Next Issue
Volume 17, September-2
Previous Issue
Volume 17, August-2
 
 
materials-logo

Journal Browser

Journal Browser

Materials, Volume 17, Issue 17 (September-1 2024) – 272 articles

Cover Story (view full-size image): The efficient detection of picric acid (PA) is of great importance to social safety and environmental protection. For this purpose, three neutral Pt(II) complexes with diphenylamino-modified 2-phenylpyridine derivatives as cyclometalating ligands were synthesized. The crystal structures of the complexes highlight the contributions of Pt···Pt interactions and hydrogen bonds to their aggregation-induced phosphorescent emission (AIPE) properties. These AIPE-active Pt(II) complexes have been successfully applied to detect PA in aqueous media, affording the lowest limit of detection at 70 nM. These complexes also show promising applicability in complicated environments. The quenching of luminescence in the detection process can be attributed to photo-induced electron transfer. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 3789 KiB  
Article
Water Dynamics in Fish Collagen Gels—Insight from NMR Relaxometry
by Maciej Osuch, Joanna Nowosad, Dariusz Kucharczyk, Michał K. Łuczyński, Adrianna Mieloch, Janusz Godlewski and Danuta Kruk
Materials 2024, 17(17), 4438; https://doi.org/10.3390/ma17174438 - 9 Sep 2024
Viewed by 577
Abstract
1H spin–lattice relaxation experiments have been performed for gels based on fish collagen in order to analyze water dynamics. The covered frequency range ranges from 10 kHz to 10 MHz; in some cases, the temperature has varied as well. The relaxation data [...] Read more.
1H spin–lattice relaxation experiments have been performed for gels based on fish collagen in order to analyze water dynamics. The covered frequency range ranges from 10 kHz to 10 MHz; in some cases, the temperature has varied as well. The relaxation data have been reproduced in terms of two models of water motion—a model including two relaxation contributions associated with the diffusion of water molecules on the macromolecular surfaces and a second model being just a phenomenological power law. The concept of surface diffusion has led to a very good agreement with the experimental data and a consistent set of parameters, with the diffusion coefficients being about five orders of magnitude slower compared to bulk water for one of the pools and considerably faster for the second one (smaller by factors between 2 and 20 compared to bulk water). In some cases, the attempt to reproduce the data in terms of a power law has led to a good agreement with the experimental data (the power law factor varying between 0.41 and 0.57); however, in other cases, the discrepancies are significant. This outcome favors the concept of surface diffusion. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Properties and Applications)
Show Figures

Figure 1

27 pages, 14929 KiB  
Article
Reduction in Olfactory Discomfort in Inhabited Premises from Areas with Mofettas through Cellulosic Derivative–Polypropylene Hollow Fiber Composite Membranes
by Paul Constantin Albu, Andreia Pîrțac, Ludmila Motelica, Aurelia Cristina Nechifor, Geani Teodor Man, Alexandra Raluca Grosu, Szidonia-Katalin Tanczos, Vlad-Alexandru Grosu and Gheorghe Nechifor
Materials 2024, 17(17), 4437; https://doi.org/10.3390/ma17174437 - 9 Sep 2024
Viewed by 641
Abstract
Hydrogen sulfide is present in active or extinct volcanic areas (mofettas). The habitable premises in these areas are affected by the presence of hydrogen sulfide, which, even in low concentrations, gives off a bad to unbearable smell. If the living spaces considered are [...] Read more.
Hydrogen sulfide is present in active or extinct volcanic areas (mofettas). The habitable premises in these areas are affected by the presence of hydrogen sulfide, which, even in low concentrations, gives off a bad to unbearable smell. If the living spaces considered are closed enclosures, then a system can be designed to reduce the concentration of hydrogen sulfide. This paper presents a membrane-based way to reduce the hydrogen sulfide concentration to acceptable limits using a cellulosic derivative–propylene hollow fiber-based composite membrane module. The cellulosic derivatives considered were: carboxymethyl–cellulose (NaCMC), P1; cellulose acetate (CA), P2; methyl 2–hydroxyethyl–cellulose (MHEC), P3; and hydroxyethyl–cellulose (HEC), P4. In the permeation module, hydrogen sulfide is captured with a solution of cadmium that forms cadmium sulfide, usable as a luminescent substance. The composite membranes were characterized by SEM, EDAX, FTIR, FTIR 2D maps, thermal analysis (TG and DSC), and from the perspective of hydrogen sulfide air removal performance. To determine the process performances, the variables were as follows: the nature of the cellulosic derivative–polypropylene hollow fiber composite membrane, the concentration of hydrogen sulfide in the polluted air, the flow rate of polluted air, and the pH of the cadmium nitrate solution. The pertraction efficiency was highest for the sodium carboxymethyl–cellulose (NaCMC)–polypropylene hollow fiber membrane, with a hydrogen sulfide concentration in the polluted air of 20 ppm, a polluted air flow rate (QH2S) of 50 L/min, and a pH of 2 and 4. The hydrogen sulfide flux rates, for membrane P1, fall between 0.25 × 10−7 mol·m2·s−1 for the values of QH2S = 150 L/min, CH2S = 20 ppm, and pH = 2 and 0.67 × 10−7 mol·m−2·s−1 for the values of QH2S = 50 L/min, CH2S = 60 ppm, and pH = 2. The paper proposes a simple air purification system containing hydrogen sulfide, using a module with composite cellulosic derivative–polypropylene hollow fiber membranes. Full article
(This article belongs to the Special Issue Development and Application of Novel Membranes (2nd Edition))
Show Figures

Figure 1

12 pages, 4585 KiB  
Article
Thin-Layer TiO2 Membrane Fabrication by Condensed Layer Deposition
by Mohammed M. Numaan, Ahmed M. Jasim, Yangchuan Xing and Maria M. Fidalgo
Materials 2024, 17(17), 4436; https://doi.org/10.3390/ma17174436 - 9 Sep 2024
Viewed by 402
Abstract
A novel approach to the fabrication of thin-film supported metal oxide membranes was investigated. Nanocoatings were obtained by the condensed layer deposition of TiO2 on tubular microporous supports, applying multiple consecutive layers of TiO2/polyaniline. The surface, cross-sectional structure, and morphology [...] Read more.
A novel approach to the fabrication of thin-film supported metal oxide membranes was investigated. Nanocoatings were obtained by the condensed layer deposition of TiO2 on tubular microporous supports, applying multiple consecutive layers of TiO2/polyaniline. The surface, cross-sectional structure, and morphology of the materials were investigated by electron microscopy. Their membrane-related properties were explored by permeability measurements, rejection, and fouling analysis, using polyethylene glycol (PEG) as test molecules. The SEM images showed that TiO2 was successfully deposited on the surface, creating a layer with partial coverage of the support after each layer was deposited; consequently, the permeability of the membranes decreased gradually. Overall, the results of the flux and permeability of the membranes confirmed the coating. The transmembrane pressure (TMP) increased with each coating layer, while the rejection of the membrane showed gradual improvement. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

