Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
Validating Safety in Human–Robot Collaboration: Standards and New Perspectives
Robotics 2021, 10(2), 65; https://doi.org/10.3390/robotics10020065 - 29 Apr 2021
Cited by 16 | Viewed by 4005
Abstract
Human–robot collaboration is currently one of the frontiers of industrial robot implementation. In parallel, the use of robots and robotic devices is increasing in several fields, substituting humans in “4D”—dull, dirty, dangerous, and delicate—tasks, and such a trend is boosted by the recent [...] Read more.
Human–robot collaboration is currently one of the frontiers of industrial robot implementation. In parallel, the use of robots and robotic devices is increasing in several fields, substituting humans in “4D”—dull, dirty, dangerous, and delicate—tasks, and such a trend is boosted by the recent need for social distancing. New challenges in safety assessment and verification arise, due to both the closer and closer human–robot interaction, common for the different application domains, and the broadening of user audience, which is now very diverse. The present paper discusses a cross-domain approach towards the definition of step-by-step validation procedures for collaborative robotic applications. To outline the context, the standardization framework is analyzed, especially from the perspective of safety testing and assessment. Afterwards, some testing procedures based on safety skills, developed within the framework of the European project COVR, are discussed and exemplary presented. Full article
(This article belongs to the Special Issue Human–Robot Collaboration)
Show Figures

Figure 1

Article
An Overview of Verification and Validation Challenges for Inspection Robots
Robotics 2021, 10(2), 67; https://doi.org/10.3390/robotics10020067 - 29 Apr 2021
Cited by 14 | Viewed by 4260
Abstract
The advent of sophisticated robotics and AI technology makes sending humans into hazardous and distant environments to carry out inspections increasingly avoidable. Being able to send a robot, rather than a human, into a nuclear facility or deep space is very appealing. However, [...] Read more.
The advent of sophisticated robotics and AI technology makes sending humans into hazardous and distant environments to carry out inspections increasingly avoidable. Being able to send a robot, rather than a human, into a nuclear facility or deep space is very appealing. However, building these robotic systems is just the start and we still need to carry out a range of verification and validation tasks to ensure that the systems to be deployed are as safe and reliable as possible. Based on our experience across three research and innovation hubs within the UK’s “Robots for a Safer World” programme, we present an overview of the relevant techniques and challenges in this area. As the hubs are active across nuclear, offshore, and space environments, this gives a breadth of issues common to many inspection robots. Full article
(This article belongs to the Special Issue Advances in Robots for Hazardous Environments in the UK)
Show Figures

Figure 1

Article
Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic Environments
Robotics 2021, 10(1), 48; https://doi.org/10.3390/robotics10010048 - 17 Mar 2021
Cited by 10 | Viewed by 3783
Abstract
Motion control in dynamic environments is one of the most important problems in using mobile robots in collaboration with humans and other robots. In this paper, the motion control of a four-Mecanum-wheeled omnidirectional mobile robot (OMR) in dynamic environments is studied. The robot’s [...] Read more.
Motion control in dynamic environments is one of the most important problems in using mobile robots in collaboration with humans and other robots. In this paper, the motion control of a four-Mecanum-wheeled omnidirectional mobile robot (OMR) in dynamic environments is studied. The robot’s differential equations of motion are extracted using Kane’s method and converted to discrete state space form. A nonlinear model predictive control (NMPC) strategy is designed based on the derived mathematical model to stabilize the robot in desired positions and orientations. As a main contribution of this work, the velocity obstacles (VO) approach is reformulated to be introduced in the NMPC system to avoid the robot from collision with moving and fixed obstacles online. Considering the robot’s physical restrictions, the parameters and functions used in the designed control system and collision avoidance strategy are determined through stability and performance analysis and some criteria are established for calculating the best values of these parameters. The effectiveness of the proposed controller and collision avoidance strategy is evaluated through a series of computer simulations. The simulation results show that the proposed strategy is efficient in stabilizing the robot in the desired configuration and in avoiding collision with obstacles, even in narrow spaces and with complicated arrangements of obstacles. Full article
Show Figures

