Length on Pressure and Measurement of PEMFC Temperature by Using Thin-Film Thermocouples
by Huijin Guo, Zhihui Liu, Xingyu Li, Xingshu Wang, Maopeng Zhang, Shiqi Zhang, Zixi Wang and Wanyu Ding
Micromachines 2025, 16(5), 535; https://doi.org/10.3390/mi16050535 (registering DOI) - 29 Apr 2025
Abstract
Based on the COMSOL simulation software (v.6.1), this paper systematically investigates the influence law of runner length on the velocity and pressure distribution of cathode and anode gas runners in proton exchange membrane fuel cells (PEMFCs), and experimentally verifies the measurement effect of [...] Read more.
Based on the COMSOL simulation software (v.6.1), this paper systematically investigates the influence law of runner length on the velocity and pressure distribution of cathode and anode gas runners in proton exchange membrane fuel cells (PEMFCs), and experimentally verifies the measurement effect of thin-film thermocouples on the operating temperature of PEMFCs. The simulation results show that the maximum pressure of the cathode and anode increases nonlinearly with the increase in the runner length, while the velocity distribution remains stable; the shortening of the runners significantly reduces the friction loss along the flow path and optimizes the matching of the permeability of the porous medium. In addition, the NiCr/NiSi thin-film thermocouple prepared by magnetron sputtering exhibits high accuracy (Seebeck coefficient of 41.56 μV/°C) in static calibration and successfully captures the dynamic response characteristics of temperature in PEMFC operation. This study provides a theoretical basis and experimental support for the optimization of fuel cell flow channel design and temperature monitoring technology. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

24 pages, 7068 KiB  
Article
Chip Formation Mechanisms When Cutting Amorphous Alloy with Cubic Boron Nitride Tools Based on Constitutive Equation Parameter Optimisation
by Jinguang Du, Dingkun Wang, Yaoxuan Guo, Wuyi Ming and Wenbin He
Micromachines 2025, 16(5), 534; https://doi.org/10.3390/mi16050534 (registering DOI) - 29 Apr 2025
Abstract
Owing to potential inaccuracies in the current stress–strain curve used for constructing the Johnson–Cook (JC) constitutive model of amorphous alloys, the parameters of the JC constitutive equation were derived using Oxley’s cutting theory, negative chamfer theoretical mechanics modelling, and the particle swarm optimisation [...] Read more.
Owing to potential inaccuracies in the current stress–strain curve used for constructing the Johnson–Cook (JC) constitutive model of amorphous alloys, the parameters of the JC constitutive equation were derived using Oxley’s cutting theory, negative chamfer theoretical mechanics modelling, and the particle swarm optimisation algorithm. A two-dimensional finite element cutting model was subsequently established using AdvantEdge software. The optimised constitutive model was used to simulate the main cutting force (Fz) and the backward force (Fy), which resulted in average errors of 12.461% and 9.161%, respectively. Based on the optimised constitutive model in which the JC constitutive equation parameters were derived using Oxley’s method, the variations in temperature, strain rate, and stress in the deformation zone during the cutting process were analysed. The chip microstructures revealed the transformation of lamellar chips into serrated chips resulting from a combination of plastic deformation, adiabatic shear, and shear slip. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

25 pages, 20901 KiB  
Article
Heat Transfer Enhancement of Diamond Rib Mounted in Periodic Merging Chambers of Micro Channel Heat Sink
by Xin Lu, Lu Wang, Liangbi Wang and Yao Hu
Micromachines 2025, 16(5), 533; https://doi.org/10.3390/mi16050533 (registering DOI) - 29 Apr 2025
Abstract
The heat transfer enhancement of diamond-shaped ribs mounted in the periodic merging chambers of microchannel (MC) heat sinks is investigated using a numerical method for Reynolds number in the region of 300–700. Compared to triangular, rectangular, and cylindrical ribs, diamond-shaped ribs achieve 3.59%, [...] Read more.
The heat transfer enhancement of diamond-shaped ribs mounted in the periodic merging chambers of microchannel (MC) heat sinks is investigated using a numerical method for Reynolds number in the region of 300–700. Compared to triangular, rectangular, and cylindrical ribs, diamond-shaped ribs achieve 3.59%, 13.24%, and 6.34% higher enhancement effects, respectively, under the same mass flow rate. Further analysis of geometric parameters (length, width, and height) and rib positioning reveals that a rib height of h/Hch = 0.8 provides optimal heat dissipation performance. For Re < 500, the optimal configuration is a rib length of l/Lmerg = 0.55 and a width of b/Wch = 0.8, while for 500 < Re < 700, it shifts to l/Lmerg = 0.36 and b/Wch = 1.6. For s/Lmerg, the smaller it is, the shorter the main flow separation time, thereby improving heat transfer efficiency. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

13 pages, 6281 KiB  
Article
Heavy Ions Induced Single-Event Transient in SiGe-on-SOI HBT by TCAD Simulation
by Yuedecai Long, Abuduwayiti Aierken, Xuefei Liu, Mingqiang Liu, Changsong Gao, Gang Wang, Degui Wang, Sandip Majumdar, Yundong Xuan, Mengxin Liu and Jinshun Bi
Micromachines 2025, 16(5), 532; https://doi.org/10.3390/mi16050532 (registering DOI) - 29 Apr 2025
Abstract
In this work, the effects of heavy ion strike position, incident angle, linear energy transfer (LET) value, ambient temperature, bias conditions, and the synergistic effects of total dose irradiation on the single-event transient (SET) in silicon-germanium heterojunction bipolar transistors on silicon-on-insulator (SiGe-on-SOI HBTs) [...] Read more.
In this work, the effects of heavy ion strike position, incident angle, linear energy transfer (LET) value, ambient temperature, bias conditions, and the synergistic effects of total dose irradiation on the single-event transient (SET) in silicon-germanium heterojunction bipolar transistors on silicon-on-insulator (SiGe-on-SOI HBTs) were investigated using TCAD simulations. It was demonstrated that, compared to the bulk SiGe HBT, the SiGe-on-SOI HBT exhibits lower transient current and less charge collection, indicating better resistance to SET. The SET response is more pronounced when heavy ions strike vertically from the emitter and base regions. Transient current and collected charge escalate with increasing incident angle, demonstrating a strong linear correlation with LET values. As the temperature decreases, the peak transient current increases, while the pulse duration decreases and the total collected charge diminishes. After total dose irradiation, the peak transient current in the SiGe-on-SOI HBT decreases, whereas the damage was more severe in the absence of irradiation. Under collector positive bias and positive bias, significant SET responses were observed, while cutoff bias and substrate bias exhibited better resistance to SET damage. These findings provide critical insights into radiation-hardened design strategies for the SiGe-on-SOI HBT. Full article
Show Figures

