Thin-Layer TiO2 Membrane Fabrication by Condensed Layer Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Fabrication
2.3. Characterization
2.3.1. Material Characterization
2.3.2. Membrane Permeability
2.3.3. Membrane Filtration Experiments
3. Results
3.1. Surface Morphology
3.2. Permeability Measurements
3.3. Rejection Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burggraaf, A.J.; Cot, L. Chapter 1 General overview, trends and prospects. In Membrane Science and Technology; Burggraaf, A.J., Cot, L., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 4, pp. 1–20. [Google Scholar] [CrossRef]
- Meng, S.; Meng, X.; Fan, W.; Liang, D.; Wang, L.; Zhang, W.; Liu, Y. The role of transparent exopolymer particles (TEP) in membrane fouling: A critical review. Water Res. 2020, 181, 115930. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, N.; Ghalamchi, L.; Vatanpour, V.; Khataee, A. Photocatalytic-membrane technology: A critical review for membrane fouling mitigation. J. Ind. Eng. Chem. 2021, 93, 101–116. [Google Scholar] [CrossRef]
- Rao, L.; Tang, J.; Hu, S.; Shen, L.; Xu, Y.; Li, R.; Lin, H. Inkjet printing assisted electroless Ni plating to fabricate nickel coated polypropylene membrane with improved performance. J. Colloid Interface Sci. 2020, 565, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Fan, H.; Shen, L.; Rao, L.; Tang, J.; Hu, S.; Lin, H. Inkjet printing assisted fabrication of polyphenol-based coating membranes for oil/water separation. Chemosphere 2020, 250, 126236. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Z.; Wang, P.; Tang, Y. An integration of photo-Fenton and membrane process for water treatment by a PVDF@CuFe2O4 catalytic membrane. J. Membr. Sci. 2019, 572, 419–427. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.; Lo, W.-H.; Babel, S. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Couto, C.F.; Lange, L.C.; Amaral, M.C.S. A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. J. Water Process Eng. 2018, 26, 156–175. [Google Scholar] [CrossRef]
- Kim, H.J.; Pant, H.R.; Kim, J.H.; Choi, N.J.; Kim, C.S. Fabrication of multifunctional TiO2–fly ash/polyurethane nanocomposite membrane via electrospinning. Ceram. Int. 2014, 40, 3023–3029. [Google Scholar] [CrossRef]
- Wang, Y.; Ou, R.; Ge, Q.; Wang, H.; Xu, T. Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane. Desalination 2013, 330, 70–78. [Google Scholar] [CrossRef]
- Song, X.; Liu, Z.; Sun, D.D. Energy recovery from concentrated seawater brine by thin-film nanofiber composite pressure retarded osmosis membranes with high power density. Energy Environ. Sci. 2013, 6, 1199–1210. [Google Scholar] [CrossRef]
- Yang, S.; Gu, J.S.; Yu, H.Y.; Zhou, J.; Li, S.F.; Wu, X.M.; Wang, L. Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor. Sep. Purif. Technol. 2011, 83, 157–165. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, H.; Wang, J.; Ding, R.; Du, Z.; Liu, J.; Cao, S. Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration. J. Membr. Sci. 2014, 470, 70–79. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; Manzoor, U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv. Mater. Sci. Eng. 2014, 2014, 825910. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R.; et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Jasim, A.M.; He, X.; White, T.A.; Xing, Y. Nano-layer deposition of metal oxides via a condensed water film. Commun. Mater. 2020, 1, 9. [Google Scholar] [CrossRef]
- Wu, G.; Nelson, M.A.; Mack, N.H.; Ma, S.; Sekhar, P.; Garzon, F.H.; Zelenay, P. Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst. Chem. Commun. 2010, 46, 7489–7491. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to Image J: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Bian, C.; Xue, G. Nanocomposites based on rutile-TiO2 and polyaniline. Mater. Lett. 2007, 61, 1299–1302. [Google Scholar] [CrossRef]
- Rahim, S.; Ghamsari, M.S.; Radiman, S. Surface modification of titanium oxide nanocrystals with PEG. Sci. Iran. 2012, 19, 948–953. [Google Scholar] [CrossRef]
- Boeva, Z.A.; Sergeyev, V.G. Polyaniline: Synthesis, properties, and application. Polym. Sci. Ser. C 2014, 56, 144–153. [Google Scholar] [CrossRef]
- Mathur, S.; Moudgil, B.M. Adsorption Mechanism(s) of Poly(Ethylene Oxide) on Oxide Surfaces. J. Colloid Interface Sci. 1997, 196, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Chibowski, S.; Paszkiewicz, M. Influence of the Molecular Weight of Polyethylene Glycol and Polyethylene Oxide on the Adsorption and Electrochemical Properties of the Titania/Electrolyte Solution Interface. Adsorpt. Sci. Technol. 1999, 17, 845–855. [Google Scholar] [CrossRef]
Uncoated | 1-Layer | 2-Layer | 3-Layer | 4-Layer | |
---|---|---|---|---|---|
Pmem:Psup | - | 73% | 61% | 49% | 44% |
Pfeed1:Pmem | 86% | 90% | 91% | 92% | 96% |
Pfeed2:Pmem | 73% | 79% | 81% | 85% | 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Numaan, M.M.; Jasim, A.M.; Xing, Y.; Fidalgo, M.M. Thin-Layer TiO2 Membrane Fabrication by Condensed Layer Deposition. Materials 2024, 17, 4436. https://doi.org/10.3390/ma17174436
Numaan MM, Jasim AM, Xing Y, Fidalgo MM. Thin-Layer TiO2 Membrane Fabrication by Condensed Layer Deposition. Materials. 2024; 17(17):4436. https://doi.org/10.3390/ma17174436
Chicago/Turabian StyleNumaan, Mohammed M., Ahmed M. Jasim, Yangchuan Xing, and Maria M. Fidalgo. 2024. "Thin-Layer TiO2 Membrane Fabrication by Condensed Layer Deposition" Materials 17, no. 17: 4436. https://doi.org/10.3390/ma17174436
APA StyleNumaan, M. M., Jasim, A. M., Xing, Y., & Fidalgo, M. M. (2024). Thin-Layer TiO2 Membrane Fabrication by Condensed Layer Deposition. Materials, 17(17), 4436. https://doi.org/10.3390/ma17174436