19 pages, 9470 KiB  
Article
The Biocompatibility and the Effect of Titanium and PEKK on the Osseointegration of Customized Facial Implants
by Sung-Ok Hong, Ju-Yeon Pyo, Sung-Woon On, Ja-Yeong Seo and Jin-Young Choi
Materials 2024, 17(17), 4435; https://doi.org/10.3390/ma17174435 - 9 Sep 2024
Viewed by 582
Abstract
The purpose of this study was to investigate the optimization of computer-aided design/computer-aided manufacturing (CAD/CAM) patient-specific implants for mandibular facial bone defects and compare the biocompatibility and osseointegration of machined titanium (Ma), Sandblasted/Large-grit/Acid-etched (SLA) titanium, and polyetherketoneketone (PEKK) facial implants. We hypothesized that [...] Read more.
The purpose of this study was to investigate the optimization of computer-aided design/computer-aided manufacturing (CAD/CAM) patient-specific implants for mandibular facial bone defects and compare the biocompatibility and osseointegration of machined titanium (Ma), Sandblasted/Large-grit/Acid-etched (SLA) titanium, and polyetherketoneketone (PEKK) facial implants. We hypothesized that the facial implants made of SLA titanium had superior osseointegration when applied to the gonial angle defect and prevented the senile atrophy of the bone. Histologic findings of the soft-tissue reaction, hard-tissue reaction, and bone–implant contact (BIC (%) of 24 Ma, SLA, and PEKK facial implants at 8 and 12 weeks were investigated. There was no statistical difference in the soft tissue reaction. Bone was formed below the periosteum in all facial implants at 12 weeks and the BIC values were significantly different at both 8 and 12 weeks (p < 0.05). Ma, SLA, and PEKK facial implants are biocompatible with osseointegration properties. SLA can enhance osseointegration and provoke minimal soft tissue reactions, making them the most suitable choice. They provide an excellent environment for bone regeneration and, over the long term, may prevent atrophy caused by an aging mandible. The bone formation between the lateral surface of the facial implant and periosteum may assist in osseointegration and stabilization. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

23 pages, 6697 KiB  
Article
Lifecycle Assessment and Multi-Parameter Optimization of Lightweight Cement Mortar with Nano Additives
by Yiying Du, Aleksandrs Korjakins, Maris Sinka and Ina Pundienė
Materials 2024, 17(17), 4434; https://doi.org/10.3390/ma17174434 - 9 Sep 2024
Viewed by 565
Abstract
With the growing global concerns regarding sustainable development in the building and construction industries, concentration only on the engineering properties of building materials can no longer meet the requirements. Although some studies have been implemented based on the lifecycle assessment of lightweight cement-based [...] Read more.
With the growing global concerns regarding sustainable development in the building and construction industries, concentration only on the engineering properties of building materials can no longer meet the requirements. Although some studies have been implemented based on the lifecycle assessment of lightweight cement-based materials, very few attempts have been made pertaining to multi-criteria optimization, especially when fly ash cenospheres are used as lightweight aggregates and nano additives are incorporated as modifying admixtures. This investigation utilized cenospheres as fine aggregates to produce green, sustainable, lightweight cement mortar. Multi-walled carbon nanotubes at 0.05, 0.15, and 0.45% were binarily added, together with 0.2, 0.6, and 1.0% of nano silica to improve the mechanical performance. Strength tests were conducted to measure the flexural and compressive behaviors, combined with a cradle-to-gate lifecycle assessment and direct cost analysis to assess the environmental and economic viability. Integrated indexes and the TOPSIS method were adopted to systematically evaluate the mortar mixes and determine the optimal mix. The outcomes show that nano additives worked synergically to enhance the mechanical properties of the mortars. The utilization of cenospheres effectively reduced environmental impacts and improved economic feasibility. Nano additives significantly affected the sustainability and economic viability; in particular, the utilization of multi-walled carbon nanotubes increased the material costs. To minimize the impact of the price of multi-walled carbon nanotubes, it is proposed to binarily use less expensive nano silica. In the multi-parameter optimization, the mix with 0.05% multi-walled carbon nanotubes and 0.02% nano silica was recommended to be the optimal mix. Full article
Show Figures

Figure 1

17 pages, 23305 KiB  
Article
In Situ Investigation of Tensile Response for Inconel 718 Micro-Architected Materials Fabricated by Selective Laser Melting
by Ioannis Filippos Kyriakidis, Nikolaos Kladovasilakis, Eleftheria Maria Pechlivani, Apostolos Korlos, Constantine David and Konstantinos Tsongas
Materials 2024, 17(17), 4433; https://doi.org/10.3390/ma17174433 - 9 Sep 2024
Viewed by 482
Abstract
Topology optimization enables the design of advanced architected materials with tailored mechanical properties and optimal material distribution. This method can result in the production of parts with uniform mechanical properties, reducing anisotropy effects and addressing a critical challenge in metal additive manufacturing (AM). [...] Read more.
Topology optimization enables the design of advanced architected materials with tailored mechanical properties and optimal material distribution. This method can result in the production of parts with uniform mechanical properties, reducing anisotropy effects and addressing a critical challenge in metal additive manufacturing (AM). The current study aims to examine the micro-tensile response of Inconel 718 architected materials utilizing the Selective Laser Melting Technique. In this context, three novel architected materials, i.e., Octet, Schwarz Diamond (SD), and hybrid Schwarz Diamond and Face Centered Cubic (FCC), were tested in three different relative densities. The specimens were then subjected to uniaxial quasi-static tensile tests to determine their key mechanical properties, including elastic modulus, yield strength, and ultimate tensile strength (UTS), as well as the scaling laws describing the tensile response of each architected material. In situ Scanning Electron Microscopy (SEM) has been performed to observe the structure and grain morphology of the 3D printed specimens along with the phase transitions (elastic, plastic), the crack propagation, and the overall failure mechanisms. The results highlight the effect of the lattice type and the relative density on the mechanical properties of architected materials. Topologically optimized structures presented a 70–80% reduction in overall strength, while the SD and SD&FCC structures presented higher stretching dominated behavior, which was also verified by the n-value range (1–2) extracted from the identification of the scaling laws. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Metal and Non-Metallic Materials)
Show Figures