Figure 1

25 pages, 2513 KiB  
Review
Protein Manipulation via Dielectrophoresis: Theoretical Principles and Emerging Microfluidic Platforms
by Zuriel Da En Shee, Ervina Efzan Mhd Noor and Mirza Farrukh Baig
Micromachines 2025, 16(5), 531; https://doi.org/10.3390/mi16050531 (registering DOI) - 29 Apr 2025
Abstract
Dielectrophoresis (DEP) has been widely employed in microfluidic platforms for particle or cell manipulation in biomedical science applications due to its accurate, fast, label-free, and low-cost diagnostic technique. However, the application of the DEP technique towards protein manipulation has yet to be extensively [...] Read more.
Dielectrophoresis (DEP) has been widely employed in microfluidic platforms for particle or cell manipulation in biomedical science applications due to its accurate, fast, label-free, and low-cost diagnostic technique. However, the application of the DEP technique towards protein manipulation has yet to be extensively explored due to the challenges of the complexity of protein itself, such as its complex morphologies, extremely minuscule particle size, inherent electrical properties, and temperature sensitivity, which make it relatively more challenging. Furthermore, given that protein DEP investigation requires entering the micro- to nano-scale level of DEP configuration, various challenging factors such as electrohydrodynamic effects, electrolysis, joule heating, and electrothermal force that emerge will make it more difficult in realizing protein DEP investigation. This review study has discussed the fundamental theory of DEP and considerations toward protein DEP manipulation. In particular, it focused on the DEP theoretical principle towards protein, protein DEP application challenges, microfluidic platform considerations, medium considerations, and a critically reviewed list of protein bioparticles that have been investigated were all highlighted. Full article
Show Figures

Figure 1

12 pages, 2818 KiB  
Article
Influence of Inner Lining Atoms of Multilayered Hexagonal Boron Nitride Porous Membrane on Desalination
by Chulwoo Park and Daejoong Kim
Micromachines 2025, 16(5), 530; https://doi.org/10.3390/mi16050530 (registering DOI) - 29 Apr 2025
Abstract
Recent findings have demonstrated that the desalination and purification of contaminated water and the separation of ions and gases, besides solutions to other related issues, may all be achieved with the use of membranes based on artificial nanoporous materials. Before the expensive stages [...] Read more.
Recent findings have demonstrated that the desalination and purification of contaminated water and the separation of ions and gases, besides solutions to other related issues, may all be achieved with the use of membranes based on artificial nanoporous materials. Before the expensive stages of production and experimental testing, the optimum size and form of membrane nanopores could be determined using computer-aided modeling. The notion that rectangular nanopores created in a multilayered hexagonal boron nitride (h-BN) membrane in a way that results in different inner lining atoms would exhibit unique properties in terms of the water penetration rate is put forth and examined in the current study. Nanopores in boron nitride sheets can be generated with the inner lining of boron atoms (B-edged), nitrogen atoms (N-edged), or both boron and nitrogen atoms (BN-edged). In this study, we compared the three different inner-lined nanopores of boron nitride nanosheets to a comparable-sized graphene nanopore and evaluated the water conduction. Full article
(This article belongs to the Special Issue Nanomaterials for Micro/Nano Devices, 2nd Edition)
Show Figures

Figure 1

13 pages, 4832 KiB  
Article
Enhancement of Quality Factors in a 6.5 GHz Resonator Using Mo/SiC Composite Microstructures
by Binghui Lin, Yupeng Zheng, Haiyang Li, Yuqi Ren, Tingting Yang, Zekai Wang, Yao Cai, Qinwen Xu and Chengliang Sun
Micromachines 2025, 16(5), 529; https://doi.org/10.3390/mi16050529 (registering DOI) - 29 Apr 2025
Abstract
This study addresses the critical challenge of lateral acoustic wave energy leakage in high-frequency film bulk acoustic resonators (FBARs) and elucidates the reflection mechanism of acoustic waves at acoustic reflection boundaries. Based on the theory of acoustic impedance mismatch, a novel Mo/SiC composite [...] Read more.
This study addresses the critical challenge of lateral acoustic wave energy leakage in high-frequency film bulk acoustic resonators (FBARs) and elucidates the reflection mechanism of acoustic waves at acoustic reflection boundaries. Based on the theory of acoustic impedance mismatch, a novel Mo/SiC composite microstructure is designed to strategically establish multiple acoustic reflection boundaries along the lateral acoustic wave leakage paths. Finite element simulations reveal that SiC microstructures effectively suppress vibration amplitudes in non-resonant regions, thereby preventing acoustic wave leakage. By integrating Mo and SiC microstructures, the proposed composite structure significantly enhances the resonator’s acoustic confinement and energy retention capabilities. A resonator incorporating this Mo/SiC composite microstructure is fabricated, achieving a series resonance frequency of 6.488 GHz and a remarkable quality factor (Q) of 310. This represents a substantial 51.2% improvement in Q compared to the basic FBAR, confirming the effectiveness of the proposed design in mitigating lateral acoustic wave leakage and enhancing resonator performance for high-frequency, low-loss applications. This work offers valuable insights into the design of next-generation RF resonators for advanced wireless communication systems. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

