New Discovery of Natural Zeolite-Rich Tuff on the Northern Margin of the Los Frailes Caldera: A Study to Determine Its Performance as a Supplementary Cementitious Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.2. Scanning Electron Microscopy
3.3. X-ray Fluorescence (XRF)
3.4. Thermogravimetric Analysis
3.5. Chemical Analysis of Technical Quality
3.6. Chemical Analysis of Pozzolanicity
3.7. Chemical Analysis of Mortar Specimens
3.8. Mechanical Compressive Strength Tests at 2, 7 and 28 Days
4. Conclusions
- The results presented prove that the zeolite found in the study area is composed mostly of highly crystalline mordenite and subordinately of smectite (montmorillonite), illite, halloysite, quartz, plagioclase, and muscovite.
- The samples analyzed have high contents of SiO2 and Al2O3, while the contents of alkaline compounds (Na2O and K2O) are significantly higher than those of alkaline–earth compounds (CaO and MgO).
- The thermal behavior of the samples indicates that the mordenite is stable up to approximately 750 °C, after which it tends to collapse and restructure.
- All the samples have shown a marked pozzolanic behavior both at 8 and 15 days, so their status as high-quality pozzolans is established.
- It is concluded that more silica is available in cement to natural zeolite-rich tuff mortars than in those made exclusively with cement. This availability of SiO2 could lead to an increase in mechanical strengths in the long term.
- The SiO2/(CaO + MgO) ratio is high, which favors the pozzolanic reaction since the silica phase will tend to react with the alkaline phase.
- Natural zeolite-rich tuff influences the balance of the SO3 content in mortar samples, causing this compound to always remain in solution and prevent ettringite from forming in abnormal quantities.
- The presence of zeolite in mixed mortar mixes (PC/ZS) favors the increase of mechanical strength from 7 to 90 days. During this period, the strength values equaled or even exceeded the reference mortar. In this study, Portland cement was replaced by 25% natural zeolite-rich tuff. However, it is possible that with formulations of PC/ZS: 70–30%, relevant results can also be obtained.
- According to the points argued above, it is established that the natural zeolite-rich tuff studied is qualitatively suitable for the improvement of cements, mortars, and concretes.
- Finally, the investigation of this new finding corroborates that this natural zeolite-rich tuff has similar mineral, chemical, and technical properties that are even qualitatively better than the one found in the main deposit (San José-Los Escullos). This could be advantageous when considering the expansion of geological and mining reserves from the perspective of local industry interests.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stamatakis, M.G.; Regueiro, M.; Calvo, J.P.; Fragoulis, D.; Stamatakis, G. A study of zeolitic tuffs associated with bentonite deposits from Almeria, Spain and Kimolos Island, Greece and their industrial potential as pozzolanas in the cement industry. Hell. J. Geosci. 2010, 45, 283–292. [Google Scholar]
- Regueiro, M.; García-Romero, E.; Suárez, M.; Lopez-Acevedo, V.; López-García, J.A. Geología y Geoquímica del Yacimiento de Zeolita “Los Murcianos” (Cabo de Gata, Almería). In Proceedings of the XII International Congress on Energy and Mineral Resources, Oviedo, Spain, 7–11 October 2007. [Google Scholar]
- Benito, R.; Garcia-Guinea, J.; Valle-Fuentes, F.J.; Recio, P. Mineralogy, geochemistry and uses of the mordenite–bentonite ash-tuff beds of Los Escullos, Almería, Spain. J. Geochem. Explor. 1998, 62, 229–240. [Google Scholar] [CrossRef]
- Jiménez, R.; Cortel, A.; González, J.; Hernández, M.P.; Segura, J.M.; Soldevilla, J.A. Les zeolites d’Agua Amarga, Níjar, Almeria, Andalusia. Mineral. Catalunya 2022, 14, 24. [Google Scholar]
- Martin Vivaldi, J.L.; López Aguayo, F. Presence de mordenite dans un gisement de bentonite de la region de Cabo de Gata, Almería. Pascal Francis. Bol. Geol. Min. 1975, 86, 187–192. [Google Scholar]
