Extended Shortwave Infrared T2SL Detector Based on AlAsSb/GaSb Barrier Optimization
Abstract
:1. Introduction
2. Design, Growth, and Fabrication
3. Results and Discussion
3.1. Experiment Result
3.2. Simulation and Discussion
3.3. Imaging Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoang, A.M.; Chen, G.; Haddadi, A.; Abdollahi Pour, S.; Razeghi, M. Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices. Appl. Phys. Lett. 2012, 100, 211101. [Google Scholar] [CrossRef]
- Lindsey, W.; Joshua, F.; Patrick, L.; Orges, F.; Rich, P.; David, B.; Ronald, D. Target discrimination in the extended SWIR (eSWIR) band (2–2.5 µm) compared to Vis, NIR, and SWIR in degraded visual environments. Proc. SPIE 2022, 12106, 41–51. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Dehzangi, A.; McClintock, R.; Haddadi, A.; Wu, D.; Chevallier, R.; Razeghi, M. Type–II superlattices base visible/extended short–wavelength infrared photodetectors with a bandstructure–engineered photo–generated carrier extractor. Sci. Rep. 2019, 9, 5003. [Google Scholar] [CrossRef] [PubMed]
- Arslan, Y.; Oguz, F.; Besikci, C. Extended wavelength SWIR InGaAs focal plane array: Characteristics and limitations. Infrared Phys. Technol. 2015, 70, 134–137. [Google Scholar] [CrossRef]
- Tennant, W.E.; Cockrum, C.A.; Gilpin, J.B.; Kinch, M.A.; Reine, M.B.; Ruth, R.P. Key issues in HgCdTe-based focal plane arrays: An industry perspective. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1992, 10, 1359–1369. [Google Scholar] [CrossRef]
- Piquini, P.; Zunger, A.; Magri, R. Pseudopotential calculations of band gaps and band edges of short-period (InAs)n/(GaSb)m superlattices with different substrates, layer orientations, and interfacial bonds. Phys. Rev. B 2008, 77, 115314. [Google Scholar] [CrossRef]
- Easley, J.; Martin, C.R.; Ettenberg, M.H.; Phillips, J. InGaAs/GaAsSb Type-II Superlattices for Short-Wavelength Infrared Detection. J. Electron. Mater. 2019, 48, 6025–6029. [Google Scholar] [CrossRef]
- Sidhu, R.; Ning, D.; Campbell, J.C.; Holmes, A.L. A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells. IEEE Photonics Technol. Lett. 2005, 17, 2715–2717. [Google Scholar] [CrossRef]
- Nguyen, B.M.; Razeghi, M.; Nathan, V.; Gail, J.B. Type-II M structure photodiodes: An alternative material design for mid-wave to long wavelength infrared regimes. Proc. SPIE 2007, 6479, 113–122. [Google Scholar] [CrossRef]
- Nguyen, B.-M.; Hoffman, D.; Delaunay, P.-Y.; Razeghi, M. Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier. Appl. Phys. Lett. 2007, 91, 163511. [Google Scholar] [CrossRef]
- Dehzangi, A.; Haddadi, A.; Chevallier, R.; Zhang, Y.; Razeghi, M. nBn extended short-wavelength infrared focal plane array. Opt. Lett. 2018, 43, 591–594. [Google Scholar] [CrossRef]
- Jiang, J.; Chang, F.; Zhou, W.; Li, N.; Chen, W.; Jiang, D.; Hao, H.; Wang, G.; Wu, D.; Xu, Y.; et al. High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices. Chin. Phys. B 2023, 32, 038503. [Google Scholar] [CrossRef]
- Dehzangi, A.; Haddadi, A.; Chevallier, R.; Zhang, Y.; Razeghi, M. Fabrication of 12 µm pixel-pitch 1280 × 1024 extended short wavelength infrared focal plane array using heterojunction type-II superlattice-based photodetectors. Semicond. Sci. Technol. 2019, 34, 03LT01. [Google Scholar] [CrossRef]
- Campbell, J.C. Recent Advances in Avalanche Photodiodes. J. Light. Technol. 2016, 34, 278–285. [Google Scholar] [CrossRef]
