Deep Learning Method for Breakdown Voltage and Forward I-V Characteristic Prediction of Silicon Carbide Schottky Barrier Diodes
Abstract
:1. Introduction
2. Methodology
2.1. Device Structure and Data Collection
2.2. Analysis of Pre-Training Data
2.3. Design of Breakdown Voltage Predict Convolutional Neural Network
3. Results and Discussion
3.1. Prediction Results and Analysis of Breakdown Voltage
3.2. Prediction Results and Analysis of I-V Forward Conduction Curves
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CNNs | Convolutional Neural Networks |
Cov1D | One-Dimension Convolutional Modules |
DT | Decision Tree |
FC | Fully Connected Layer |
FLR | Field-Limiting Ring |
JTE | Junction Termination Extension |
KNN | K-Nearest Neighbor |
SVM | Support Vector Machine |
References
- Baliga, B.J. Silicon carbide power devices: Progress and future outlook. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 2400–2411. [Google Scholar] [CrossRef]
- Buffolo, M.; Favero, D.; Marcuzzi, A.; Santi, C.D.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Review and outlook on GaN and SiC power devices: Industrial state-of-the-art, applications, and perspectives. IEEE Trans. Electron Devices 2024, 71, 1344–1355. [Google Scholar] [CrossRef]
- She, X.; Huang, A.; Lucia, O.; Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Capan, I. 4H-SiC Schottky barrier diodes as radiation detectors: A review. Electronics 2022, 11, 532. [Google Scholar] [CrossRef]
- Kimoto, T.; Watanabe, H. Defect engineering in SiC technology for high-voltage power devices. Appl. Phys. Express 2020, 13, 120101. [Google Scholar] [CrossRef]
- Vivona, M.; Giannazzo, F.; Roccaforte, F. Materials and processes for Schottky contacts on silicon carbide. Materials 2021, 15, 298. [Google Scholar] [CrossRef]
- Bernat, R.; Bakrač, L.; Radulović, V.; Snoj, L.; Makino, T.; Ohshima, T.; Pastuovic, Z.; Capan, I. 4H-SiC Schottky barrier diodes for efficient thermal neutron detection. Materials 2021, 14, 5105. [Google Scholar] [CrossRef]
- Long, X.; Jun, Z.; Zhang, B.; Chen, D.; Liang, W. A unified electrothermal behavior modeling method for both SiC MOSFET and GaN HEMT. IEEE Trans. Ind. Electron. 2020, 68, 9366–9375. [Google Scholar] [CrossRef]
- Potbhare, S.; Goldsman, N.; Lelis, A.; McGarrity, J.M.; McLean, F.B.; Habersat, D. A physical model of high temperature 4H-SiC MOSFETs. IEEE Trans. Electron Devices 2008, 55, 2029–2040. [Google Scholar] [CrossRef]
- Lehmeyer, J.; Citak, T.; Weber, H.B.; Krieger, M. Evaluation of 4H-SiC MOSFET transfer characteristics using machine-learning techniques. Electron. Lett. 2023, 59, e12752. [Google Scholar]
- Choudhary, K.; Babu, R.; Christie, L.; Mahto, M. Real time conditioning monitoring of MOSFET using artificial neural network regression. Meas. Sci. Technol. 2024, 35, 085015. [Google Scholar] [CrossRef]
- Spata, M.O.; Battiato, S.; Ortis, A.; Rundo, F.; Calabretta, M.; Pino, C.; Messina, A. Deep learning algorithm for advanced level-3 inverse-modeling of silicon-carbide power MOSFET devices. In Proceedings of the Workshop on Electronics Communication Engineering (WECE 2023), Guilin, China, 16 January 2024. [Google Scholar]
- Kim, M.K.; Yoon, Y.D.; Yoon, S.W. Actual maximum junction temperature estimation process of multichip SiC MOSFET power modules with new calibration method and deep learning. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 11, 5602–5612. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, J.; Fang, Y. Few-shot object detection on remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Song, P.; Li, P.; Dai, L.; Wang, T.; Chen, Z. Boosting R-CNN: Reweighting R-CNN samples by RPN’s error for underwater object detection. Neurocomputing 2023, 530, 150–164. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, C.; Wang, D.; Liu, H. A novel deep learning model integrating CNN and GRU to predict particulate matter concentrations. Process. Saf. Environ. 2023, 173, 604–613. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, L.; Zhang, Y.; Han, X.; Deveci, M.; Parmar, M. A review of convolutional neural networks in computer vision. Artif. Intell. Rev. 2024, 57, 99. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, Q.; Du, B.; Zhang, L. Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification. IEEE Trans. Image Process. 2022, 31, 1559–1572. [Google Scholar] [CrossRef]
- Cong, S.; Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif. Intell. Rev. 2023, 56, 1905–1969. [Google Scholar] [CrossRef]
- Onose, H.; Oikawa, S.; Yatsuo, T.; Kobayashi, Y. Over 2000 V FLR termination technologies for SiC high voltage devices. In Proceedings of the 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH37094), Toulouse, France, 22–25 May 2000; pp. 245–248. [Google Scholar]