Graphical abstract

13 pages, 3668 KiB  
Article
Protective Coatings Based on the Organosilicon Derivatives of Fatty Acids Obtained by the Thiol-Ene Click Reaction
by Karol Szubert and Albert Liberski
Materials 2024, 17(17), 4432; https://doi.org/10.3390/ma17174432 - 9 Sep 2024
Viewed by 402
Abstract
This article describes the synthesis of a hydrophobic protective coating for concrete based on a silane derivative of fatty acids. The coating was obtained through a thiol-ene click addition reaction using methyl oleate and 3-mercaptopropyltrimethoxysilane in the presence of the photoinitiator 2,2-dimethoxy-2-phenylacetophenone (DMPA). [...] Read more.
This article describes the synthesis of a hydrophobic protective coating for concrete based on a silane derivative of fatty acids. The coating was obtained through a thiol-ene click addition reaction using methyl oleate and 3-mercaptopropyltrimethoxysilane in the presence of the photoinitiator 2,2-dimethoxy-2-phenylacetophenone (DMPA). This reaction proved to be more efficient compared with other tested (photo)initiators, considering the double bond conversion of oleate. The coating was applied to concrete using two methods: immersion and brushing. Both methods exhibited similar consumption of methyl oleate-based silane (UVMeS) at approximately 20 g/m2. The hydrophobic properties of the coatings were evaluated based on the contact angle, which for the modified surfaces was above 93°, indicating their hydrophobic nature. The penetration depth of the silane solution into the concrete was also studied; it was 5–7 mm for the immersion method and 3–5 mm for the brushing method. The addition of tetraethoxysilane (TEOS) to the silane solution slightly improved the barrier properties of the coating. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 5845 KiB  
Review
Graphene–Liquid Crystal Synergy: Advancing Sensor Technologies across Multiple Domains
by Mohammad A. Adeshina, Abdulazeez M. Ogunleye, Hakseon Lee, Bharathkumar Mareddi, Hyunmin Kim and Jonghoo Park
Materials 2024, 17(17), 4431; https://doi.org/10.3390/ma17174431 - 9 Sep 2024
Viewed by 645
Abstract
This review explores the integration of graphene and liquid crystals to advance sensor technologies across multiple domains, with a focus on recent developments in thermal and infrared sensing, flexible actuators, chemical and biological detection, and environmental monitoring systems. The synergy between graphene’s exceptional [...] Read more.
This review explores the integration of graphene and liquid crystals to advance sensor technologies across multiple domains, with a focus on recent developments in thermal and infrared sensing, flexible actuators, chemical and biological detection, and environmental monitoring systems. The synergy between graphene’s exceptional electrical, optical, and thermal properties and the dynamic behavior of liquid crystals leads to sensors with significantly enhanced sensitivity, selectivity, and versatility. Notable contributions of this review include highlighting key advancements such as graphene-doped liquid crystal IR detectors, shape-memory polymers for flexible actuators, and composite hydrogels for environmental pollutant detection. Additionally, this review addresses ongoing challenges in scalability and integration, providing insights into current research efforts aimed at overcoming these obstacles. The potential for multi-modal sensing, self-powered devices, and AI integration is discussed, suggesting a transformative impact of these composite sensors on various sectors, including health, environmental monitoring, and technology. This review demonstrates how the fusion of graphene and liquid crystals is pushing the boundaries of sensor technology, offering more sensitive, adaptable, and innovative solutions to global challenges. Full article
(This article belongs to the Special Issue Structural and Physical Properties of Liquid Crystals)
Show Figures

Figure 1

16 pages, 3004 KiB  
Article
New Discovery of Natural Zeolite-Rich Tuff on the Northern Margin of the Los Frailes Caldera: A Study to Determine Its Performance as a Supplementary Cementitious Material
by Jorge L. Costafreda, Domingo A. Martín, Miguel A. Sanjuán and Jorge L. Costafreda-Velázquez
Materials 2024, 17(17), 4430; https://doi.org/10.3390/ma17174430 - 9 Sep 2024
Viewed by 404
Abstract
The release of Neogene volcanism in the southeastern part of the Iberian Peninsula produced a series of volcanic structures in the form of stratovolcanoes and calderas; however, other materials also accumulated such as large amounts of pyroclastic materials such as cinerites, ashes, and [...] Read more.
The release of Neogene volcanism in the southeastern part of the Iberian Peninsula produced a series of volcanic structures in the form of stratovolcanoes and calderas; however, other materials also accumulated such as large amounts of pyroclastic materials such as cinerites, ashes, and lapilli, which were later altered to form deposits of zeolites and bentonites. This work has focused on an area located on the northern flank of the San José-Los Escullos zeolite deposit, the only one of its kind with industrial capacity in Spain. The main objective of this research is to characterize the zeolite (SZ) of this new area from the mineral, chemical, and technical points of view and establish its possible use as a natural pozzolan. In the first stage, a study of the mineralogical and chemical composition of the selected samples was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and thermogravimetric analysis (TGA); in the second stage, chemical-qualitative and pozzolanicity technical tests were carried out at 8 and 15 days. In addition, a chemical analysis was performed using XRF on the specimens of mortars made with a standardized mixture of Portland cement (PC: 75%) and natural zeolite (SZ: 25%) at the ages of 7, 28, and 90 days. The results of the mineralogical analyses indicated that the samples are made up mainly of mordenite and subordinately by smectite, plagioclase, quartz, halloysite, illite, and muscovite. Qualitative chemical assays indicated a high percentage of reactive silica and reactive CaO and also negligible contents of insoluble residues. The results of the pozzolanicity test indicate that all the samples analyzed behave like natural pozzolans of good quality, increasing their pozzolanic reactivity from 8 to 15 days of testing. Chemical analyses of PC/SZ composite mortar specimens showed how a significant part of SiO2 and Al2O3 are released by zeolite while it absorbs a large part of the SO3 contained in the cement. The results presented in this research could be of great practical and scientific importance as they indicate the continuation of zeolitic mineralization beyond the limits of the San José-Los Escullos deposit, which would result in an increase in geological reserves and the extension of the useful life of the deposit, which is of vital importance to the local mining industry. Full article
(This article belongs to the Special Issue Functional Cement-Based Composites for Civil Engineering (Volume II))
Show Figures

Figure 1

12 pages, 3770 KiB  
Article
Effect of High-Pressure Torsion Temperatures on the Precipitation and Properties of Cu-Cr Alloy
by Yu Zhang, Depeng Shen, Guoqiang Liu and Bingtao Tang
Materials 2024, 17(17), 4429; https://doi.org/10.3390/ma17174429 - 9 Sep 2024
Viewed by 430
Abstract
This study examines the impact of high-pressure torsion (HPT) processing at various temperatures on the precipitation behavior of Cu-Cr alloys. The introduction of defects through HPT is observed to promote the precipitation of Cr atoms. Unlike the traditional large-scale precipitation that typically occurs [...] Read more.
This study examines the impact of high-pressure torsion (HPT) processing at various temperatures on the precipitation behavior of Cu-Cr alloys. The introduction of defects through HPT is observed to promote the precipitation of Cr atoms. Unlike the traditional large-scale precipitation that typically occurs around 400 °C, HPT can induce the precipitation of solute atoms even at room temperature. Furthermore, the temperature at which HPT is performed significantly influences the behavior of the precipitated phase during subsequent aging, ultimately affecting the alloy’s overall properties. At elevated temperatures (ETs) and room temperature (RT), Cr atoms tend to aggregate, forming Guinier–Preston (GP) zones or precipitates, which coarsen into incoherent precipitates after annealing. In contrast, when HPT is conducted at liquid nitrogen temperature (LNT), Cr atoms are retained in their original positions, leading to the formation of uniformly distributed, high-density small precipitates post-annealing. This phenomenon results in superior properties for HPT-LNT-treated samples, evidenced by a microhardness of 191.8 ± 3.2 HV and an electrical conductivity of 84.6 ± 1.8% IACS. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 10843 KiB  
Article
Research on the Mechanism of Oxygen-Induced Embrittlement Fracturing in Industrial Electrolytic Nickel
by Han Zhang, Chen Sang, Chengpeng Miao, Yangtao Xu, Jisen Qiao and Tiandong Xia
Materials 2024, 17(17), 4428; https://doi.org/10.3390/ma17174428 - 9 Sep 2024
Viewed by 478
Abstract
In this study, severe cracking occurred during an investigation of the direct hot rolling of industrial electrolytic nickel plates. To determine the cause of hot-rolling cracking, the microstructure phase composition was analyzed through the utilization of various techniques, including optical microscopy, scanning electron [...] Read more.
In this study, severe cracking occurred during an investigation of the direct hot rolling of industrial electrolytic nickel plates. To determine the cause of hot-rolling cracking, the microstructure phase composition was analyzed through the utilization of various techniques, including optical microscopy, scanning electron microscopy, electron backscattering diffraction, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and electron probe micro-analysis. The comparative microstructural analysis took place between specimens heat treated in atmospheric and vacuum environments. The characterization and analysis of the hot-rolled plates considered the crack microstructure and fracture morphology. It was shown that holes appeared along the large angular grain boundaries after annealing at 1100 °C for 8 h. Possible reason: In a high-temperature environment, the decomposition of residual additives in the electrolytic nickel releases oxidizing gases, which oxidizes the grain boundaries. The reaction with carbon diffused into the grain boundaries and produced carbon monoxide gas, which induced holes and severely reduced the grain boundary plasticity. The heat treatment time did not need to be very long for severe grain boundary degradation to occur. After severe cavitation, the electrolytic nickel was severely cracked at grain boundaries cracks due to a shear force, and brittle fractures occurred along grains with very low plasticity. Full article
Show Figures