10 pages, 2779 KiB  
Article
A High-Isolation Optically Transparent 2 × 2 Antenna Array Using Metal Mesh Material
by Yufeng Yu, Yuanjia Dong, Yangyang He and Yi-Feng Cheng
Micromachines 2025, 16(5), 528; https://doi.org/10.3390/mi16050528 (registering DOI) - 29 Apr 2025
Abstract
This paper presents the design and implementation of a compact, high-isolation, optically transparent 2 × 2 MIMO antenna array. Optical transparency is achieved using a copper-based metal mesh material, which serves as both the radiating element and the ground plane, ensuring high radiation [...] Read more.
This paper presents the design and implementation of a compact, high-isolation, optically transparent 2 × 2 MIMO antenna array. Optical transparency is achieved using a copper-based metal mesh material, which serves as both the radiating element and the ground plane, ensuring high radiation efficiency and minimal visual impact. The array consists of four monopole antennas, and mutual coupling is effectively suppressed through the integration of shorting decoupling branches and a common-ground structure. These techniques address both adjacent and diagonal (non-adjacent) coupling. A prototype was fabricated and experimentally validated. The experimental results demonstrate that the proposed antenna array achieves 20 dB isolation, 3.56 dB antenna gain, and 76% efficiency. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 5337 KiB  
Article
Research on Valveless Piezoelectric Pump Based on Coriolis Effect
by Qiufeng Yan, Zhiling Liu, Wanting Sun and Mengyao Jiang
Micromachines 2025, 16(5), 527; https://doi.org/10.3390/mi16050527 (registering DOI) - 29 Apr 2025
Abstract
In previous studies, a valveless piezoelectric pump with arc-shaped tubes (VPPAST) based on the Coriolis Effect was proposed. To promote the application of VPPAST in the field of navigation and guidance, it is vital to further explore the influences of the layout and [...] Read more.
In previous studies, a valveless piezoelectric pump with arc-shaped tubes (VPPAST) based on the Coriolis Effect was proposed. To promote the application of VPPAST in the field of navigation and guidance, it is vital to further explore the influences of the layout and structural parameters of arc-shaped tubes on the flow rate. Accordingly, in this study, the analysis of flow characteristics of fluid in arc-shaped tubes was conducted, and the velocity difference between the clockwise and counterclockwise flow of the liquid was reduced. Eventually, the flow equations of three layout modes of arc-shaped tubes were established. VPPAST with anomalous-direction arc-shaped tubes, single-arc-shaped tube, and same-direction arc-shaped tubes were produced using 3D printing technology. In addition, the valveless piezoelectric pump with the anomalous-direction arc-shaped tubes (VLPPADA) with different parameter flow tubes were also fabricated. Based on the resultant flow rates of each piezoelectric pump, it was demonstrated that the flow rate of the VLPPADA was the highest under the same driving conditions, and the flow rate can be determined as 1.72 mL/min when the driving voltage was set as 160 V at 14 Hz. It indicated that the pump flow rate of VLPPADA was directly proportional to the base radius and width of the arc-shaped tube. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 1152 KiB  
Article
Detection of Positive and Negative Pressure in a Double-Chamber Underwater Thruster
by Chong Cao, Chengchun Zhang, Chun Shen, Yasong Zhang, Wen Cheng, Zhengyang Wu and Luquan Ren
Micromachines 2025, 16(5), 526; https://doi.org/10.3390/mi16050526 (registering DOI) - 29 Apr 2025
Abstract
The aim of this paper is to develop a compact, rapid-response pressure sensor for underwater propulsion. Flexible pressure sensors are widely utilized in human–computer interactions and wearable electronic devices; however, manufacturing capacitive sensors that offer a broad pressure range and high sensitivity presents [...] Read more.
The aim of this paper is to develop a compact, rapid-response pressure sensor for underwater propulsion. Flexible pressure sensors are widely utilized in human–computer interactions and wearable electronic devices; however, manufacturing capacitive sensors that offer a broad pressure range and high sensitivity presents significant challenges. Inspired by the dermal papillary microstructure, a capacitive pressure sensor was prepared by infusing polydimethylsiloxane (PDMS) inside an anodic aluminum oxide (AAO) template and then demolding it. The resulting pressure sensor exhibits several key characteristics: high linearity in the range of −5.2 to 6.3 kPa, a comprehensive range for both positive and negative pressure sensing in air or water environments, a quick response time of 52 ms, a recovery time of 40 ms, and excellent stability. The sensor presented in this work is innovatively applied to detect underwater negative pressure, and it is employed for the swift detection of positive and negative pressure changes in underwater thrusters. This work highlights the promising potential of biomimetic flexible capacitive pressure sensors across various applications. Full article
(This article belongs to the Special Issue Advanced Applications in Microrobots)
Show Figures

Figure 1

16 pages, 6070 KiB  
Article
PDMS SlipChip: Optimizing Sealing, Slipping, and Biocompatibility Using Low-Viscosity Silicone Oils
by Rafia Inaam, Marcela F. Bolontrade, Shunya Okamoto, Takayuki Shibata, Tuhin Subhra Santra and Moeto Nagai
Micromachines 2025, 16(5), 525; https://doi.org/10.3390/mi16050525 (registering DOI) - 29 Apr 2025
Abstract
The Polydimethylsiloxane (PDMS) SlipChip is a microfluidic platform enabling fluid manipulation without pumps or valves, simplifying operation and reducing reagent use. High-viscosity silicone oils (e.g., 5000–10,000 cSt) improve sealing but frequently block microfluidic channels, reducing usability. In contrast, low-viscosity oils (50–100 cSt) reduce [...] Read more.
The Polydimethylsiloxane (PDMS) SlipChip is a microfluidic platform enabling fluid manipulation without pumps or valves, simplifying operation and reducing reagent use. High-viscosity silicone oils (e.g., 5000–10,000 cSt) improve sealing but frequently block microfluidic channels, reducing usability. In contrast, low-viscosity oils (50–100 cSt) reduce blockages but may compromise sealing. This study addresses these challenges by optimizing the viscosity of silicone oil and the curing conditions of PDMS. Low-viscosity silicone oil (50 cSt) was identified as optimal, ensuring smooth slipping and reliable sealing without blockages. Curing conditions were also adjusted to balance adhesion and stiffness as follows: lower temperatures (50–60 °C) enhanced van der Waals adhesion, while higher temperatures (80 °C) increased stiffness. A mixed curing approach (80 °C for the top layer and 60 °C for the bottom layer) further improved performance. Biocompatibility testing using human osteosarcoma cells demonstrated minimal cytotoxicity with 50 cSt oil, supporting cell viability (95%) comparable to traditional multiwell plates. These findings provide practical guidelines for fabricating reliable and biocompatible SlipChips. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