Figure 1

Article
Deep Reinforcement Learning for the Control of Robotic Manipulation: A Focussed Mini-Review
Robotics 2021, 10(1), 22; https://doi.org/10.3390/robotics10010022 - 24 Jan 2021
Cited by 24 | Viewed by 5988
Abstract
Deep learning has provided new ways of manipulating, processing and analyzing data. It sometimes may achieve results comparable to, or surpassing human expert performance, and has become a source of inspiration in the era of artificial intelligence. Another subfield of machine learning named [...] Read more.
Deep learning has provided new ways of manipulating, processing and analyzing data. It sometimes may achieve results comparable to, or surpassing human expert performance, and has become a source of inspiration in the era of artificial intelligence. Another subfield of machine learning named reinforcement learning, tries to find an optimal behavior strategy through interactions with the environment. Combining deep learning and reinforcement learning permits resolving critical issues relative to the dimensionality and scalability of data in tasks with sparse reward signals, such as robotic manipulation and control tasks, that neither method permits resolving when applied on its own. In this paper, we present recent significant progress of deep reinforcement learning algorithms, which try to tackle the problems for the application in the domain of robotic manipulation control, such as sample efficiency and generalization. Despite these continuous improvements, currently, the challenges of learning robust and versatile manipulation skills for robots with deep reinforcement learning are still far from being resolved for real-world applications. Full article
(This article belongs to the Special Issue Robotics: Intelligent Control Theory)
Show Figures

Figure 1

Article
An Architecture for Safe Child–Robot Interactions in Autism Interventions
Robotics 2021, 10(1), 20; https://doi.org/10.3390/robotics10010020 - 21 Jan 2021
Cited by 4 | Viewed by 2779
Abstract
Autism Spectrum Disorder is a developmental disorder that affects children from a very young age and is characterized by persistent deficits in social, communicational, and behavioral abilities. Since there is no cure for autism, domain experts focus on aiding these children through specific [...] Read more.
Autism Spectrum Disorder is a developmental disorder that affects children from a very young age and is characterized by persistent deficits in social, communicational, and behavioral abilities. Since there is no cure for autism, domain experts focus on aiding these children through specific intervention plans that are aimed towards the development of the deficient areas. Using socially assistive robots that interact in a social manner with children in autism interventions, efforts are being made towards alleviating the autistic behavior of children and enhancing their social behavior. However, implementing robots in autism interventions could lead to harmful situations concerning safety. In this paper, an architecture for safe child–robot interactions in autism interventions is proposed. First, a taxonomy of child–robot interactions in autism interventions is presented, explaining its complete framework. Next, the interaction is modelled according to this taxonomy where an interaction case is employed in order for the structure of the interaction to be defined. Based on that, the safety architecture is proposed that will be integrated into the robot’s controller. Focus is placed on detecting possible distracting elements that could influence the performance of the child, affecting their psychological or physical safety. Lastly, the interaction between child and robot is created in a simulated environment through dialogue inputs and outputs, and the code of the architecture is tested, where a virtual robot performs the appropriate actions. Full article
(This article belongs to the Special Issue Advances in European Robotics)
Show Figures