Figure 1

15 pages, 3718 KiB  
Article
Analysis of the Mechanical Properties of Structural Ceramics Made from Aggregate Washing Sludge and Manganese Mining Waste
by Juan María Terrones-Saeta, Vanesa Domínguez, Daniel Ramos, Emilio Romero and Juan Asensio-Lozano
Materials 2024, 17(17), 4427; https://doi.org/10.3390/ma17174427 - 9 Sep 2024
Viewed by 385
Abstract
The construction sector is presently among the most resource-intensive industries, driving a substantial body of research dedicated to the development of more sustainable materials to address these demands. A particularly promising approach within the framework of the circular economy is the repurposing of [...] Read more.
The construction sector is presently among the most resource-intensive industries, driving a substantial body of research dedicated to the development of more sustainable materials to address these demands. A particularly promising approach within the framework of the circular economy is the repurposing of waste as a principal raw material for the creation of new construction products. Within this context, the primary aim of this study is to engineer ceramic materials for brick production using 100% waste-derived inputs, specifically aggregate washing sludge and manganese mining by-products. To evaluate the potential of these sustainable ceramic materials, an extensive investigation was conducted, encompassing both physical and mechanical testing, as well as a thorough characterisation of the waste inputs. For this purpose, a series of ceramic specimens were fabricated with varying proportions of mining residues and aggregate washing sludge, adhering to the conventional protocols employed in the manufacture of ceramic bricks. The results demonstrate that these sustainable ceramics exhibit a linear shrinkage reduction of up to 5% compared to traditional clay-based ceramics. Furthermore, they show water absorption levels—whether via capillarity, cold water, or hot water absorption—that are up to twice those observed in conventional clay ceramics, while maintaining comparable density values. This increased absorption, however, correlates with a reduction in mechanical strength at higher concentrations of manganese waste, yet the material continues to meet the minimum strength requirements as specified by industry standards for such products. In conclusion, this research introduces a novel, sustainable ceramic material that not only reduces economic and environmental costs but also adheres to the required performance criteria for construction applications. Full article
Show Figures

Figure 1

15 pages, 11327 KiB  
Article
An Investigation into Mechanical Properties of 3D Printed Thermoplastic-Thermoset Mixed-Matrix Composites: Synergistic Effects of Thermoplastic Skeletal Lattice Geometries and Thermoset Properties
by Saleh Khanjar, Srimanta Barui, Kunal Kate and Kameswara Pavan Kumar Ajjarapu
Materials 2024, 17(17), 4426; https://doi.org/10.3390/ma17174426 - 9 Sep 2024
Viewed by 504
Abstract
This study aims to develop thermoplastic (TP) and thermoset (TS) based mixed matrix composite using design dependent physical compatibility. Using thermoplastic-based (PLA) skeletal lattices with diverse patterns (gyroid and grid) and different infill densities (10% and 20%) followed by infiltration of two different [...] Read more.
This study aims to develop thermoplastic (TP) and thermoset (TS) based mixed matrix composite using design dependent physical compatibility. Using thermoplastic-based (PLA) skeletal lattices with diverse patterns (gyroid and grid) and different infill densities (10% and 20%) followed by infiltration of two different thermoset resin systems (epoxy and polyurethane-based) using a customized FDM 3D printer equipped with a resin dispensing unit, the optimised design and TP-TS material combination was established for best mechanical performance. Under uniaxial tensile stress, the failure modes of TP gyroid structures with polyurethane-based composites included ‘fiber pull-out’, interfacial debonding and fiber breakage, while epoxy based mixed matrix composites with all design variants demonstrated brittle failure. Higher elongation (higher area under curve) was observed in 20% infilled gyroid patterned composite with polyurethane matrix indicating the capability of operation in mechanical shock absorption application. Electron microscopy-based fractography analysis revealed that thermoset matrix properties governed the fracture modes for the thermoplastic phase. This work focused on the strategic optimisation of both toughness and stiffness of mixed matrix composite components for rapid fabrication of construction materials. Full article
Show Figures

Figure 1

13 pages, 7271 KiB  
Article
In Situ Analysis of Binder Degradation during Catalyst-Accelerated Stress Test of Polymer Electrolyte Membrane Fuel Cells
by Donggeun Yoo, Sujung Park, Sohyeong Oh, Minsoo P. Kim and Kwonpil Park
Materials 2024, 17(17), 4425; https://doi.org/10.3390/ma17174425 - 9 Sep 2024
Viewed by 507
Abstract
High-oxygen-permeability ionomers (HOPIs) are being actively developed to enhance the performance and durability of high-power polymer electrolyte membrane fuel cells (PEMFCs). While methods for evaluating binder performance are well-established, techniques for assessing binder durability and measuring its degradation in situ during the AST [...] Read more.
High-oxygen-permeability ionomers (HOPIs) are being actively developed to enhance the performance and durability of high-power polymer electrolyte membrane fuel cells (PEMFCs). While methods for evaluating binder performance are well-established, techniques for assessing binder durability and measuring its degradation in situ during the AST process remain limited. This study examines the distribution of relaxation times (DRT) and Warburg-like response (WLR) methods as in situ analysis techniques during the catalyst-accelerated stress test (AST) process. We conducted catalyst-ASTs (0.6–0.95 V cycling) for 20,000 cycles, monitoring changes using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Contrary to expectations, during the catalyst-AST, the ion transport resistance of the binder decreased, indicating no binder degradation. Scanning electron microscopy/energy dispersive spectrometer (SEM/EDS) analysis revealed that the degradation rate of the catalyst and the support was relatively higher than that of the binder, leading to a reduction in catalyst layer thickness and improved binder network formation. By applying the DRT method during the catalyst-AST process, we were able to measure the increase in oxygen reduction reaction (ORR) resistance and the decrease in proton transport resistance in situ. This allowed for the real-time detection of the reduction in catalyst layer thickness and improvements in ionomer networks due to catalyst and support degradation. These findings provide new insights into the complex interplay between catalyst degradation and binder performance, contributing to the development of more durable PEMFC components. Full article
Show Figures

