materials-logo

Journal Browser

Journal Browser

Advancements in Thin Film Deposition Technologies

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Thin Films and Interfaces".

Deadline for manuscript submissions: 20 August 2025 | Viewed by 3780

Special Issue Editors


E-Mail Website
Guest Editor
Department of Industrial Engineering (DIEF), University of Florence National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
Interests: materials science; surface analysis; X-ray photoelectron spectroscopy (XPS); physical vapor deposition (PVD); perovskite; thin films
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Florence, Italy
Interests: thin films deposition techniques; metallic coating characterization; corrosion science and engineering; additive manufacturing of advanced ceramic materials

Special Issue Information

Dear Colleagues,

I am pleased to announce the launch of a Special Issue of Materials (MDPI), for which I am serving as the Guest Editor. This Special Issue will focus on the recent advancements in methodology and technology for thin film deposition.

Thin films have become integral in numerous applications, spanning from electronics to corrosion protection, from mechanical reinforcement to aesthetic finishing. Virtually any material can be effectively obtained in the form of thin films, including polymers, ceramics, metals, semiconductors, and composites.

In this Special Issue, we aim to showcase the latest advances in thin film deposition techniques, encompassing both novel technologies and innovative applications of existing methodologies to produce materials with unique properties, structures, or compositions.

I warmly invite you to submit your manuscript for consideration in this Special Issue. We welcome full articles, short communications, and review papers that feature experimental and theoretical studies.

Dr. Nicola Calisi
Dr. Stefano Mauro Martinuzzi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thin film
  • deposition
  • coating
  • finishing
  • surface
  • 2D material

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 6305 KiB  
Article
Preparation and Characterization of Co-Diamond Composite Coatings Obtained in a Single-Step Hybrid Electrophoretic Deposition Process
by Diana Uțu, Roxana Muntean, Iasmina-Mădălina Anghel (Petculescu), Iosif Hulka and Ion-Dragoș Uțu
Materials 2025, 18(6), 1294; https://doi.org/10.3390/ma18061294 - 15 Mar 2025
Viewed by 558
Abstract
The electrochemical co-deposition of various hard particles with metals or metal alloys has been recently studied, especially for developing wear-resistant coatings. In the current work, pure cobalt and cobalt–diamond composite coatings were electrochemically deposited onto a low-alloy steel substrate and further investigated in [...] Read more.
The electrochemical co-deposition of various hard particles with metals or metal alloys has been recently studied, especially for developing wear-resistant coatings. In the current work, pure cobalt and cobalt–diamond composite coatings were electrochemically deposited onto a low-alloy steel substrate and further investigated in terms of microstructure, corrosion behavior, and tribological characteristics. The electrodeposition process was carried out using direct current, from an additive-free electrolyte containing 300 g L−1 CoSO4, 50 g L−1 CoCl2, and 30 g L−1 H3BO3 with and without diamond particles. Scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) was used for the microstructural characterization correlated with the chemical composition identification of the resulting coatings. The pure Co coatings showed a dense microstructure with a nodular morphology. In contrast, for the Co-diamond composite coatings, more elongated grains were observed containing a uniform distribution of the reinforcing diamond particles. The corrosion resistance was evaluated by potentiostatic polarization measurements in 3.5 wt.% NaCl solution, while the sliding wear resistance was assessed using the ball-on-disk testing method. The experimental results demonstrated that incorporating diamond particles into the cobalt deposition electrolyte positively impacted the tribological performance of the resulting composite coatings without significantly affecting the corrosion properties. Both cobalt and the composite coatings demonstrated substantially superior wear characteristics and corrosion resistance compared to the steel substrate. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