Figure 1

Article
Simulation of an Autonomous Mobile Robot for LiDAR-Based In-Field Phenotyping and Navigation
Robotics 2020, 9(2), 46; https://doi.org/10.3390/robotics9020046 - 21 Jun 2020
Cited by 35 | Viewed by 7239
Abstract
The agriculture industry is in need of substantially increasing crop yield to meet growing global demand. Selective breeding programs can accelerate crop improvement but collecting phenotyping data is time- and labor-intensive because of the size of the research fields and the frequency of [...] Read more.
The agriculture industry is in need of substantially increasing crop yield to meet growing global demand. Selective breeding programs can accelerate crop improvement but collecting phenotyping data is time- and labor-intensive because of the size of the research fields and the frequency of the work required. Automation could be a promising tool to address this phenotyping bottleneck. This paper presents a Robotic Operating System (ROS)-based mobile field robot that simultaneously navigates through occluded crop rows and performs various phenotyping tasks, such as measuring plant volume and canopy height using a 2D LiDAR in a nodding configuration. The efficacy of the proposed 2D LiDAR configuration for phenotyping is assessed in a high-fidelity simulated agricultural environment in the Gazebo simulator with an ROS-based control framework and compared with standard LiDAR configurations used in agriculture. Using the proposed nodding LiDAR configuration, a strategy for navigation through occluded crop rows is presented. The proposed LiDAR configuration achieved an estimation error of 6.6% and 4% for plot volume and canopy height, respectively, which was comparable to the commonly used LiDAR configurations. The hybrid strategy with GPS waypoint following and LiDAR-based navigation was used to navigate the robot through an agricultural crop field successfully with an root mean squared error of 0.0778 m which was 0.2% of the total traveled distance. The presented robot simulation framework in ROS and optimized LiDAR configuration helped to expedite the development of the agricultural robots, which ultimately will aid in overcoming the phenotyping bottleneck. Full article
(This article belongs to the Section Agricultural and Field Robotics)
Show Figures

Figure 1

Article
Collection and Analysis of Human Upper Limbs Motion Features for Collaborative Robotic Applications
Robotics 2020, 9(2), 33; https://doi.org/10.3390/robotics9020033 - 11 May 2020
Cited by 11 | Viewed by 2427
Abstract
(1) Background: The technologies of Industry 4.0 are increasingly promoting an operation of human motion prediction for improvement of the collaboration between workers and robots. The purposes of this study were to fuse the spatial and inertial data of human upper limbs for [...] Read more.
(1) Background: The technologies of Industry 4.0 are increasingly promoting an operation of human motion prediction for improvement of the collaboration between workers and robots. The purposes of this study were to fuse the spatial and inertial data of human upper limbs for typical industrial pick and place movements and to analyze the collected features from the future perspective of collaborative robotic applications and human motion prediction algorithms. (2) Methods: Inertial Measurement Units and a stereophotogrammetric system were adopted to track the upper body motion of 10 healthy young subjects performing pick and place operations at three different heights. From the obtained database, 10 features were selected and used to distinguish among pick and place gestures at different heights. Classification performances were evaluated by estimating confusion matrices and F1-scores. (3) Results: Values on matrices diagonals were definitely greater than those in other positions. Furthermore, F1-scores were very high in most cases. (4) Conclusions: Upper arm longitudinal acceleration and markers coordinates of wrists and elbows could be considered representative features of pick and place gestures at different heights, and they are consequently suitable for the definition of a human motion prediction algorithm to be adopted in effective collaborative robotics industrial applications. Full article
Show Figures

Figure 1

Article
A Pressing Attachment Approach for a Wall-Climbing Robot Utilizing Passive Suction Cups
Robotics 2020, 9(2), 26; https://doi.org/10.3390/robotics9020026 - 13 Apr 2020
Cited by 12 | Viewed by 3575
Abstract
This paper proposes a pressing method for wall-climbing robots to prevent them from falling. In order to realize the method, the properties of the utilized suction cup are studied experimentally. Then based on the results, a guide rail is designed to distribute the [...] Read more.
This paper proposes a pressing method for wall-climbing robots to prevent them from falling. In order to realize the method, the properties of the utilized suction cup are studied experimentally. Then based on the results, a guide rail is designed to distribute the attached suction cup force and implement the pressing method. A prototype of a wall-climbing robot that utilizes passive suction cups and one motor is used to demonstrate the proposed method. An experimental test-bed is designed to measure the force changes of the suction cup when the robot climbs upwards. The experimental results validate that the suction cup can completely attach to the surface by the proposed method, and demonstrate that the robot can climb upwards without falling. Full article
Show Figures