Graphical abstract

17 pages, 6914 KiB  
Article
Effects of Thermal Exposure Temperature on Room-Temperature Tensile Properties of Ti65 Alloy
by Yuan-Chen Wang, Jian-Yang Liu, Jian-Rong Liu, Wen-Yuan Li, Bin Zhang and Guang-Ping Zhang
Materials 2024, 17(17), 4424; https://doi.org/10.3390/ma17174424 - 9 Sep 2024
Viewed by 417
Abstract
As a critical material for high-temperature components of aero-engines, the mechanical properties of Ti65 alloy, subjected to high-temperature and long-term thermal exposure, directly affect its service safety. The room-temperature tensile properties of the Ti65 alloy after thermal exposure to temperatures ranging from 450 [...] Read more.
As a critical material for high-temperature components of aero-engines, the mechanical properties of Ti65 alloy, subjected to high-temperature and long-term thermal exposure, directly affect its service safety. The room-temperature tensile properties of the Ti65 alloy after thermal exposure to temperatures ranging from 450 °C to 650 °C for 100 h were investigated. The results indicate that as the thermal exposure temperature increases, the strength of Ti65 alloy initially increases and then decreases, while ductility exhibits a decreasing trend. The strength of the thermally exposed alloy positively correlates with the size and content of the α2 phase. The ductility of the thermally exposed alloy is comprehensively influenced by the surface oxidation behavior, α2 phase, and silicides. After the prolonged thermal exposure, stress concentration at the crack tips within the oxide layer was enhanced with the increased thickness of the surface TiO2 oxide layer, leading to premature fracture due to reduced alloy ductility. Furthermore, the α2 phase in the matrix promotes the planar slip of dislocations, while silicides at the α/β phase boundaries hinder dislocation motion, causing dislocation pile-ups. Both behaviors facilitate crack nucleation and deteriorate alloy ductility. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

13 pages, 20018 KiB  
Article
Bonding Behavior and Quality of Pressureless Ag Sintering on (111)-Oriented Nanotwinned Cu Substrate in Ambient Air
by Xingming Huang, Wei He, Jialong Liang, Hao-Kun Yang, Chunliang Zhou and Zhi-Quan Liu
Materials 2024, 17(17), 4423; https://doi.org/10.3390/ma17174423 - 9 Sep 2024
Viewed by 428
Abstract
(111)-oriented nanotwinned Cu ((111)nt-Cu) has shown its high surface diffusion rate and better oxidation resistance over common polycrystalline Cu (C-Cu). The application of (111)nt-Cu as an interface metallization layer in Ag-sintered technology under the role of oxygen was investigated in this work, and [...] Read more.
(111)-oriented nanotwinned Cu ((111)nt-Cu) has shown its high surface diffusion rate and better oxidation resistance over common polycrystalline Cu (C-Cu). The application of (111)nt-Cu as an interface metallization layer in Ag-sintered technology under the role of oxygen was investigated in this work, and its connecting behavior was further clarified by comparing it with C-Cu. As the sintering temperature decreasing from 300 to 200 °C, the shear strength on the (111)nt-Cu substrate was still greater than 55 MPa after sintering for 10 min. The fracture surface correspondingly changed from the interface of Ag/die to mixed fracture mode, involving the interface of the Ag/Cu substrate and Ag/die. The existence of copper oxide provided a tight connection between Ag and the (111)nt-Cu substrate at all of the studied temperatures. Although lots of small dispersed voids were seen at the interface between copper oxide and (111)nt-Cu at 300 °C, these impurity-induced voids would not necessarily be a failure position and could be improved by adjusting the sintering temperature and time; for example, 200 °C/10 min or heating to 300 °C, and then start cooling at the same time. The microstructure of Ag-Cu joint on (111)nt-Cu behaved better than that on C-Cu. The thinner copper oxide layer and the higher connection ratio of the interface between copper oxide and Ag were still found on the (111)nt-Cu connection’s structure. The poor connection between copper oxide and Ag on C-Cu easily became the failure interface. By controlling the thickness of copper oxide and the content of impurity-induced voids, the use of (111)nt-Cu in advanced-packaging could be improved to a new level. Full article
Show Figures

Figure 1

13 pages, 1547 KiB  
Article
Predicting Yield Strength and Plastic Elongation in Body-Centered Cubic High-Entropy Alloys
by Diego Ibarra Hoyos, Quentin Simmons and Joseph Poon
Materials 2024, 17(17), 4422; https://doi.org/10.3390/ma17174422 - 8 Sep 2024
Viewed by 825
Abstract
We employ machine learning (ML) to predict the yield stress and plastic strain of body-centered cubic (BCC) high-entropy alloys (HEAs) in the compression test. Our machine learning model leverages currently available databases of BCC and BCC+B2 entropy alloys, using feature engineering to capture [...] Read more.
We employ machine learning (ML) to predict the yield stress and plastic strain of body-centered cubic (BCC) high-entropy alloys (HEAs) in the compression test. Our machine learning model leverages currently available databases of BCC and BCC+B2 entropy alloys, using feature engineering to capture electronic factors, atomic ordering from mixing enthalpy, and the D parameter related to stacking fault energy. The model achieves low Root Mean Square Errors (RMSE). Utilizing Random Forest Regression (RFR) and Genetic Algorithms for feature selection, our model excels in both predictive accuracy and interpretability. Rigorous 10-fold cross-validation ensures robust generalization. Our discussion delves into feature importance, highlighting key predictors and their impact on mechanical properties. This work provides an important step toward designing high-performance structural high-entropy alloys, providing a powerful tool for predicting mechanical properties and identifying new alloys with superior strength and ductility. Full article
Show Figures

Figure 1

14 pages, 6327 KiB  
Article
Evaluation of Vibration Damping Enhancement in Laminated Aluminum Sheets for Automotive Application
by Jong-Hwa Hong, Hyeonil Park, Se-Jong Kim and Daeyong Kim
Materials 2024, 17(17), 4421; https://doi.org/10.3390/ma17174421 - 8 Sep 2024
Viewed by 416
Abstract
In this research, the vibration damping characteristics of the laminated aluminum sheets (LAS) were evaluated in a sheet specimen and an automotive dash panel and compared with those of the monolithic aluminum sheet (MAS). The LAS was fabricated with two 5xxx series aluminum [...] Read more.
In this research, the vibration damping characteristics of the laminated aluminum sheets (LAS) were evaluated in a sheet specimen and an automotive dash panel and compared with those of the monolithic aluminum sheet (MAS). The LAS was fabricated with two 5xxx series aluminum alloy (AA) sheets (AA5052-O) with a thickness of 0.7 mm by inserting an acryl-based adhesive in between. The automotive dash panels were manufactured by multi-step stamping processes for the LAS and the MAS with a similar thickness. The shaker vibration test in a sheet specimen and the impact hammer test in an automotive dash panel were conducted to measure the frequency response function (FRF) of LAS, compared with those of MAS. The results show that the frequency response function made by the LAS has less noise and fluctuation than that of the MAS in a sheet specimen and an automotive dash panel. The damping ratios in a sheet specimen and an automotive dash panel made by the LAS have higher values than those of the MAS. This proves that the LAS has better vibration damping characteristics and a larger damping effect than the MAS in a sheet specimen and an automotive dash panel. Full article
Show Figures