- Mattei, M.; Riggs, N.R.; Giordano, G.; Guarnieri, L.; Cifelli, F.; Soriano, C.C.; Jicha, B.; Jasim, A.; Marchionni, S.; Franciosi, L.; et al. Geochronology, Geochemistry and Geodynamics of the Cabo de Gata volcanic zone, Southeastern Spain. Ital. J. Geosci. 2014, 133, 341–361. [Google Scholar] [CrossRef]
- de la Fuente, S.; Cuadros, J.; Linares, J. Early Stages of Volcanic Tuff Alteration in Hydrothermal Experiments: Formation of Mixed-Layer Illite-Smectite. Clays Clay Miner. 2002, 50, 578–590. [Google Scholar] [CrossRef]
- López-Ruiz, J.; Cebriá, J.M.; Doblas, M. Cenozoic Volcanism I: The Iberian Peninsula; The Geology of Spain; Geological Society: London, UK, 2002; p. 27. [Google Scholar]
- Pelayo, M.; Marco, J.F.; Fernández, A.M.; Vergara, L.; Melón, A.M.; Pérez del Villar, L. Infrared and Mössbauer spectroscopy of Fe-rich smectites from Morrón de Mateo bentonite deposit (Spain). Clay Miner. 2018, 53, 17–28. [Google Scholar] [CrossRef]
- Suárez, M.; Lorenzo, A.; García-Vicente, A.; Morales, J.; García-Rivas, J.; García-Romero, E. New data on the microporosity of bentonites. Eng. Geol. 2022, 296, 106439. [Google Scholar] [CrossRef]
- De La Villa, R.V.; Cuevas, J.; Ramírez, S.; Leguey, S. Zeolite formation during the alkaline reaction of bentonite. Eur. J. Miner. 2001, 13, 635–644. [Google Scholar] [CrossRef]
- Deon, F.; van Ruitenbeek, F.; van der Werff, H.; van der Meijde, M.; Marcatelli, C. Detection of Interlayered Illite/Smectite Clay Minerals with XRD, SEM Analyses and Reflectance Spectroscopy. Sensors 2022, 22, 3602. [Google Scholar] [CrossRef]
- Mapa Geológico de España a escala 1:50.000. “El Pozo de los Frailes”; Segunda Serie-Primera Edición; Instituto Geológico y Minero de España: Madrid, Spain, 1983; pp. 1–35.
- Calvo Pérez, B.; Costafreda Mustelier, J.L.; Estévez, E. Caracterización Preliminar de las Zeolitas del Yacimiento Los Murcianos, Al-Mería. V Iberian Congress of Geochemistry. IX Spanish Geochemistry Congress, Soria, Spain, 2005. Legal Deposit: SO-69/2005. ISBN: 84-95099-88. p. 10. Available online: https://oa.upm.es/1417/1/CALVO_PON_2005_01.pdf (accessed on 10 April 2024).
- Calvo Pérez, B.; Estévez Fernández, E.; Costafreda Mustelier, J. Estudio de las Propiedades Puzolánicas de Materiales de Origen Volcánico Ubicados en la Zona Sureste de España. V Iberian Congress of Geochemistry. IX Spanish Geochemistry Congress, Soria, Spain, 2015. p. 10. Legal Deposit: SO-69/2005. ISBN: 84-95099-88-8. Available online: https://oa.upm.es/1418/1/CALVO_PON_2005_02.pdf (accessed on 10 April 2024).
- García-Romero, E.; Suárez, M.; López-Acevedo, V.; Lozano, R.; Oyarzun, R.; López-García, J.A.; Regueiro, M. Caracterización Mineralógica y Textural del Yacimiento de Zeolitas de «Los Murcianos» (Cabo de Gata, Almería); Resultados Preliminaries; Spanish Mineralogical Society: Madrid, Spain, 2006; MACLA 6; p. 4. [Google Scholar]
- Suárez, M.; García-Romero, E.; Manchado, E.M. Thermal Activation of the Mordenite from Los Murcianos Deposist (Almería); Geo-Temas 10; Geological Society of Spain: Madrid, Spain, 2008; p. 4. ISSN 1567-5172. [Google Scholar]
- Costafreda, J.L. Geología, Caracterización y Aplicaciones de las Rocas Zeolíticas del Complejo Volcánico de Cabo de Gata (Almería). Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2008; 515p. [Google Scholar]
- Martín, D.A.; Costafreda, J.L.; Presa, L.; Zambrano, J.; Costafreda, J.L., Jr. A New Study of the Lower Levels of the Los Frailes Caldera (Spain) for the Location and Characterisation of Pozzolans as Construction Materials. Constr. Mater. 2022, 2, 40–52. [Google Scholar] [CrossRef]
- Tarazona, O.A. Estabilización Química de Aguas Afectadas por Metales Pesados en Áreas con Actividad Minerometalúrgica Mediante el Uso de Zeolitas. Universidad Complutense de Madrid. Facultad. De Ciencias Geológicas: Madrid, Spain, 2019; p. 46. Available online: https://purl.org/pe-repo/ocde/ford#2.07.01/ (accessed on 11 April 2024).