- Li, H.; Lu, L.; Yu, J.; Zheng, X.; Zhang, D.; Chen, W.; Feng, Y.; Ren, G.; Zhu, L. Low dark current density extended short-wavelength infrared superlattice photodetector with atomic layer deposited Al2O3 passivation. Appl. Opt. 2023, 62, 7960–7965. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Sun, J.; Jia, Q.; Song, Y.; Jiang, D.; Wang, G.; Xu, Y.; Niu, Z. High performance nBn detectors based on InGaAsSb bulk materials for short wavelength infrared detection. AIP Adv. 2019, 9, 105106. [Google Scholar] [CrossRef]
- Mark, D.N.; Jerris, F.J.; Terrence, S.L. General noise processes in hybrid infrared focal plane arrays. Opt. Eng. 1991, 30, 1682–1700. [Google Scholar] [CrossRef]
- Fu, L.; He, Y.; Zheng, J.; Hu, Y.; Xue, J.; Li, S.; Ge, C.; Yang, X.; Peng, M.; Li, K.; et al. TexSe1–x Photodiode Shortwave Infrared Detection and Imaging. Adv. Mater. 2023, 35, 2211522. [Google Scholar] [CrossRef]
- Tan, C.; Amani, M.; Zhao, C.; Hettick, M.; Song, X.; Lien, D.-H.; Li, H.; Yeh, M.; Shrestha, V.R.; Crozier, K.B.; et al. Evaporated SexTe1−x Thin Films with Tunable Bandgaps for Short-Wave Infrared Photodetectors. Adv. Mater. 2020, 32, 2001329. [Google Scholar] [CrossRef]
- Li, R.; Yao, F.; Xu, Y.; Bai, S.; Jia, Z.; Lin, Q. Optimizing the charge carrier dynamics of thermal evaporated TexSe1−x films for high-performance short-wavelength infrared photodetection. Adv. Funct. Mater. 2024, 34, 2307005. [Google Scholar] [CrossRef]
- Maiti, C.K. Introducing Technology Computer-Aided Design (TCAD): Fundamentals, Simulations, and Applications; Jenny Stanford Publishing: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Jones, A. AlxIn1−xAsySb1−y Digital Alloy Avalanche Photodiodes for Low-Noise Applications. Ph.D. Thesis, University of Virginia, Charlottesville, VA, USA, 2020. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, L.; Lu, L.; Chen, W.; Zheng, X.; Zhang, D.; Fu, Y.; Ou, J. Interface Engineering and Electron-Hole Wave Function Overlap of InAs/AlSb Superlattice Infrared Detectors. Photonics 2023, 10, 1268. [Google Scholar] [CrossRef]
Temperature (K) | Cutoff Wavelength (μm) | Specific Detectivity (cm·Hz1/2/W) | |
---|---|---|---|
Ref. [19] | 300 | 1.6 | 1 × 1010 (0 V) |
Ref. [20] | 293 | 1.8 | 6.5 × 1010 (-) |
Ref. [21] | 300 | 1.8 | 3 × 108 (0 V) |
This paper | 300 | 1.9 | 7.59 × 1010 (−10 mV) |
Material | Bandgap/eV | Nc/cm−3 | Nv/cm−3 | mun/cm−3/(V·s) | mup/cm−3/(V·s) | Dielectric Constant |
---|---|---|---|---|---|---|
6InAs/1GaSb/5AlSb/1GaSb | 0.65 | 1.4 × 1017 | 9.1 × 1018 | 27,717 | 702 | 13.4 |
4InAs/1GaSb/5AlSb/1GaSb | 0.75 | 1.7 × 1017 | 1.1 × 1019 | 20,219 | 772 | 12.4 |
5AlAs0.1Sb0.9/2GaSb | 1.25 | 8.2 × 1016 | 6.7 × 1018 | 2720 | 914 | 15.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Fu, Y.; Lu, L.; Chen, W.; Ou, J.; Zhu, L. Extended Shortwave Infrared T2SL Detector Based on AlAsSb/GaSb Barrier Optimization. Micromachines 2025, 16, 575. https://doi.org/10.3390/mi16050575
Yu J, Fu Y, Lu L, Chen W, Ou J, Zhu L. Extended Shortwave Infrared T2SL Detector Based on AlAsSb/GaSb Barrier Optimization. Micromachines. 2025; 16(5):575. https://doi.org/10.3390/mi16050575
Chicago/Turabian StyleYu, Jing, Yuegang Fu, Lidan Lu, Weiqiang Chen, Jianzhen Ou, and Lianqing Zhu. 2025. "Extended Shortwave Infrared T2SL Detector Based on AlAsSb/GaSb Barrier Optimization" Micromachines 16, no. 5: 575. https://doi.org/10.3390/mi16050575
APA StyleYu, J., Fu, Y., Lu, L., Chen, W., Ou, J., & Zhu, L. (2025). Extended Shortwave Infrared T2SL Detector Based on AlAsSb/GaSb Barrier Optimization. Micromachines, 16(5), 575. https://doi.org/10.3390/mi16050575