Figure 1

25 pages, 14228 KiB  
Review
A Review on Metallurgical Issues in the Production and Welding Processes of Clad Steels
by Fabio Giudice, Severino Missori, Cristina Scolaro and Andrea Sili
Materials 2024, 17(17), 4420; https://doi.org/10.3390/ma17174420 - 8 Sep 2024
Viewed by 859
Abstract
Carbon and low-alloy steel plates clad with stainless steel or other metals are a good choice to meet the demand for cost-effective materials to be used in many corrosive environments. Numerous technical solutions are developed for the production of clad steel plates, as [...] Read more.
Carbon and low-alloy steel plates clad with stainless steel or other metals are a good choice to meet the demand for cost-effective materials to be used in many corrosive environments. Numerous technical solutions are developed for the production of clad steel plates, as well as for their joining by fusion welding. For thick plates, a careful strategy is required in carrying out the multiple passes and in choosing the most suitable filler metals, having to take into account the composition of the base metal and the cladding layer. The specificity of the different processes and materials involved requires an adequate approach in the study of the metallurgical characteristics of clad steel, thus arousing the interest of researchers. Focusing mainly on ferritic steel plates clad with austenitic steel, this article aims to review the scientific literature of recent years which deals with both the production and the fusion welding processes. The metallurgical issues concerning the interfaces and the effects of microstructural characteristics on mechanical behaviour and corrosion resistance will be addressed; in particular, the effects on the fusion and thermally affected zones that form during the fusion welding and weld overlay processes will be analysed and discussed. Full article
Show Figures

Figure 1

14 pages, 3839 KiB  
Article
Three-Dimensional Double-Layer Multi-Stage Thermal Management Fabric for Solar Desalination
by Xiao Feng, Can Ge, Heng Du, Xing Yang and Jian Fang
Materials 2024, 17(17), 4419; https://doi.org/10.3390/ma17174419 - 7 Sep 2024
Viewed by 755
Abstract
Water scarcity is a serious threat to the survival and development of mankind. Interfacial solar steam generation (ISSG) can alleviate the global freshwater shortage by converting sustainable solar power into thermal energy for desalination. ISSG possesses many advantages such as high photothermal efficiency, [...] Read more.
Water scarcity is a serious threat to the survival and development of mankind. Interfacial solar steam generation (ISSG) can alleviate the global freshwater shortage by converting sustainable solar power into thermal energy for desalination. ISSG possesses many advantages such as high photothermal efficiency, robust durability, and environmental friendliness. However, conventional evaporators suffered from huge heat losses in the evaporation process due to the lack of efficient thermal management. Herein, hydrophilic Tencel yarn is applied to fabricate a three-dimensional double-layer fabric evaporator (DLE) with efficient multi-stage thermal management. DLE enables multiple solar absorptions, promotes cold evaporation, and optimizes thermal management. The airflow was utilized after structure engineering for enhanced energy evaporation efficiency. The evaporation rate can reach 2.86 kg·m−2·h−1 under 1 sun (1 kW·m−2), and 6.26 kg·m−2·h−1 at a wind speed of 3 m·s−1. After a long duration of outdoor operation, the average daily evaporation rate remains stable at over 8.9 kg·m−2, and the removal rate of metal ions in seawater reaches 99%. Overall, DLE with efficient and durable three-dimensional multi-stage thermal management exhibits excellent practicality for solar desalination. Full article
(This article belongs to the Special Issue Properties of Textiles and Fabrics and Their Processing)
Show Figures

Figure 1

14 pages, 8045 KiB  
Article
Texture of Hot-Compressed Metastable β-Titanium Alloy Ti5321 Studied by Neutron Diffraction
by Bin Gu, Paul Chekhonin, Robert Chulist, Weimin Gan and Werner Skrotzki
Materials 2024, 17(17), 4418; https://doi.org/10.3390/ma17174418 - 7 Sep 2024
Viewed by 698
Abstract
The textures of the β- and α-phases of the metastable β-titanium alloy Ti5321 after hot deformation were investigated by neutron diffraction. A hot-rolled bar was solutionized in the β-phase field and then hot compressed above and below the β [...] Read more.
The textures of the β- and α-phases of the metastable β-titanium alloy Ti5321 after hot deformation were investigated by neutron diffraction. A hot-rolled bar was solutionized in the β-phase field and then hot compressed above and below the β-transus temperature. The initial texture after full recrystallization and grain growth in the β-phase field exhibits a weak cube component {001}<100> and minor {112}<110> and {111}<110> components. After hot compression, a <100> fiber texture is observed, increasing in intensity with compression temperature. Below the β-transus temperature, dynamic recrystallization of the β-phase and dynamic spheroidization of the α-phase interact strongly. The texture of the α-phase is a <11–20> fiber texture, increasing in intensity with decreasing compression temperature. The mechanisms of texture formation during hot compression are discussed. Full article
Show Figures

Figure 1

12 pages, 2279 KiB  
Article
Shrinkage and Creep Properties of Low-Carbon Hybrid Cement
by Vít Šmilauer, Lenka Dohnalová and Pavel Martauz
Materials 2024, 17(17), 4417; https://doi.org/10.3390/ma17174417 - 7 Sep 2024
Viewed by 482
Abstract
Hybrid cements combine clinker with large amount of supplementary cementitious materials while utilizing hydration and alkali activation processes. This paper summarizes shrinkage and creep properties of industrially produced H-cement, containing only 20% of Portland clinker. In comparison with a reference cement CEM II/B-S [...] Read more.
Hybrid cements combine clinker with large amount of supplementary cementitious materials while utilizing hydration and alkali activation processes. This paper summarizes shrinkage and creep properties of industrially produced H-cement, containing only 20% of Portland clinker. In comparison with a reference cement CEM II/B-S 32.5 R, autogenous shrinkage is smaller after 7 days, and drying shrinkage is similar at similar times. A different capillary system of H-cement leads to faster water mass loss during drying. Basic and total creep of concrete remains in the standard deviation of B4 and EC2 creep models. The results demonstrate that shrinkage and creep properties of concrete made from H-cement have similar behavior as conventional structural concrete or high-volume fly ash concrete. Full article
Show Figures