20 pages, 5605 KiB  
Article
Startup Drift Compensation of MEMS INS Based on PSO–GRNN Network
by Songlai Han, Jingyi Xie and Jing Dong
Micromachines 2025, 16(5), 524; https://doi.org/10.3390/mi16050524 (registering DOI) - 29 Apr 2025
Abstract
The startup drift phenomenon that exists in MEMS INSs increases the navigation error, prolonging the start-up time. Aiming to resolve this problem, a startup drift compensation method based on a PSO-GRNN model is proposed in this paper. We adopted a correlation analysis to [...] Read more.
The startup drift phenomenon that exists in MEMS INSs increases the navigation error, prolonging the start-up time. Aiming to resolve this problem, a startup drift compensation method based on a PSO-GRNN model is proposed in this paper. We adopted a correlation analysis to determine the input parameters of the PSO-GRNN model that mainly affect startup drift. In the process of training this model, we used the PSO algorithm to optimize the spread parameter of the PSO-GRNN model. The information transmission function between particle swarms was used to find the best spread parameter by iterative optimization, the particle’s position was mapped to the GRNN model, and the GRNN model was constructed with the optimal position of the swarm as the spread parameter. This method can effectively compensate for startup drift and improve navigation accuracy. Startup drift compensation experiments were carried out at different ambient temperatures. Compared with the MEMS INS data without compensation, the standard deviation of the MEMS INS data with the proposed method decreased by more than 80.6%, and the peak-to-peak value of the MEMS INS data decreased by over 72.7%. Compared with the traditional method, the standard deviation of the MEMS INS data compensated via this method decreased by 54.5% on average, and the peak-to-peak value decreased by 42.8% on average. Meanwhile, the performance of this method was verified by navigation experiments. With the proposed method, the speed error improved by over 36.4%, and the position error improved by over 41.1%. The above experiments verified that the method of this paper significantly improved navigation performance. Full article
(This article belongs to the Special Issue MEMS Inertial Device, 2nd Edition)
Show Figures

Figure 1

13 pages, 6668 KiB  
Article
Current-Carrying Wear Behavior of the Laser-Alloyed Al/W Composite Layer Under Different Currents
by Heng Zhang, Bai Li, Yulong Zhu, Congwen Tang, Pengfei Sun, Tao Lai and Dengzhi Wang
Micromachines 2025, 16(5), 523; https://doi.org/10.3390/mi16050523 (registering DOI) - 29 Apr 2025
Abstract
The Al/W composite layer was fabricated on the surface of the aluminum alloy using laser alloying technology to enhance the current-carrying wear resistance. Additionally, the current-carrying wear behaviors of the Al/W composite layer and the aluminum alloy substrate were investigated under different currents. [...] Read more.
The Al/W composite layer was fabricated on the surface of the aluminum alloy using laser alloying technology to enhance the current-carrying wear resistance. Additionally, the current-carrying wear behaviors of the Al/W composite layer and the aluminum alloy substrate were investigated under different currents. The results indicate that the presence of hard phases such as W and Al4W in the composite layer significantly enhanced the wear resistance of the material. Specifically, the average friction coefficient of the Al/W composite layer under different currents was reduced by approximately 9.3–35.8% compared to the aluminum alloy substrate, and the wear rate under current-carrying conditions decreased by about 1.9–6.0 times. For the aluminum alloy substrate, adhesive wear is the dominant mechanism under currents ranging from 0 to 60 A. However, as the current increased to 80 A, the severity of arc erosion intensified, and the wear mechanism transitioned to a combination of arc erosion and adhesive wear. In contrast, for the Al/W composite layer, abrasive wear was the dominant wear mechanism in the absence of electrical current. Upon the introduction of the current, the wear mechanism changed to a coupling effect of arc erosion and adhesive wear. Full article
Show Figures

Figure 1

79 pages, 3684 KiB  
Review
Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology
by Vishnuram Abhinav, Prithvi Basu, Shikha Supriya Verma, Jyoti Verma, Atanu Das, Savita Kumari, Prateek Ranjan Yadav and Vibhor Kumar
Micromachines 2025, 16(5), 522; https://doi.org/10.3390/mi16050522 (registering DOI) - 28 Apr 2025
Viewed by 20
Abstract
Wearable and implantable BioMEMSs (biomedical microelectromechanical systems) have transformed modern healthcare by enabling continuous, personalized, and minimally invasive monitoring, diagnostics, and therapy. Wearable BioMEMSs have advanced rapidly, encompassing a diverse range of biosensors, bioelectronic systems, drug delivery platforms, and motion tracking technologies. These [...] Read more.
Wearable and implantable BioMEMSs (biomedical microelectromechanical systems) have transformed modern healthcare by enabling continuous, personalized, and minimally invasive monitoring, diagnostics, and therapy. Wearable BioMEMSs have advanced rapidly, encompassing a diverse range of biosensors, bioelectronic systems, drug delivery platforms, and motion tracking technologies. These devices enable non-invasive, real-time monitoring of biochemical, electrophysiological, and biomechanical signals, offering personalized and proactive healthcare solutions. In parallel, implantable BioMEMS have significantly enhanced long-term diagnostics, targeted drug delivery, and neurostimulation. From continuous glucose and intraocular pressure monitoring to programmable drug delivery and bioelectric implants for neuromodulation, these devices are improving precision treatment by continuous monitoring and localized therapy. This review explores the materials and technologies driving advancements in wearable and implantable BioMEMSs, focusing on their impact on chronic disease management, cardiology, respiratory care, and glaucoma treatment. We also highlight their integration with artificial intelligence (AI) and the Internet of Things (IoT), paving the way for smarter, data-driven healthcare solutions. Despite their potential, BioMEMSs face challenges such as regulatory complexities, global standardization, and societal determinants. Looking ahead, we explore emerging directions like multifunctional systems, biodegradable power sources, and next-generation point-of-care diagnostics. Collectively, these advancements position BioMEMS as pivotal enablers of future patient-centric healthcare systems. Full article
Show Figures

Figure 1

16 pages, 7093 KiB  
Article
Design and Implementation of a High-Throughput Digital Microfluidic System Based on Optimized YOLOv8 Object Detection
by Ming Cao, Wufeng Duan, Zuwei Huang, Huihong Liang, Fanrong Ai and Xianming Liu
Micromachines 2025, 16(5), 521; https://doi.org/10.3390/mi16050521 (registering DOI) - 28 Apr 2025
Abstract
To address the challenges of excessive control pins and inefficient high-throughput droplet manipulation in conventional digital microfluidic chips, this study developed a parallel-motion digital microfluidic system integrated with an image acquisition device. The system employs an enhanced YOLOv8 object detection model for droplet [...] Read more.
To address the challenges of excessive control pins and inefficient high-throughput droplet manipulation in conventional digital microfluidic chips, this study developed a parallel-motion digital microfluidic system integrated with an image acquisition device. The system employs an enhanced YOLOv8 object detection model for droplet recognition. By enabling parallel droplet transportation and processing, it significantly improves operational efficiency and detection accuracy. For droplet recognition, the YOLOv8 model was optimized through the integration of GAM_Attention and EMA mechanisms, which strengthen feature extraction capabilities and detection performance. Experimental results demonstrated that the optimized model achieves remarkable accuracy and robustness in droplet detection tasks, with mAP50 increasing from 96.5% to 98.7% and mAP50–90 improving from 65.8% to 68.5%. The system exhibits enhanced detection precision and real-time responsiveness, maintaining an error rate below 0.53%. Furthermore, a host computer interface was implemented for multi-droplet path planning and feedback, establishing a closed-loop control system. This work provides an efficient and reliable solution for high-throughput operations in microfluidic chip applications. Full article
Show Figures

