The growing demand for high-speed and high-capacity wireless communication has intensified the need for compact, wideband, and efficient MIMO antenna systems, particularly for 5G mid-band and UWB applications. This article presents a miniaturized dual and quad port MIMO antenna design optimized for 5G
[...] Read more.
The growing demand for high-speed and high-capacity wireless communication has intensified the need for compact, wideband, and efficient MIMO antenna systems, particularly for 5G mid-band and UWB applications. This article presents a miniaturized dual and quad port MIMO antenna design optimized for 5G mid-band (n77/n78/n79/n96/n102) and Ultra-Wideband (UWB) applications without employing any decoupling structures between the radiating elements. The 2-port configuration features two closely spaced symmetric monopole elements (spacing < λ
max/2), promoting efficient use of space without degrading performance. An FR4 substrate (εr = 4.4) is used for fabrication with a compact size of 30 × 41 × 1.6 mm
3. This layout is extended orthogonally and symmetrically to form a compact quad-port variant with dimensions of 60 × 41 × 1.6 mm
3. Both designs offer a broad operational bandwidth from 2.6 GHz to 10.8 GHz (8.2 GHz), retaining return loss (S
XX) below −10 dB and strong isolation (S
XY < −20 dB at high frequencies, <−15 dB at low frequencies). The proposed MIMO antennas demonstrate strong performance and excellent diversity characteristics. The two-port antenna achieves an average envelope correlation coefficient (ECC) of 0.00204, diversity gain (DG) of 9.98 dB, and a mean effective gain difference (MEG
ij) of 0.3 dB, with a total active reflection coefficient (TARC) below −10 dB and signal delay variation under 0.25 ns, ensuring minimal pulse distortion. Similarly, the four-port design reports an average ECC of 0.01432, DG of 9.65 dB, MEG
ij difference below 0.3 dB, and TARC below −10 dB, confirming robust diversity and MIMO performance across both configurations.
Full article