- Villaseñor, J.; Rodríguez, L.; Fernández, F. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresour. Technol. 2011, 102, 1447–1454. [Google Scholar] [CrossRef]
- Domene, M.A.; Agüera, J.M.; Uceda, M.; Buendía, D.; Racero, J.L.; Sevilla, A. Nuevas Soluciones para la Restauración am-Biental en Zonas Áridas; Dialnet. Cuaderno interdisciplinar de desarrollo sostenible (CUIDES): Madrid, Spain, 2011; pp. 11–89. ISSN 1889-0660. [Google Scholar]
- Martín, D.A.; Costafreda, J.L.; Costafreda, J.L., Jr.; Presa, L. Improving the Performance of Mortars Made from Recycled Aggregates by the Addition of Zeolitised Cineritic Tuff. Crystals 2022, 12, 77. [Google Scholar] [CrossRef]
- Costafreda, J.L.; Martín, D.A.; Presa, L.; Parra, J.L. Effects of a Natural Mordenite as Pozzolan Material in the Evolution of Mortar Settings. Materials 2021, 14, 5343. [Google Scholar] [CrossRef]
- Jo, B.-W.; Choi, J.-S.; Yoon, K.-W.; Park, J.-H. Material characteristics of zeolite cement mortar. Constr. Build. Mater. 2012, 36, 1059–1065. [Google Scholar] [CrossRef]
- Cobîrzan, N.; Balog, A.-A.; Aciu, C.; Iluţiu–Varvara, D.A. Sustainable Uses of Zeolitic Tuff as Building Materials. Procedia Technol. 2014, 12, 542–547. [Google Scholar] [CrossRef]
- Iswarya, G.; Beulah, M. Use of zeolite and industrial waste materials in high strength concrete—A review. Mater. Proceeding 2021, 46, 116–123. [Google Scholar] [CrossRef]
- Tran, Y.T.; Lee, J.; Kumar, P.; Kim, K.-H.; Lee, S.S. Natural zeolite and its application in concrete composite production. Compos. Part B Eng. 2019, 165, 354–364. [Google Scholar] [CrossRef]
- Karakurt, C.; Kurama, H.; Topçu, I.B. Utilization of natural zeolite in aerated concrete production. Cem. Concr. Compos. 2010, 32, 1–8. [Google Scholar] [CrossRef]
- Ghourchian, S.; Wyrzykowski, M.; Lura, P.; Shekarchi, M.; Ahmadi, B. An investigation on the use of zeolite aggregates for internal curing of concrete. Constr. Build. Mater. 2013, 40, 135–144. [Google Scholar] [CrossRef]
- Boháč, M.; Kubátová, D.; Nečas, R.; Zezulová, A.; Masárová, A.; Novotný, R. Properties of Cement Pastes with Zeolite During Early Stage of Hydration. Procedia Eng. 2016, 151, 2–9. [Google Scholar] [CrossRef]
- Vejmelková, E.; Koňáková, D.; Kulovaná, T.; Keppert, M.; Žumár, J.; Rovnaníková, P.; Keršner, Z.; Sedlmajer, M.; Černý, R. Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cem. Concr. Compos. 2015, 55, 259–267. [Google Scholar] [CrossRef]
- UNE-EN 196-2:2014; Métodos de Ensayo de Cementos—Parte 2: Análisis Químico de Cementos. AENOR: Madrid, Spain, 2014.
- UNE-EN 196-5:2006; Métodos de Ensayo de Cementos—Parte 5: Ensayo de Puzolanicidad para Cementos Puzolánicos. AENOR: Madrid, Spain, 2006.
- UNE-EN 197-1:2011; Composición, Especificaciones y Criterios de Conformidad de los Cementos Comunes. AENOR: Madrid, Spain, 2011.
- UNE-EN 196-1:2016; Métodos de Ensayo de Cementos—Parte 1: Determinación de Resistencias Mecánicas. AENOR: Madrid, Spain, 2016.