Figure 1

23 pages, 17458 KiB  
Article
Influence of Connector Design on Displacement and Micromotion in Tooth-Implant Fixed Partial Dentures Using Different Lengths and Diameters: A Three-Dimensional Finite Element Study
by Hisham A. Mously, Ghada H. Naguib, Abou Bakr Hossam Hashem, Ahmed O. Abougazia, Abdulelah M. Binmahfooz and Mohamed T. Hamed
Materials 2024, 17(17), 4416; https://doi.org/10.3390/ma17174416 - 7 Sep 2024
Viewed by 830
Abstract
The literature presents insufficient data evaluating the displacement and micromotion effects resulting from the combined use of tooth-implant connections in fixed partial dentures. Analyzing the biomechanical behavior of tooth-implant fixed partial denture (FPD) prothesis is vital for achieving an optimum design and successful [...] Read more.
The literature presents insufficient data evaluating the displacement and micromotion effects resulting from the combined use of tooth-implant connections in fixed partial dentures. Analyzing the biomechanical behavior of tooth-implant fixed partial denture (FPD) prothesis is vital for achieving an optimum design and successful clinical implementation. The objective of this study was to determine the relative significance of connector design on the displacement and micromotion of tooth-implant-supported fixed dental prostheses under occlusal vertical loading. A unilateral Kennedy class I mandibular model was created using a 3D reconstruction from CT scan data. Eight simulated designs of tooth-implant fixed partial dentures (FPDs) were split into two groups: Group A with rigid connectors and Group B with non-rigid connectors. The models were subjected to a uniform vertical load of 100 N. Displacement, strain, and stress were computed using finite element analysis. The materials were defined as isotropic, homogeneous, and exhibiting linear elastic properties. This study focused on assessing the maximum displacement in various components, including the bridge, mandible, dentin, cementum, periodontal ligament (PDL), and implant. Displacement values were predominantly higher in Group B (non-rigid) compared to Group A (rigid) in all measured components of the tooth-implant FPDs. Accordingly, a statistically significant difference was observed between the two groups at the FPD bridge (p value = 0.021 *), mandible (p value = 0.021 *), dentin (p value = 0.043 *), cementum (p value = 0.043 *), and PDL (p value = 0.043 *). Meanwhile, there was an insignificant increase in displacement values recorded in the distal implant (p value = 0.083). This study highlighted the importance of connector design in the overall stability and performance of the prosthesis. Notably, the 4.7 mm × 10 mm implant in Group B showed a displacement nearly 92 times higher than its rigid counterpart in Group A. Overall, the 5.7 mm × 10 mm combination of implant length and diameter showcased the best performance in both groups. The findings demonstrate that wider implants with a proportional length offer greater resistance to displacement forces. In addition, the use of rigid connection design provides superior biomechanical performance in tooth-implant fixed partial dentures and reduces the risk of micromotion with its associated complications such as ligament overstretching and implant overload, achieving predictable prognosis and enhancing the stability of the protheses. Full article
Show Figures

Figure 1

19 pages, 19201 KiB  
Article
Numerical Simulation and Microstructure Analysis of 30CrMnMoRe High-Strength Steel Welding
by Jimi Fang, Xusheng Qian, Yanke Ci, Cong Li, Xiaoyong Zhang and Kehong Wang
Materials 2024, 17(17), 4415; https://doi.org/10.3390/ma17174415 - 7 Sep 2024
Viewed by 530
Abstract
Welding experiments were conducted under different currents for single-pass butt welding of high-strength steel flat plates. The microstructure of welded joints was characterized using OM, SEM, and EBSD, and the welding process was numerically simulated using a finite element method. According to the [...] Read more.
Welding experiments were conducted under different currents for single-pass butt welding of high-strength steel flat plates. The microstructure of welded joints was characterized using OM, SEM, and EBSD, and the welding process was numerically simulated using a finite element method. According to the grain size obtained by electron microscope characterization and the temperature data obtained by simulation, the microstructure and mechanical properties of coarse grain and fine grain areas of the heat-affected zone were predicted by using the material microstructure and property simulation software. Finally, the results of mechanical properties simulation were verified through mechanical property testing. Full article
(This article belongs to the Collection Welding and Joining Processes of Materials)
Show Figures

Figure 1

19 pages, 7525 KiB  
Review
Cork Façades as an Innovative and Sustainable Approach in Architecture: A Review of Cork Materials, Properties and Case Studies
by Isabel Miranda and Helena Pereira
Materials 2024, 17(17), 4414; https://doi.org/10.3390/ma17174414 - 7 Sep 2024
Viewed by 814
Abstract
Façades give the first impression of a structure, reflecting the overall aesthetic appeal, architectural styles, cultural influences, and technological advancements. Emphasis on sustainability is increasing, with a shift towards eco-friendly and energy-saving materials, triggered by decreasing the environmental impact of construction. Cork is [...] Read more.
Façades give the first impression of a structure, reflecting the overall aesthetic appeal, architectural styles, cultural influences, and technological advancements. Emphasis on sustainability is increasing, with a shift towards eco-friendly and energy-saving materials, triggered by decreasing the environmental impact of construction. Cork is a green competitive material for various engineering and design applications due to its biological formation, sustainable production and a portfolio of properties including low density, impermeability, viscoelastic behaviour and high thermal insulation that derive from its cellular and chemical features. This work presents cork materials used in building façades and their properties, also giving information on cork production and processing into cork-based products as a review of the existing published research, while also identifying knowledge gaps and further research needed. Historical examples of cladding of constructions with raw cork are given, while the contemporary innovative use of cork façades was triggered by some designs of well-known architects with outdoor application of expanded cork agglomerates. Examples of different historical and contemporary constructions were assembled and critically assessed by the authors. The aim is to give integrated information of cork as a natural, renewable and sustainable material to raise the interest of designers, architects and engineers to explore cork, blending aesthetics with environmental responsibility, targeting a more sustainable and resilient built environment. Full article
(This article belongs to the Special Issue Surface Modification and Applications of Wood Materials)
Show Figures

Graphical abstract

18 pages, 9815 KiB  
Article
Experimental and Numerical Investigation of the Flexural Behavior of Reinforced-Concrete Beams Utilizing Waste Andesite Dust
by Fuat Korkut, Memduh Karalar, Ali Motameni, Essam Althaqafi, Nebi Özdöner and Yasin Onuralp Özkılıç
Materials 2024, 17(17), 4413; https://doi.org/10.3390/ma17174413 - 7 Sep 2024
Cited by 1 | Viewed by 605
Abstract
During the process of cutting andesite stones, the waste mud is kept in powder form once fully dried. It is difficult to store the waste that is produced as a consequence of the extensive utilization area and consumption of andesite. Thus, eliminating waste [...] Read more.
During the process of cutting andesite stones, the waste mud is kept in powder form once fully dried. It is difficult to store the waste that is produced as a consequence of the extensive utilization area and consumption of andesite. Thus, eliminating waste storage challenges and incorporating these wastes into the economy are crucial. For this reason, this study examined the effects of waste andesite dust (WAD) on the flexural behavior of reinforced-concrete beams (RCBs) using experimental testing and 3D finite-element modeling (FEM) via ANSYS. Thus, different rates of WAD up to 40% were used to investigate the influence of the WAD rate on the fracture and bending behavior of RCBs. While the RCB with 10% WAD had a slightly lower load-bearing and ductility capacities, ductility capacities significantly drop after 10% WAD. At 40% WAD, both the load-bearing capacity and ductility significantly reduced. Based on the experimental findings, using 10% WAD as a replacement for cement is a reasonable choice to obtain eco-friendly concrete. Moreover, the outcomes of 3D FEM were also compared with those of experiments conducted using ANSYS v19 software. The displacement values between the test and FEM findings are quite similar. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 2289 KiB  
Article
The Impact of Dynamic Effects on the Results of Non-Destructive Falling Weight Deflectometer Testing
by Paweł Tutka, Roman Nagórski and Magdalena Złotowska
Materials 2024, 17(17), 4412; https://doi.org/10.3390/ma17174412 - 7 Sep 2024
Viewed by 400
Abstract
The article investigates the impact of applying a dynamic computational model that considers inertia forces on pavement deflections under rapidly changing loads over time. This study is particularly relevant to the modelling of falling weight deflectometer (FWD) testing. Initially, the article examines the [...] Read more.
The article investigates the impact of applying a dynamic computational model that considers inertia forces on pavement deflections under rapidly changing loads over time. This study is particularly relevant to the modelling of falling weight deflectometer (FWD) testing. Initially, the article examines the deflection values obtained from computational models under loads with varying frequencies. In this context, considering inertia forces was significant for load durations shorter than 0.04 s. In such cases, the results of static and dynamic analyses differed considerably. One application of FWD measurement results is determining the stiffness moduli of pavement layers using backcalculation. The study explored the impact of incorporating inertia forces into the pavement model on the estimated values of stiffness moduli obtained via backcalculation. The results revealed differences of several percent between the stiffness moduli calculated using dynamic and static numerical models. Subsequently, the key pavement deformations and fatigue life were determined using the obtained moduli. Again, significantly different results were observed between dynamic and static cases. Based on these findings, it can be concluded that dynamic effects should not be ignored when using FWD testing for backcalculation. Additionally, the article addresses the sensitivity of backcalculation results, which is crucial for the accurate interpretation of the obtained data. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