Figure 1

22 pages, 5142 KiB  
Article
ZnFe2O4/GQDs Nanoparticles as Peroxidase Mimics for Sensitive and Selective Colorimetric Detection of Glucose in Real Samples
by Claudia Cirillo, Mariagrazia Iuliano and Maria Sarno
Micromachines 2025, 16(5), 520; https://doi.org/10.3390/mi16050520 (registering DOI) - 28 Apr 2025
Viewed by 128
Abstract
Glucose detection is critical in addressing health and medical issues related to irregular blood levels. Colorimetry, a simple, cost-effective, and visually straightforward method, is often employed. Traditional enzymatic detection methods face drawbacks such as high costs, limited stability, and operational challenges. To overcome [...] Read more.
Glucose detection is critical in addressing health and medical issues related to irregular blood levels. Colorimetry, a simple, cost-effective, and visually straightforward method, is often employed. Traditional enzymatic detection methods face drawbacks such as high costs, limited stability, and operational challenges. To overcome these, enzyme mimics or artificial nano-enzymes based on inorganic nanomaterials have garnered attention, but their cost and susceptibility to inactivation limit applications. This study presents a ZnFe2O4/GQDs nanocomposite as an innovative enzyme mimic, addressing key requirements like low cost, high stability, biocompatibility, and wide operational range. Synthesized using a simple and inexpensive method, the composite benefits from the synergistic interaction between ZnFe2O4 nanoparticles and graphene quantum dots (GQDs), resulting in excellent magnetic properties, high surface area, and functional versatility. The material demonstrated remarkable sensitivity with a detection limit of 7.0 μM across a range of 5–500 μM and achieved efficient peroxidase-like activity with Km values of 0.072 and 0.068 mM and Vmax of 4.58 × 10⁻8 and 8.29 × 10⁻8 M/s for TMB and H2O2, respectively. The nanocomposite also exhibited robust recyclability, retaining performance over six reuse cycles. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Figure 1

12 pages, 2838 KiB  
Article
Glass Microbubble Encapsulation for Improving the Lifetime of a Ferrofluid-Based Magnetometer
by Chenchen Zhang and Srinivas Tadigadapa
Micromachines 2025, 16(5), 519; https://doi.org/10.3390/mi16050519 (registering DOI) - 28 Apr 2025
Viewed by 89
Abstract
In this paper, we explore the use of chip-scale blown glass microbubble structures for MEMS packaging applications. Specifically, we demonstrate the efficacy of this method of packaging for the improvement of the lifetime of a ferrofluid-based magnetoviscous magnetometer. We have previously reported on [...] Read more.
In this paper, we explore the use of chip-scale blown glass microbubble structures for MEMS packaging applications. Specifically, we demonstrate the efficacy of this method of packaging for the improvement of the lifetime of a ferrofluid-based magnetoviscous magnetometer. We have previously reported on the novel concept of a ferrofluid based magnetometer in which the viscoelastic response of a ferrofluid interfacial layer on a high frequency shear wave quartz resonator is sensitively monitored as a function of applied magnetic field. The quantification of the magnetic field is accomplished by monitoring the at-resonance admittance characteristics of the ferrofluid-loaded resonator. While the proof-of-concept measurements of the device have been successfully made, under open conditions, the evaporation of the carrier fluid of the ferrofluid continuously changes its viscoelastic properties and compromises the longevity of the magnetometer. To prevent the evaporation of the ferrofluid, here, we seal the ferrofluid on top of the micromachined quartz resonator within a blown glass hemispherical microbubble attached to it using epoxy. The magnetometer design used a bowtie-shaped thin film Metglas (Fe85B5Si10) magnetic flux concentrator on the resonator chip. A four-times smaller noise equivalent, a magnetic field of 600 nT/√Hz at 0.5 Hz was obtained for the magnetometer using the Metglas flux concentrator. The ferrofluid-based magnetometer is capable of sensing magnetic fields up to a modulation frequency of 40 Hz. Compared with the unsealed ferrofluid device, the lifetime of the glass microbubble integrated chip packaged device improved significantly from only a few hours to over 50 days and continued. Full article
Show Figures

Figure 1

17 pages, 10237 KiB  
Review
Research Progress on Micromachining Technologies Used to Fabricate Terahertz Micro-Metallic Rectangular Cavity Structures
by Xiaolei Bi, Xuemin Li, Bin Li and Xueli Cheng
Micromachines 2025, 16(5), 518; https://doi.org/10.3390/mi16050518 (registering DOI) - 28 Apr 2025
Viewed by 139
Abstract
Terahertz metal rectangular cavity structures are widely used in terahertz devices due to their performance advantages, and various microfabrication techniques have been applied to the manufacturing of their high performance. In this paper, several typical application fields of terahertz technology and the reasons [...] Read more.
Terahertz metal rectangular cavity structures are widely used in terahertz devices due to their performance advantages, and various microfabrication techniques have been applied to the manufacturing of their high performance. In this paper, several typical application fields of terahertz technology and the reasons for its application in these fields are elaborated in detail. Several typical terahertz devices with terahertz metal rectangular cavity structures are introduced in detail. The research progress of various micromachining techniques for manufacturing terahertz rectangular cavity structures, such as DRIE, UV-LIGA, micro-milling, LTCC, 3D printing, and electrochemical micromachining, is discussed in detail. Finally, the advantages and disadvantages of various micromachining techniques for manufacturing terahertz micro-rectangular cavity structures are discussed, and the results show that electrochemical micromachining technology and micro-nano 3D printing technology are relatively promising methods for the manufacturing of high-frequency terahertz rectangular cavity structures. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