- Giannetto, G.; Montes, A.; Rodríguez-Fuentes, G. Zeolitas. Características, Propiedades y Aplicaciones Industriales; Edit. In-novación Tecnológica; Facultad de Ingeniería, Universidad Central de Venezuela: Caracas, Venezuela, 2000; p. 351. ISBN 980-00-1648-1. [Google Scholar]
- Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. Handbook of Zeolite Science and Technology; Library of Congress Catalogu-ing-in-Publication Data; CRC Press: New York, NY, USA, 2003; pp. 1–19. ISBN 0-8247-4020-3. [Google Scholar]
- Hajash, A. Hydrothermal processes along mid-ocean ridges: An experimental investigation. Contrib. Miner. Pet. 1975, 53, 205–226. [Google Scholar] [CrossRef]
- Fernández Soler, J.M. El Volcanismo Calco-Alcalino de Cabo de Gata (Almería). Estudio Volcanológico y Petrológico. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 1992; 243p. [Google Scholar]
- Presa, L.; Costafreda, J.L.; Martín, D.A.; Díaz, I. Natural Mordenite from Spain as Pozzolana. Molecules 2020, 25, 1220. [Google Scholar] [CrossRef]
- Hamada, H.M.; Abdulhaleem, K.N.; Majdi, A.; Al Jawahery, M.S.; Thomas, B.S.; Yousif, S.T. The durability of concrete produced from pozzolan materials as a partially cement replacement: A comprehensive review. Mater. Today Proc. 2023, in press. [CrossRef]
- Caputo, D.; Liguori, B.; Colella, C. Some advances in understanding the pozzolanic activity of zeolites: The effect of zeolite structure. Cem. Concr. Compos. 2008, 30, 455–462. [Google Scholar] [CrossRef]
- Saraya, M.E.; Thabet, M.S. CHARACTERIZATION AND EVALUATION OF NATURAL ZEOLITE AS A POZZOLANIC MATERIAL. Al-Azhar Bull. Sci. 2018, 29, 17–34. [Google Scholar] [CrossRef]
- Mertens, G.; Snellings, R.; Van Balen, K.; Bicer-Simsir, B.; Verlooy, P.; Elsen, J. Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem. Concr. Res. 2009, 39, 233–240. [Google Scholar] [CrossRef]
- Costafreda, J.L.; Martín, D.A.; Presa, L.; Parra, J.L. Altered Volcanic Tuffs from Los Frailes Caldera. A Study of Their Pozzolanic Properties. Molecules 2021, 26, 5348. [Google Scholar] [CrossRef]
- Stefanidou, M.; Papayianni, I. The role of aggregates on the structure and properties of lime mortars. Cem. Concr. Compos. 2005, 27, 914–919. [Google Scholar] [CrossRef]
- Rosell, M.; Galloso, R.; Calvo, B. Zeolite as an active mineral additive in hight yield concrete. Boletín Geol. Min. 2006, 117, 783–792, ISSN: 0366-0176. [Google Scholar]
- Kocak, Y.; Tascı, E.; Kaya, U. The effect of using natural zeolite on the properties and hydration characteristics of blended cements. Constr. Build. Mater. 2013, 47, 720–727. [Google Scholar] [CrossRef]
- Małolepszy, J.; Grabowska, E. Sulphate Attack Resistance of Cement with Zeolite Additive. Procedia Eng. 2015, 108, 170–176. [Google Scholar] [CrossRef]
- Irassar, E.; González, M.; Rahhal, V. Sulphate resistance of type V cements with limestone filler and natural pozzolana. Cem. Concr. Compos. 2000, 22, 361–368. [Google Scholar] [CrossRef]