20 pages, 6306 KiB  
Article
Nanostructured Chromium PVD Thin Films Fabricated Through Copper–Chromium Selective Dissolution
by Stefano Mauro Martinuzzi, Stefano Caporali, Rosa Taurino, Lapo Gabellini, Enrico Berretti, Eric Schmeer and Nicola Calisi
Materials 2025, 18(4), 894; https://doi.org/10.3390/ma18040894 - 18 Feb 2025
Viewed by 373
Abstract
This study investigates the fabrication of nanostructured chromium thin films via selective dissolution of PVD-deposited Cu–Cr thin films. The effects of the deposition parameters on the structural, chemical, and morphological properties of the films are systematically analyzed. Starting from a thin film composed [...] Read more.
This study investigates the fabrication of nanostructured chromium thin films via selective dissolution of PVD-deposited Cu–Cr thin films. The effects of the deposition parameters on the structural, chemical, and morphological properties of the films are systematically analyzed. Starting from a thin film composed of 50 wt.% chromium and 50 wt.% copper, deposited onto a substrate pre-heated to 300 °C, we demonstrate that the following dealloying process carried out in a diluted nitric acid solution yields nanostructured chromium films with high porosity, large surface area, enhanced wettability and neglectable copper content. These findings underline the critical influence of the deposition temperature and alloy composition on achieving optimal film properties. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

18 pages, 16776 KiB  
Article
Molecular Dynamics Analysis of Multi-Factor Influences on Structural Defects in Deposited Mg-Matrix Zn Atom Films
by Zhen Zhou, Chaoyue Ji, Dongyang Hou, Shunyong Jiang, Yuhang Ouyang, Fang Dong and Sheng Liu
Materials 2024, 17(19), 4700; https://doi.org/10.3390/ma17194700 - 25 Sep 2024
Viewed by 1187
Abstract
Mg metal vascular stents not only have good mechanical support properties but also can be entirely absorbed by the human body as a trace element beneficial to the human body, but because Mg metal is quickly dissolved and absorbed in the human body, [...] Read more.
Mg metal vascular stents not only have good mechanical support properties but also can be entirely absorbed by the human body as a trace element beneficial to the human body, but because Mg metal is quickly dissolved and absorbed in the human body, magnesium metal alone cannot be ideally used as a vascular stent. Since the dense oxide Zn film formed by Zn contact with oxygen in the air has good anti-corrosion performance, the Zn nanolayer film deposited on the Mg matrix vascular scaffold by magnetron sputtering can effectively inhibit the rapid dissolution of Mg metal. However, there are few studies on the molecular dynamic structural defects of Mg-matrix Zn atomic magnetron sputtering, and the atomic level simulation of Mg-matrix Zn thin-film depositions can comprehensively understand the atomic level structural defects in the deposition process of Zn thin films from a theoretical perspective to further guide experimental research. Based on this, this research first studied and analyzed the atomic layer structure defects, surface morphology, surface roughness, atomic density of different deposited layers, radial distribution function, and residual stress of the thin-film deposition layer of 1500 deposited Zn atoms at the initial deposition stage, during and after deposition under Mg-matrix thermal layer 500K and a deposited velocity 5 Å/ps by molecular dynamics. At the same time, the effects of temperature and deposited velocity of the Mg-matrix thermal layer on the surface morphology, roughness, and biaxial stress of the deposited films were studied. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Graphical abstract

12 pages, 4585 KiB  
Article
Thin-Layer TiO2 Membrane Fabrication by Condensed Layer Deposition
by Mohammed M. Numaan, Ahmed M. Jasim, Yangchuan Xing and Maria M. Fidalgo
Materials 2024, 17(17), 4436; https://doi.org/10.3390/ma17174436 - 9 Sep 2024
Viewed by 981
Abstract
A novel approach to the fabrication of thin-film supported metal oxide membranes was investigated. Nanocoatings were obtained by the condensed layer deposition of TiO2 on tubular microporous supports, applying multiple consecutive layers of TiO2/polyaniline. The surface, cross-sectional structure, and morphology [...] Read more.
A novel approach to the fabrication of thin-film supported metal oxide membranes was investigated. Nanocoatings were obtained by the condensed layer deposition of TiO2 on tubular microporous supports, applying multiple consecutive layers of TiO2/polyaniline. The surface, cross-sectional structure, and morphology of the materials were investigated by electron microscopy. Their membrane-related properties were explored by permeability measurements, rejection, and fouling analysis, using polyethylene glycol (PEG) as test molecules. The SEM images showed that TiO2 was successfully deposited on the surface, creating a layer with partial coverage of the support after each layer was deposited; consequently, the permeability of the membranes decreased gradually. Overall, the results of the flux and permeability of the membranes confirmed the coating. The transmembrane pressure (TMP) increased with each coating layer, while the rejection of the membrane showed gradual improvement. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

Back to TopTop