10 pages, 4044 KiB  
Article
Photonic–Electronic Modulated a-IGZO Synaptic Transistor with High Linearity Conductance Modulation and Energy-Efficient Multimodal Learning
by Zhidong Hou, Jinrong Shen, Yiming Zhong and Dongping Wu
Micromachines 2025, 16(5), 517; https://doi.org/10.3390/mi16050517 - 28 Apr 2025
Viewed by 106
Abstract
Brain-inspired neuromorphic computing is expected to overcome the von Neumann bottleneck by eliminating the memory wall between processing and memory units. Nevertheless, critical challenges persist in synaptic device implementation, particularly regarding nonlinear/asymmetric conductance modulation and multilevel conductance states, which substantially impede the realization [...] Read more.
Brain-inspired neuromorphic computing is expected to overcome the von Neumann bottleneck by eliminating the memory wall between processing and memory units. Nevertheless, critical challenges persist in synaptic device implementation, particularly regarding nonlinear/asymmetric conductance modulation and multilevel conductance states, which substantially impede the realization of high-performance neuromorphic hardware. This study demonstrates a novel advancement in photonic–electronic modulated synaptic devices through the development of an amorphous indium–gallium–zinc oxide (a-IGZO) synaptic transistor. The device demonstrates biological synaptic functionalities, including excitatory/inhibitory post-synaptic currents (EPSCs/IPSCs) and spike-timing-dependent plasticity, while achieving excellent conductance modulation characteristics (nonlinearity of 0.0095/−0.0115 and asymmetric ratio of 0.247) and successfully implementing Pavlovian associative learning paradigms. Notably, systematic neural network simulations employing the experimental parameters reveal a 93.8% recognition accuracy on the MNIST handwritten digit dataset. The a-IGZO synaptic transistor with photonic–electronic co-modulation serves as a potential critical building block for constructing neuromorphic architectures with human-brain efficiency. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

13 pages, 5885 KiB  
Article
Design and Fabrication of Silicon Pressure Sensors Based on Wet Etching Technology
by Fengchao Li, Shijin Yan, Cheng Lei, Dandan Wang, Xi Wei, Jiangang Yu, Yongwei Li, Pengfei Ji, Qiulin Tan and Ting Liang
Micromachines 2025, 16(5), 516; https://doi.org/10.3390/mi16050516 - 28 Apr 2025
Viewed by 111
Abstract
This paper presents a novel silicon-based piezoresistive pressure sensor composed of a silicon layer with sensing elements and a glass cover for hermetic packaging. Unlike conventional designs, this study employs numerical simulation to analyze the influence of varying roughness levels of the sensitive [...] Read more.
This paper presents a novel silicon-based piezoresistive pressure sensor composed of a silicon layer with sensing elements and a glass cover for hermetic packaging. Unlike conventional designs, this study employs numerical simulation to analyze the influence of varying roughness levels of the sensitive membrane on the sensor’s output response. Simulation results demonstrate that pressure sensors with smoother sensitive membranes exhibit superior performance in terms of sensitivity (5.07 mV/V/MPa), linearity (0.67% FS), hysteresis (0.88% FS), and repeatability (0.75% FS). Furthermore, an optimized process for controlling membrane roughness was achieved by adjusting the concentration of the etchant solution. Experimental results reveal that a membrane roughness of 35.37 nm was attained under conditions of 80 °C and 25 wt% TMAH. Additionally, the fabrication process of this piezoresistive pressure sensor was significantly simplified and cost-effective due to the adoption of a backside wet etching technique. The fabricated sensor demonstrates excellent performance metrics, including a sensitivity of 5.07 mV/V/MPa, a full-scale (FS) output of 101.42 mV, a hysteresis of 0.88% FS, a repeatability of 0.75% FS, and a nonlinearity of 0.67% FS. These results indicate that the proposed sensor is a promising tool for precise pressure measurement applications, offering both high performance and cost efficiency. This study not only advances the understanding of the impact of membrane roughness on sensor performance but also provides a practical and scalable fabrication approach for piezoresistive pressure sensors. Full article
Show Figures

Figure 1

18 pages, 2780 KiB  
Article
Frequency-Decoupled Dual-Stage Inverse Lithography Optimization via Hierarchical Sampling and Morphological Enhancement
by Jie Zhou, Qingyan Zhang, Haifeng Sun, Chuan Jin, Ji Zhou and Junbo Liu
Micromachines 2025, 16(5), 515; https://doi.org/10.3390/mi16050515 - 27 Apr 2025
Viewed by 66
Abstract
Inverse lithography technology (ILT) plays a pivotal role in advanced semiconductor manufacturing because it enables pixel-level mask modifications, significantly enhances pattern fidelity, and expands process windows. However, traditional gradient-based ILT methods often struggle with the trade-off between imaging fidelity and mask manufacturability due [...] Read more.
Inverse lithography technology (ILT) plays a pivotal role in advanced semiconductor manufacturing because it enables pixel-level mask modifications, significantly enhances pattern fidelity, and expands process windows. However, traditional gradient-based ILT methods often struggle with the trade-off between imaging fidelity and mask manufacturability due to coupled optimization objectives. We propose a frequency-separated dual-stage optimization framework (FD-ILT) that strategically decouples these conflicting objectives by exploiting the inherent low-pass characteristics of lithographic systems. The first stage optimizes low-frequency (LF) components using hierarchical downsampling to generate a high-fidelity continuous transmission mask. This approach reduces computational complexity while refining resolution progressively. The second stage enforces manufacturability by exclusively adjusting high-frequency (HF) features through morphological regularization and progressive binarization penalties while maintaining the mask LF to preserve imaging accuracy. Our method achieves simultaneous control of both aspects by eliminating gradient conflicts between fidelity and manufacturing constraints. The simulation results demonstrate that FD-ILT achieves superior imaging quality and manufacturability compared to conventional gradient-based ILT methods, offering a scalable solution for advanced semiconductor nodes. Full article
(This article belongs to the Special Issue Recent Advances in Lithography)
Show Figures

Figure 1

18 pages, 16409 KiB  
Article
Research on the Degradation and Failure Mechanisms of the Unclamped-Inductive-Switching Characteristics of p-GaN HEMT Devices
by Li Liu, Yulu Zhen, Siqiao Li, Bo Pang and Kai Zeng
Micromachines 2025, 16(5), 514; https://doi.org/10.3390/mi16050514 - 27 Apr 2025
Viewed by 129
Abstract
Single UIS and repetitive UIS experiments are performed in this article to expound physical failure mechanisms in P-GaN HEMT devices. Vpeak and Ipeak are used as metrics to evaluate the degradation of electrical parameters. In the single UIS tests, different load [...] Read more.
Single UIS and repetitive UIS experiments are performed in this article to expound physical failure mechanisms in P-GaN HEMT devices. Vpeak and Ipeak are used as metrics to evaluate the degradation of electrical parameters. In the single UIS tests, different load inductors, off-gate voltages, and ambient temperatures are chosen as variables to observe the failure phenomena in the device under test (DUT), while in the repeated UIS tests, the threshold voltage, on-state resistance, blocking characteristics, and gate leakage current degradation and recovery are analyzed, and it is concluded that Vth presents a negative shift, Ron and BV are restored to their initial value, and gate leakage shows a significant reduction at first and then, after a duration of lagging, gradually recovers to some extent, but is unable to achieve its initial value. Combining failure point analysis via decapping with TCAD simulation and validation, it is found that hole trapping and detrapping in the p-GaN region dominate Vth and Igss degradation, while electron traps in the buffer dominate Ron and BV degradation. Full article
Show Figures