Figure 1

Article
Design of a UGV Powered by Solar Energy for Precision Agriculture
Robotics 2020, 9(1), 13; https://doi.org/10.3390/robotics9010013 - 13 Mar 2020
Cited by 23 | Viewed by 5780
Abstract
In this paper, a novel UGV (unmanned ground vehicle) for precision agriculture, named “Agri.q,” is presented. The Agri.q has a multiple degrees of freedom positioning mechanism and it is equipped with a robotic arm and vision sensors, which allow to challenge irregular terrains [...] Read more.
In this paper, a novel UGV (unmanned ground vehicle) for precision agriculture, named “Agri.q,” is presented. The Agri.q has a multiple degrees of freedom positioning mechanism and it is equipped with a robotic arm and vision sensors, which allow to challenge irregular terrains and to perform precision field operations with perception. In particular, the integration of a 7 DOFs (degrees of freedom) manipulator and a mobile frame results in a reconfigurable workspace, which opens to samples collection and inspection in non-structured environments. Moreover, Agri.q mounts an orientable landing platform for drones which is made of solar panels, enabling multi-robot strategies and solar power storage, with a view to sustainable energy. In fact, the device will assume a central role in a more complex automated system for agriculture, that includes the use of UAV (unmanned aerial vehicle) and UGV for coordinated field monitoring and servicing. The electronics of the device is also discussed, since Agri.q should be ready to send-receive data to move autonomously or to be remotely controlled by means of dedicated processing units and transmitter-receiver modules. This paper collects all these elements and shows the advances of the previous works, describing the design process of the mechatronic system and showing the realization phase, whose outcome is the physical prototype. Full article
(This article belongs to the Special Issue Advances in Robotics and Mechatronics)
Show Figures

Figure 1

Article
Nonlinear Model Predictive Control for Mobile Robot Using Varying-Parameter Convergent Differential Neural Network
Robotics 2019, 8(3), 64; https://doi.org/10.3390/robotics8030064 - 31 Jul 2019
Cited by 21 | Viewed by 4241
Abstract
The mobile robot kinematic model is a nonlinear affine system, which is constrained by velocity and acceleration limits. Therefore, the traditional control methods may not solve the tracking problem because of the physical constraint. In this paper, we present the nonlinear model predictive [...] Read more.
The mobile robot kinematic model is a nonlinear affine system, which is constrained by velocity and acceleration limits. Therefore, the traditional control methods may not solve the tracking problem because of the physical constraint. In this paper, we present the nonlinear model predictive control (NMPC) algorithm to track the desired trajectory based on neural-dynamic optimization. In the proposed algorithm, the NMPC scheme utilizes a new neural network named the varying-parameter convergent differential neural network (VPCDNN) which is a Hopfifield-neural network structure with respect to the differential equation theory to solve the quadratic programming (QP) problem. The new network structure converges to the global optimal solution and it is more efficient than traditional numerical methods. In the simulation, we verify that the proposed method is able to successfully track reference trajectories with a two-wheel mobile robot. The experimental validation has been conducted in simulation and the results show that the proposed method is able to precisely track the trajectory maintaining a high robustness based on the VPCDNN solver. Full article
(This article belongs to the Special Issue Robotics and Automation Engineering)
Show Figures

Figure 1

Article
Vision-Based Assisted Tele-Operation of a Dual-Arm Hydraulically Actuated Robot for Pipe Cutting and Grasping in Nuclear Environments
Robotics 2019, 8(2), 42; https://doi.org/10.3390/robotics8020042 - 04 Jun 2019
Cited by 29 | Viewed by 6491
Abstract
This article investigates visual servoing for a hydraulically actuated dual-arm robot, in which the user selects the object of interest from an on-screen image, whilst the computer control system implements via feedback control the required position and orientation of the manipulators. To improve [...] Read more.
This article investigates visual servoing for a hydraulically actuated dual-arm robot, in which the user selects the object of interest from an on-screen image, whilst the computer control system implements via feedback control the required position and orientation of the manipulators. To improve on the current joystick direct tele-operation commonly used as standard in the nuclear industry, which is slow and requires extensive operator training, the proposed assisted tele-operation makes use of a single camera mounted on the robot. Focusing on pipe cutting as an example, the new system ensures that one manipulator automatically grasps the user-selected pipe, and appropriately positions the second for a cutting operation. Initial laboratory testing (using a plastic pipe) shows the efficacy of the approach for positioning the manipulators, and suggests that for both experienced and inexperienced users, the task is completed significantly faster than via tele-operation. Full article
(This article belongs to the Special Issue Robotics in Extreme Environments)
Show Figures