- Shekhawat, R.S.; Islam, S.M.; Kumar, S.; Singh, S.; Singh, D.; Bhattacharya, S. Fabrication and Characterization of a Silicon Carbide Based Schottky Barrier Diode. J. Electron. Mater. 2023, 52, 7221–7229. [Google Scholar] [CrossRef]
- Chen, G.; Fang, Y.; Li, Y.; Wang, L.; Bai, S.; Liu, A.; Huang, R.; Tao, Y.; Zhao, Z. Fabrication and Characterization of 1200V 40A 4H-SiC SBD. In Proceedings of the 2015 2nd International Forum on Electrical Engineering and Automation (IFEEA 2015), Guangzhou, China, 26–27 December 2015. [Google Scholar]
- Yuan, M.; Luo, H.; Tan, C.; Zhou, Q.; Tao, L.; Ye, H. Design and simulation of 1800V 40A 4H-SiC SBD using TCAD. In Proceedings of the 2018 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Shenzhen, China, 27 December 2018. [Google Scholar]
- Slotboom, J.W.; De Graaff, H.C. Bandgap narrowing in silicon bipolar transistors. IEEE Trans. Electron Devices 1977, 24, 1123–1125. [Google Scholar] [CrossRef]
- Raghunathan, R.; Baliga, B.J. Temperature dependence of hole impact ionization coefficients in 4H and 6H-SiC. Solid-State Electron. 1999, 43, 199–211. [Google Scholar] [CrossRef]
- Roschke, M.; Schwierz, F. Electron mobility models for 4H, 6H, and 3C SiC [MESFETs]. IEEE Trans. Electron Devices 2001, 48, 1442–1447. [Google Scholar] [CrossRef]
- Canali, C.; Majni, G.; Minder, R.; Ottaviani, G. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans. Electron Devices 1975, 22, 1045–1047. [Google Scholar] [CrossRef]
- Selberherr, S. Analysis and Simulation of Semiconductor Devices; Springer: Vienna, Austria, 1984; Volume 1, pp. 1160–1169. [Google Scholar]
- Song, Q.; Yuan, H.; Sun, Q.; Han, C.; Tang, X.; Zhang, Y.; Yuan, L.; Yang, S.; Zhang, Y. Reverse-Bias Stress-Induced Electrical Parameters Instability in 4H-SiC JBS Diodes Terminated Nonequidistance FLRs. IEEE Trans. Electron Devices 2019, 66, 3935–3939. [Google Scholar] [CrossRef]
- Hirao, T.; Onose, H.; Yasui, K.; Mori, M. Edge termination with enhanced field-limiting rings insensitive to surface charge for high-voltage SiC power devices. IEEE Trans. Electron Devices 2020, 67, 2850–2853. [Google Scholar] [CrossRef]
- Chang, H.R.; Gupta, R.N.; Winterhalter, C.; Hanna, E. Comparison of 1200 V silicon carbide Schottky diodes and silicon power diodes. In Proceedings of the Collection of Technical Papers. 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC) (Cat. No. 00CH37022), Las Vegas, NV, USA, 24–28 July 2000. [Google Scholar]
- Rao, C.; Liu, Y. Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization. Comput. Mater. Sci. 2020, 184, 109850. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, S.; Zhou, X.; Yang, M.; Wu, L.; Liu, B.; Phillips, P.; Wang, S. Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: Decision tree, k-nearest neighbors, and support vector machine. Simul.-Trans. Soc. Model. Simul. Int. 2016, 92, 861–871. [Google Scholar] [CrossRef]
- Amiri, A.F.; Oudira, H.; Chouder, A.; Kichou, S. Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier. Energy Convers. Manag. 2024, 301, 118076. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Ndrift (cm−3) | 1 × 1015, 2 × 1015, 3 × 1015, 4 × 1015, 5 × 1015, 6 × 1015, 7 × 1015, 8 × 1015, 9 × 1015, and 1 × 1016 |
NA (cm−3) | 3 × 1018, 5 × 1018, 6 × 1018, 7 × 1018, 9 × 1018, 1 × 1019, 2 × 1019, 3 × 1019, 4 × 1019, and 5 × 1019 |
nFLR | 1, 2, 3, 4, 5, and 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Wang, X.; Wang, S.; Liu, C.; Chen, D.; Li, J.; Ma, L.; Zhang, G. Deep Learning Method for Breakdown Voltage and Forward I-V Characteristic Prediction of Silicon Carbide Schottky Barrier Diodes. Micromachines 2025, 16, 583. https://doi.org/10.3390/mi16050583
Zhou H, Wang X, Wang S, Liu C, Chen D, Li J, Ma L, Zhang G. Deep Learning Method for Breakdown Voltage and Forward I-V Characteristic Prediction of Silicon Carbide Schottky Barrier Diodes. Micromachines. 2025; 16(5):583. https://doi.org/10.3390/mi16050583
Chicago/Turabian StyleZhou, Hao, Xiang Wang, Shulong Wang, Chenyu Liu, Dongliang Chen, Jiarui Li, Lan Ma, and Guohao Zhang. 2025. "Deep Learning Method for Breakdown Voltage and Forward I-V Characteristic Prediction of Silicon Carbide Schottky Barrier Diodes" Micromachines 16, no. 5: 583. https://doi.org/10.3390/mi16050583
APA StyleZhou, H., Wang, X., Wang, S., Liu, C., Chen, D., Li, J., Ma, L., & Zhang, G. (2025). Deep Learning Method for Breakdown Voltage and Forward I-V Characteristic Prediction of Silicon Carbide Schottky Barrier Diodes. Micromachines, 16(5), 583. https://doi.org/10.3390/mi16050583