Figure 1

12 pages, 8928 KiB  
Article
MXene-Enhanced Laser-Induced Graphene Flexible Sensor with Rapid Response for Monitoring Pilots’ Body Motion
by Xia Lei, Hongyun Fan, Yilin Zhao, Mian Zhong, Zhanghui Wu, Lin Li, Shouqing Li, Xiaoqing Xing, Jianhua Liu, Yibo Sun, Yong Jiang and Guogang Ren
Micromachines 2025, 16(5), 513; https://doi.org/10.3390/mi16050513 - 27 Apr 2025
Viewed by 86
Abstract
Flexible wearable strain sensors demonstrate promising application prospects in health monitoring, human-machine interaction, motion tracking, and the detection of human physiological signals. Although laser-induced graphene (LIG) materials have been extensively utilized in these scenarios, traditional types of LIG sensors are constrained by intrinsic [...] Read more.
Flexible wearable strain sensors demonstrate promising application prospects in health monitoring, human-machine interaction, motion tracking, and the detection of human physiological signals. Although laser-induced graphene (LIG) materials have been extensively utilized in these scenarios, traditional types of LIG sensors are constrained by intrinsic limitations, including discontinuous conductive networks and electromechanical responsive hysteresis. These limitations hinder their applications in micro-strain detection scenarios. Consequently, enhancing the performance of LIG-based sensors has become a crucial priority. To address this challenge, we developed a novel MXene/LIG composite featuring optimized conductive networks and interfacial coupling effects through the systematic enhancement of LIG. The flexible strain sensor fabricated using this composite exhibits exceptional performance, including an ultra-low sheet resistance of 14.1 Ω, a high sensitivity of 20.7, a micro-strain detection limit of 0.05%, and a rapid response time of approximately 65 ms. These improvements significantly enhance electromechanical responsiveness and strain detection sensitivity. Furthermore, the sensor exhibits remarkable stability under varying tensile strains, particularly showing outstanding repeatability across 2500 cyclic tests. Notably, when applied to the pilot health monitoring scenarios, the MXene/LIG-based sensor demonstrates robust capability in detecting body movement signals such as micro-expressions and joint movements. This establishes a novel and highly effective technological solution for the real-time monitoring of pilots’ motion states during operational scenarios. Full article
Show Figures

Figure 1

19 pages, 9534 KiB  
Article
Temperature Effects on Wicking Dynamics: Experimental and Numerical Study on Micropillar-Structured Surfaces
by Yoomyeong Lee, Hyunmuk Park, Hyeon Taek Nam, Yong-Hyeon Kim, Jae-Hwan Ahn and Donghwi Lee
Micromachines 2025, 16(5), 512; https://doi.org/10.3390/mi16050512 - 27 Apr 2025
Viewed by 111
Abstract
Boiling heat transfer, utilizing latent heat during phase change, has widely been used due to its high thermal efficiency and plays an important role in existing and next-generation cooling technologies. The most critical parameter in boiling heat transfer is critical heat flux (CHF), [...] Read more.
Boiling heat transfer, utilizing latent heat during phase change, has widely been used due to its high thermal efficiency and plays an important role in existing and next-generation cooling technologies. The most critical parameter in boiling heat transfer is critical heat flux (CHF), which represents the maximum heat flux a heated surface can sustain during boiling. CHF is primarily influenced by the wicking performance, which governs liquid supply to the surface. This study experimentally and numerically analyzed the wicking performance of micropillar structures at various temperatures (20–95 °C) using distilled water as the working fluid to provide fundamental data for CHF prediction. Infrared (IR) visualization was used to extract the wicking coefficient, and the experimental data were compared with computational fluid dynamics (CFD) simulations for validation. At room temperature (20 °C), the wicking coefficient increased with larger pillar diameters (D) and smaller gaps (G). Specifically, the highest roughness factor sample (D04G10, r = 2.51) exhibited a 117% higher wicking coefficient than the lowest roughness factor sample (D04G20, r = 1.51), attributed to enhanced capillary pressure and improved liquid supply. Additionally, for the same surface roughness factor, the wicking coefficient increased with temperature, showing a 49% rise at 95 °C compared to 20 °C due to reduced viscous resistance. CFD simulations showed strong agreement with experiments, with error within ±10%. These results confirm that the proposed numerical methodology is a reliable tool for predicting wicking performance near boiling temperatures. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

16 pages, 2281 KiB  
Article
Towards the Optimization of Apodized Resonators
by Ana Valenzuela-Pérez, Carlos Collado and Jordi Mateu
Micromachines 2025, 16(5), 511; https://doi.org/10.3390/mi16050511 - 27 Apr 2025
Viewed by 71
Abstract
Bulk Acoustic Wave (BAW) resonators are essential components in modern RF communication systems due to their high selectivity and quality factor. However, spurious resonances caused by Lamb wave mode propagation along the in-plane directions degrade the filter performance. Traditional Finite Element Method (FEM) [...] Read more.
Bulk Acoustic Wave (BAW) resonators are essential components in modern RF communication systems due to their high selectivity and quality factor. However, spurious resonances caused by Lamb wave mode propagation along the in-plane directions degrade the filter performance. Traditional Finite Element Method (FEM) simulations provide accurate modeling but are computationally expensive, especially for arbitrarily shaped resonators and solidly mounted resonators (SMRs), whose stack of materials is composed of many thin layers of different materials. To address this, we extend a previously published model (named the Quasi-3D model), which employs the Transmission Line Matrix (TLM) method, enabling efficient simulations of complex geometries with more precise meshing. The new approach allows us to simulate different geometries, and we will show several apodized geometries with the aim of minimizing the lateral modes. In addition, the proposed approach significantly reduces the computational cost while maintaining high accuracy, as validated by FEM comparisons and experimental measurements. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