Figure 1

Article
Extending the Application of an Assistant Personal Robot as a Walk-Helper Tool
Robotics 2019, 8(2), 27; https://doi.org/10.3390/robotics8020027 - 10 Apr 2019
Cited by 12 | Viewed by 3902
Abstract
This paper presents the application of a mobile robot designed as an Assistant Personal Robot (APR) as a walk-helper tool. The hypothesis is that the height and weight of this mobile robot can be used also to provide a dynamic physical support and [...] Read more.
This paper presents the application of a mobile robot designed as an Assistant Personal Robot (APR) as a walk-helper tool. The hypothesis is that the height and weight of this mobile robot can be used also to provide a dynamic physical support and guidance to people while they walk. This functionality is presented as a soft walking aid at home but not as a substitute of an assistive cane or a walker device, which may withstand higher weights and provide better stability during a walking. The APR operates as a walk-helper tool by providing user interaction using the original arms of the mobile robot and by using the onboard sensors of the mobile robot in order to avoid obstacles and guide the walking through free areas. The results of the experiments conducted with the walk-helper have showed the automatic generation of smooth walking trajectories and a reduction in the number of manual trajectory corrections required to complete a walking displacement. Full article
(This article belongs to the Special Issue Recent Advances on Physical Agents)
Show Figures

Figure 1

Article
V2SOM: A Novel Safety Mechanism Dedicated to a Cobot’s Rotary Joints
Robotics 2019, 8(1), 18; https://doi.org/10.3390/robotics8010018 - 06 Mar 2019
Cited by 7 | Viewed by 4076
Abstract
Unlike “classical” industrial robots, collaborative robots, known as cobots, implement a compliant behavior. Cobots ensure a safe force control in a physical interaction scenario within unknown environments. In this paper, we propose to make serial robots intrinsically compliant to guarantee safe physical human–robot [...] Read more.
Unlike “classical” industrial robots, collaborative robots, known as cobots, implement a compliant behavior. Cobots ensure a safe force control in a physical interaction scenario within unknown environments. In this paper, we propose to make serial robots intrinsically compliant to guarantee safe physical human–robot interaction (pHRI), via our novel designed device called V2SOM, which stands for Variable Stiffness Safety-Oriented Mechanism. As its name indicates, V2SOM aims at making physical human–robot interaction safe, thanks to its two basic functioning modes—high stiffness mode and low stiffness mode. The first mode is employed for normal operational routines. In contrast, the low stiffness mode is suitable for the safe absorption of any potential blunt shock with a human. The transition between the two modes is continuous to maintain a good control of the V2SOM-based cobot in the case of a fast collision. V2SOM presents a high inertia decoupling capacity which is a necessary condition for safe pHRI without compromising the robot’s dynamic performances. Two safety criteria of pHRI were considered for performance evaluations, namely, the impact force (ImpF) criterion and the head injury criterion (HIC) for, respectively, the external and internal damage evaluation during blunt shocks. Full article
(This article belongs to the Special Issue Mechanism Design for Robotics)
Show Figures

Figure 1

Article
Trajectory Design for Energy Savings in Redundant Robotic Cells
Robotics 2019, 8(1), 15; https://doi.org/10.3390/robotics8010015 - 20 Feb 2019
Cited by 13 | Viewed by 3921
Abstract
This work explores the possibility of exploiting kinematic redundancy as a tool to enhance the energetic performance of a robotic cell. The test case under consideration comprises a three-degree-of-freedom Selective Compliance Assembly Robot Arm (SCARA) robot and an additional linear unit that is [...] Read more.
This work explores the possibility of exploiting kinematic redundancy as a tool to enhance the energetic performance of a robotic cell. The test case under consideration comprises a three-degree-of-freedom Selective Compliance Assembly Robot Arm (SCARA) robot and an additional linear unit that is used to move the workpiece during a pick and place operation. The trajectory design is based on a spline interpolation of a sequence of via-points: The corresponding motion of the joints is used to evaluate, through the use of an inverse dynamic model, the actuators effort and the associated power consumption by the robot and by the linear unit. Numerical results confirm that the suggested method can improve both the execution time and the overall energetic efficiency of the cell. Full article
(This article belongs to the Special Issue Mechanism Design for Robotics)
Show Figures