18 pages, 9602 KiB  
Article
Investigation on the Curing and Thermal Properties of Epoxy/Amine/Phthalonitrile Blend
by Cong Peng, Tao Luo, Zhanjun Wu and Shichao Li
Materials 2024, 17(17), 4411; https://doi.org/10.3390/ma17174411 - 7 Sep 2024
Viewed by 493
Abstract
The bisphenol A-type phthalonitrile (BAPH) was blended with the classic epoxy system E51/DDS to prepare the epoxy/phthalonitrile thermoset. The curing kinetics were investigated by differential scanning calorimetry (DSC) using the isoconversional principle, and the average activation energy (Eα) of the E51/DDS [...] Read more.
The bisphenol A-type phthalonitrile (BAPH) was blended with the classic epoxy system E51/DDS to prepare the epoxy/phthalonitrile thermoset. The curing kinetics were investigated by differential scanning calorimetry (DSC) using the isoconversional principle, and the average activation energy (Eα) of the E51/DDS curing reaction was found to decrease from 87 kJ/mol to 68.6 kJ/mol. Combining the results of the rheological study, the promoting effect of phthalonitrile on the crosslink of epoxy/amine is confirmed. The curing reaction of the blended resin was characterized using FTIR, and the results showed that BAPH could react with DDS. The thermal behaviors of the thermosets were investigated via DMA and TGA. The glass transition temperature (Tg) is found to increase from 181 °C to 195 °C. The char yield increases from 16% to 59.6% at 800 °C in a N2 atmosphere, which is higher than the calculated value based on the proportional principle. The AFM phase images show that there is no phase separation in the cured thermoset. The results imply that the cured epoxy/amine/phthalonitrile blend is probably a kind of copolymer. The real-time TG-MS indicated that the pyrolysis of the thermoset can be divided into two relatively independent stages, which can be assigned to the cleavage of the E51/DDS network, and the phthalocyanine/triazine/isoindoline, respectively. Full article
(This article belongs to the Special Issue Advanced Resin Composites: From Synthesis to Application)
Show Figures

Figure 1

19 pages, 7656 KiB  
Article
Research on Alkali-Activated Slag Stabilization of Dredged Silt Based on a Response Surface Method
by Qizhi Hu, Wei Yao and Gaoliang Tao
Materials 2024, 17(17), 4410; https://doi.org/10.3390/ma17174410 - 6 Sep 2024
Viewed by 544
Abstract
To improve the resource utilization of dredged silt and industrial waste, this study explores the efficacy of using ground granulated blast furnace slag (GGBS), active calcium oxide (CaO), and sodium silicate (Na2O·nSiO2) as alkali activators for silt stabilization. Through [...] Read more.
To improve the resource utilization of dredged silt and industrial waste, this study explores the efficacy of using ground granulated blast furnace slag (GGBS), active calcium oxide (CaO), and sodium silicate (Na2O·nSiO2) as alkali activators for silt stabilization. Through a combination of addition tests, response surface method experiments, and microscopic analyses, we identified key factors influencing the unconfined compressive strength (UCS) of stabilized silt, optimized material ratios, and elucidated stabilization mechanisms. The results revealed the following: (1) CaO exhibited the most pronounced stabilization effect, succeeded by Na2O·nSiO2, whereas GGBS alone displayed marginal efficacy. CaO-stabilized silt demonstrated rapid strength augmentation within the initial 7 d, while Na2O·nSiO2-stabilized silt demonstrated a more gradual strength enhancement over time, attributable to the delayed hydration of GGBS in non-alkaline conditions, with strength increments noticeably during later curing phases. (2) Response surface analysis demonstrated substantial interactions among GGBS-CaO and GGBS-Na2O·nSiO2, with the optimal dosages identified as 11.5% for GGBS, 4.1% for CaO, and 5.9% for Na2O·nSiO2. (3) X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses clarified that the hydration reactions within the GGBS-Na2O·nSiO2 composite cementitious system synergistically enhanced one another, with hydration products wrapping, filling, and binding the silt particles, thereby rendering the microstructure denser and more stable. Based on these experimental outcomes, we propose a microstructural mechanism model for the stabilization of dredged silt employing GGBS-CaO-Na2O·nSiO2. Full article
Show Figures

Figure 1

14 pages, 3584 KiB  
Article
Effect of Calcium on the Setting Time and Mechanical Property of a Red Mud–Blast Furnace Slag-Based Geopolymer
by Yuxiang Chen, Shengping Wu, Hanhui Huang, Feng Rao and Lang Yang
Materials 2024, 17(17), 4409; https://doi.org/10.3390/ma17174409 - 6 Sep 2024
Viewed by 694
Abstract
This study aims to compare the effects of three calcium compounds on the workability, setting time and mechanical properties of red mud (RM)–blast furnace slag (BFS)-based geopolymers. The crystalline phase, hydration process and microstructure of RM-BFS-based geopolymers were characterized by X-ray diffraction (XRD), [...] Read more.
This study aims to compare the effects of three calcium compounds on the workability, setting time and mechanical properties of red mud (RM)–blast furnace slag (BFS)-based geopolymers. The crystalline phase, hydration process and microstructure of RM-BFS-based geopolymers were characterized by X-ray diffraction (XRD), heat evolution, X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM) tests. The results showed that an appropriate amount of calcium compounds can improve the flowability and compressive strength of the geopolymers, but the excessiveness causes a decrease in strength due to rapid hardening. Other than calcium carbonate, both calcium oxide and calcium chloride played important roles in accelerating the setting times of RM-BFS-based geopolymers. The acceleration in the setting times of geopolymers could be attributed to the calcium hydroxide produced by the dissolution of the calcium compounds, which also provides nucleation sites for the geopolymerization reaction. This study gives new insights into the effect of calcium on the setting times and mechanical properties of geopolymers in the geopolymerization process. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials)
Show Figures

Figure 1

Previous Issue
Back to TopTop