14 pages, 1040 KiB  
Article
Sensorless Impedance Control of Micro Finger Using Coprime Factorization
by Yuuki Morohoshi and Mingcong Deng
Micromachines 2025, 16(5), 510; https://doi.org/10.3390/mi16050510 - 27 Apr 2025
Viewed by 84
Abstract
Soft robots are attracting attention as next-generation robots because they enable flexible movement. The micro finger is a soft robot that can bend and is small and can grasp objects of various shapes, so it is expected to be applied to surgical robots. [...] Read more.
Soft robots are attracting attention as next-generation robots because they enable flexible movement. The micro finger is a soft robot that can bend and is small and can grasp objects of various shapes, so it is expected to be applied to surgical robots. However, because it is small, sensors cannot be attached, making it difficult to measure force. This paper proposes impedance control of the tip of a micro finger by estimating the tip force with an observer. The control system is designed using coprime factorization and Youla–Kucera parameterization by operator theory. The effectiveness of the proposed method is confirmed through experiments. Full article
Show Figures

Figure 1

23 pages, 17878 KiB  
Article
YOLO-SUMAS: Improved Printed Circuit Board Defect Detection and Identification Research Based on YOLOv8
by Ying Tang, Runhao Liu and Sheng Wang
Micromachines 2025, 16(5), 509; https://doi.org/10.3390/mi16050509 - 27 Apr 2025
Viewed by 165
Abstract
Aiming at the demand for defect detection accuracy and efficiency under the trend of high-density and integration in printed circuit board (PCB) manufacturing, this paper proposes an improved YOLOv8n model (YOLO-SUMAS), which enhances detection performance through multi-module collaborative optimization. The model introduces the [...] Read more.
Aiming at the demand for defect detection accuracy and efficiency under the trend of high-density and integration in printed circuit board (PCB) manufacturing, this paper proposes an improved YOLOv8n model (YOLO-SUMAS), which enhances detection performance through multi-module collaborative optimization. The model introduces the SCSA attention mechanism, which improves the feature expression capability through spatial and channel synergistic attention; adopts the Unified-IoU loss function, combined with the dynamic bounding box scaling and bi-directional weight allocation strategy, to optimize the accuracy of high-quality target localization; integrates the MobileNetV4 lightweight architecture and its MobileMQA attention module, which reduces the computational complexity and improves the inference speed; and combines ASF-SDI Neck structure with weighted bi-directional feature pyramid and multi-level semantic detail fusion to strengthen small target detection capability. The experiments are based on public datasets, and the results show that the improved model achieves 98.8% precision and 99.2% recall, and mAP@50 reached 99.1%, significantly better than the original YOLOv8n and other mainstream models. YOLO-SUMAS provides a highly efficient industrial-grade PCB defect detection solution by considering high precision and real-time performance while maintaining lightweight characteristics. Full article
Show Figures

Figure 1

9 pages, 6367 KiB  
Article
1200V 4H-SiC MOSFET with a High-K Source Gate for Improving Third-Quadrant and High Frequency Figure of Merit Performance
by Mingyue Li, Zhaofeng Qiu, Tianci Li, Yi Kang, Shan Lu and Xiarong Hu
Micromachines 2025, 16(5), 508; https://doi.org/10.3390/mi16050508 - 27 Apr 2025
Viewed by 143
Abstract
This paper proposes a 1200V 4H-SiC MOSFET incorporating a High-K dielectric-integrated fused source-gate (HKSG) structure, engineered to concurrently enhance the third-quadrant operation and high-frequency figure of merit (HF-FOM). The High-K dielectric enhances the electric field effect, reducing the threshold voltage of the source-gate. [...] Read more.
This paper proposes a 1200V 4H-SiC MOSFET incorporating a High-K dielectric-integrated fused source-gate (HKSG) structure, engineered to concurrently enhance the third-quadrant operation and high-frequency figure of merit (HF-FOM). The High-K dielectric enhances the electric field effect, reducing the threshold voltage of the source-gate. As a result, the reverse conduction voltage drops from 2.79 V (body diode) to 1.53 V, and the bipolar degradation is eliminated. Moreover, by incorporating a shielding area within the merged source-gate architecture, the gate-to-drain capacitance Cgd of the HKSG-MOS is reduced. The simulation results show that the HF-FOM Cgd × Ron,sp and Qgd × Ron,sp of the HKSG-MOS are decreased by 48.1% and 58.9%, respectively, compared with that of conventional SiC MOSFET. The improved performances make the proposed SiC MOSFEET have great potential in high-frequency power applications. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

21 pages, 4293 KiB  
Article
Temperature Compensation Method for MEMS Ring Gyroscope Based on PSO-TVFEMD-SE-TFPF and FTTA-LSTM
by Hongqiao Huang, Wen Ye, Li Liu, Wenjing Wang, Yan Wang and Huiliang Cao
Micromachines 2025, 16(5), 507; https://doi.org/10.3390/mi16050507 - 26 Apr 2025
Viewed by 147
Abstract
This study proposes a novel parallel denoising and temperature compensation fusion algorithm for MEMS ring gyroscopes. First, the particle swarm optimization (PSO) algorithm is used to optimize the time-varying filter-based empirical mode decomposition (TVFEMD), obtaining optimal decomposition parameters. Then, TVFEMD decomposes the gyroscope [...] Read more.
This study proposes a novel parallel denoising and temperature compensation fusion algorithm for MEMS ring gyroscopes. First, the particle swarm optimization (PSO) algorithm is used to optimize the time-varying filter-based empirical mode decomposition (TVFEMD), obtaining optimal decomposition parameters. Then, TVFEMD decomposes the gyroscope output signal into a series of product function (PF) signals and a residual signal. Next, sample entropy (SE) is employed to classify the decomposed signals into three categories: noise segment, mixed segment, and feature segment. According to the parallel model structure, the noise segment is directly discarded. Meanwhile, time–frequency peak filtering (TFPF) is applied to denoise the mixed segment, while the feature segment undergoes compensation. For compensation, the football team training algorithm (FTTA) is used to optimize the parameters of the long short-term memory (LSTM) neural network, forming a novel FTTA-LSTM architecture. Both simulations and experimental results validate the effectiveness of the proposed algorithm. After processing the MEMS gyroscope output signal using the PSO-TVFEMD-SE-TFPF denoising algorithm and the FTTA-LSTM temperature drift compensation model, the angular random walk (ARW) of the MEMS gyroscope is reduced to 0.02°/√h, while the bias instability (BI) decreases to 2.23°/h. Compared to the original signal, ARW and BI are reduced by 99.43% and 97.69%, respectively. The proposed fusion-based temperature compensation method significantly enhances the temperature stability and noise performance of the gyroscope. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

Previous Issue
Back to TopTop