- Merida, A.; Kharchi, F. Pozzolan Concrete Durability on Sulphate Attack. Procedia Eng. 2015, 114, 832–837. [Google Scholar] [CrossRef]
- Liguori, B.; Aprea, P.; de Gennaro, B.; Iucolano, F.; Colella, A.; Caputo, D. Pozzolanic Activity of Zeolites: The Role of Si/Al Ratio. Materials 2019, 12, 4231. [Google Scholar] [CrossRef]
- Uzal, B.; Turanlı, L.; Yücel, H.; Göncüoğlu, M.; Çulfaz, A. Pozzolanic activity of clinoptilolite: A comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan. Cem. Concr. Res. 2010, 40, 398–404. [Google Scholar] [CrossRef]
- Najimi, M.; Sobhani, J.; Ahmadi, B.; Shekarchi, M. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr. Build. Mater. 2012, 35, 1023–1033. [Google Scholar] [CrossRef]
- Markiv, T.; Sobol, K.; Franus, M.; Franus, W. Mechanical and durability properties of concretes incorporating natural zeolite. Arch. Civ. Mech. Eng. 2016, 16, 554–562. [Google Scholar] [CrossRef]
- Raggiotti, B.B.; Positieri, M.J.; Oshiro, Á. Natural zeolite, a pozzolan for structural concrete. Procedia Struct. Integr. 2018, 11, 36–43. [Google Scholar] [CrossRef]
- Nagrockiene, D.; Girskas, G. Research into the properties of concrete modified with natural zeolite addition. Constr. Build. Mater. 2016, 113, 964–969. [Google Scholar] [CrossRef]
% Oxides Weight | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Materials | SiO2 | CaO | Fe2O3 | Al2O3 | Na2O | SO3 | MgO | K2O | TiO2 | P2O5 | MnO | PPC | Total |
PC 1 | 17.45 | 64.04 | 3.35 | 5.59 | 0.091 | 4 | 0.641 | 1.37 | 0.326 | 0.072 | 0.094 | 2.43 | 99.454 |
Square Mesh Dimensions (mm) | 2.0 | 1.60 | 1.00 | 0.5 | 0.16 | 0.08 |
Residue Retained on Sieves (%) | 0.00 | 7 ± 5 | 33 ± 5 | 67 ± 5 | 87 ± 5 | 99 ± 1 |
Sample | Mortar Components | Formulation (g) | Test Age (Days) |
---|---|---|---|
PC/SZ-01 1 | Portland cement Natural zeolite-rich tuff Normalized sand Distilled water | Portland cement: 375 g Natural zeolite-rich tuff: 125 g Distilled water: 225 g Normalized sand: 1350 g | 7/28/90 |
PC/SZ-02 | |||
PC/SZ-03 | |||
PC/SZ-04 | |||
PC/SZ-05 | |||
PC/SZ-06 | |||
PCSR 2 | Portland cement Normalized sand Distilled water | Portland cement: 450 g Distilled water: 225 g Normalized sand: 1350 g | 7/28/90 |
Samples | % Oxides Weight | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Na2O | K2O | MgO | Fe2O3 | TiO2 | MnO | SO3 | LOI | Si/Al | Si/ (Al + Fe) | |
SZ-01 | 65.65 | 15.63 | 1.02 | 2.61 | 4.33 | 2.04 | 1.77 | 0.12 | 0.091 | 0.14 | 11.5 | 4.2 | 3.8 |
SZ-02 | 64.48 | 15.22 | 1.47 | 3.13 | 3.61 | 2.01 | 1.81 | 0.11 | 0.115 | 0.08 | 10.7 | 5.2 | 3.8 |
SZ-03 | 64.91 | 16.43 | 1.30 | 2.81 | 3.14 | 2.24 | 1.79 | 0.10 | 0.112 | 0.10 | 10.9 | 4.0 | 3.6 |
SZ-04 | 65.14 | 15.13 | 1.08 | 2.52 | 3.31 | 2.19 | 1.75 | 0.13 | 0.083 | 0.06 | 11.9 | 4.3 | 3.9 |
SZ-05 | 64.47 | 16.21 | 1.35 | 3.03 | 3.18 | 2.11 | 1.80 | 0.10 | 0.072 | 0.11 | 11.1 | 4.0 | 3.6 |
SZ-06 | 64.93 | 16.30 | 1.31 | 2.55 | 3.22 | 2.14 | 1.73 | 0.14 | 0.051 | 0.10 | 11.3 | 4.0 | 3.6 |
Compounds (%) | Samples | |||||
---|---|---|---|---|---|---|
SZ-01 | SZ-02 | SZ-03 | SZ-04 | SZ-05 | SZ-06 | |
Total SiO2 | 69.25 | 68.80 | 68.51 | 68.74 | 68.07 | 68.53 |
Reactive SiO2 | 68.22 | 67.77 | 67.48 | 67.71 | 67.04 | 67.50 |
Total CaO | 1.22 | 1.31 | 1.29 | 1.12 | 1.33 | 1.28 |
Reactive CaO | 0.62 | 0.71 | 0.69 | 0.52 | 0.73 | 0.68 |
Al2O3 | 15.33 | 14.92 | 16.13 | 14.53 | 15.61 | 15.70 |
MgO | 1.54 | 1.51 | 1.74 | 1.69 | 1.61 | 1.64 |
Fe2O3 | 1.36 | 1.40 | 1.38 | 1.34 | 1.39 | 1.32 |
SO3 | 0.09 | 0.11 | 0.08 | 0.10 | 0.13 | 0.09 |
I.R. 1 | 1.03 | 1.13 | 2.01 | 1.90 | 1.78 | 1.83 |
SiO2/(CaO + MgO) | 25.0 | 24.4 | 22.6 | 24.5 | 23.1 | 23.5 |
Sample | % Oxides Weight | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | MgO | K2O | Na2O | SO3 | Fe2O3 | TiO2 | P2O5 | MnO | |
PC 1 | 17.47 | 5.60 | 64.05 | 0.63 | 1.35 | 0.09 | 4.00 | 3.31 | 0.33 | 0.07 | 0.09 |
PCS-7 2 | 47.31 | 3.54 | 34.80 | 0.49 | 0.81 | 0.10 | 1.40 | 4.23 | 0.15 | 0.11 | 0.14 |
PCS-28 3 | 45.15 | 3.31 | 37.15 | 0.53 | 0.76 | 0.21 | 1.42 | 4.69 | 0.18 | 0.10 | 0.14 |
PCS-90 4 | 38.27 | 3.11 | 42.12 | 0.58 | 0.55 | 0.23 | 1.49 | 5.07 | 0.19 | 0.09 | 0.13 |
130.73 | 9.96 | 114.07 | 1.60 | 2.12 | 0.54 | 4.31 | - | - | - | - |
Sample | % Oxides Weight | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | MgO | K2O | Na2O | SO3 | Fe2O3 | TiO2 | P2O5 | MnO | |
SZ-01 1 | 65.65 | 15.63 | 1.02 | 1.29 | 4.33 | 2.61 | 0.14 | 1.77 | 0.12 | 0.03 | 0.09 |
PC/SZ-01-7 2 | 48.63 | 5.24 | 31.14 | 0.53 | 1.17 | 0.17 | 1.25 | 3.93 | 0.18 | 0.11 | 0.11 |
PC/SZ-01-28 3 | 47.30 | 4.89 | 32.51 | 0.55 | 1.23 | 0.16 | 1.21 | 4.17 | 0.19 | 0.10 | 0.13 |
PC/SZ-01-90 4 | 42.71 | 4.59 | 37.17 | 0.62 | 1.21 | 0.14 | 1.10 | 4.71 | 0.23 | 0.09 | 0.15 |
138.64 | 14.72 | 100.82 | 1.70 | 3.61 | 0.47 | 3.56 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costafreda, J.L.; Martín, D.A.; Sanjuán, M.A.; Costafreda-Velázquez, J.L. New Discovery of Natural Zeolite-Rich Tuff on the Northern Margin of the Los Frailes Caldera: A Study to Determine Its Performance as a Supplementary Cementitious Material. Materials 2024, 17, 4430. https://doi.org/10.3390/ma17174430
Costafreda JL, Martín DA, Sanjuán MA, Costafreda-Velázquez JL. New Discovery of Natural Zeolite-Rich Tuff on the Northern Margin of the Los Frailes Caldera: A Study to Determine Its Performance as a Supplementary Cementitious Material. Materials. 2024; 17(17):4430. https://doi.org/10.3390/ma17174430
Chicago/Turabian StyleCostafreda, Jorge L., Domingo A. Martín, Miguel A. Sanjuán, and Jorge L. Costafreda-Velázquez. 2024. "New Discovery of Natural Zeolite-Rich Tuff on the Northern Margin of the Los Frailes Caldera: A Study to Determine Its Performance as a Supplementary Cementitious Material" Materials 17, no. 17: 4430. https://doi.org/10.3390/ma17174430
APA StyleCostafreda, J. L., Martín, D. A., Sanjuán, M. A., & Costafreda-Velázquez, J. L. (2024). New Discovery of Natural Zeolite-Rich Tuff on the Northern Margin of the Los Frailes Caldera: A Study to Determine Its Performance as a Supplementary Cementitious Material. Materials, 17(17), 4430. https://doi.org/10.3390/ma17174430