Figure 1

Article
Non-Photorealistic Rendering Techniques for Artistic Robotic Painting
Robotics 2019, 8(1), 10; https://doi.org/10.3390/robotics8010010 - 11 Feb 2019
Cited by 18 | Viewed by 5655
Abstract
In this paper, we present non-photorealistic rendering techniques that are applied together with a painting robot to realize artworks with original styles. Our robotic painting system is called Busker Robot and it has been considered of interest in recent art fairs and international [...] Read more.
In this paper, we present non-photorealistic rendering techniques that are applied together with a painting robot to realize artworks with original styles. Our robotic painting system is called Busker Robot and it has been considered of interest in recent art fairs and international exhibitions. It consists of a six degree-of-freedom collaborative robot and a series of image processing and path planning algorithms. In particular, here, two different rendering techniques are presented and a description of the experimental set-up is carried out. Finally, the experimental results are discussed by analyzing the elements that can account for the aesthetic appreciation of the artworks. Full article
(This article belongs to the Special Issue Mechanism Design for Robotics)
Show Figures

Figure 1

Review

Review
Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead
Robotics 2021, 10(2), 52; https://doi.org/10.3390/robotics10020052 - 24 Mar 2021
Cited by 40 | Viewed by 6632
Abstract
The constant advances in agricultural robotics aim to overcome the challenges imposed by population growth, accelerated urbanization, high competitiveness of high-quality products, environmental preservation and a lack of qualified labor. In this sense, this review paper surveys the main existing applications of agricultural [...] Read more.
The constant advances in agricultural robotics aim to overcome the challenges imposed by population growth, accelerated urbanization, high competitiveness of high-quality products, environmental preservation and a lack of qualified labor. In this sense, this review paper surveys the main existing applications of agricultural robotic systems for the execution of land preparation before planting, sowing, planting, plant treatment, harvesting, yield estimation and phenotyping. In general, all robots were evaluated according to the following criteria: its locomotion system, what is the final application, if it has sensors, robotic arm and/or computer vision algorithm, what is its development stage and which country and continent they belong. After evaluating all similar characteristics, to expose the research trends, common pitfalls and the characteristics that hinder commercial development, and discover which countries are investing into Research and Development (R&D) in these technologies for the future, four major areas that need future research work for enhancing the state of the art in smart agriculture were highlighted: locomotion systems, sensors, computer vision algorithms and communication technologies. The results of this research suggest that the investment in agricultural robotic systems allows to achieve short—harvest monitoring—and long-term objectives—yield estimation. Full article
(This article belongs to the Special Issue Advances in Agriculture and Forest Robotics)
Show Figures

Graphical abstract

Review
Service Robots in the Healthcare Sector
Robotics 2021, 10(1), 47; https://doi.org/10.3390/robotics10010047 - 11 Mar 2021
Cited by 26 | Viewed by 7502
Abstract
Traditionally, advances in robotic technology have been in the manufacturing industry due to the need for collaborative robots. However, this is not the case in the service sectors, especially in the healthcare sector. The lack of emphasis put on the healthcare sector has [...] Read more.
Traditionally, advances in robotic technology have been in the manufacturing industry due to the need for collaborative robots. However, this is not the case in the service sectors, especially in the healthcare sector. The lack of emphasis put on the healthcare sector has led to new opportunities in developing service robots that aid patients with illnesses, cognition challenges and disabilities. Furthermore, the COVID-19 pandemic has acted as a catalyst for the development of service robots in the healthcare sector in an attempt to overcome the difficulties and hardships caused by this virus. The use of service robots are advantageous as they not only prevent the spread of infection, and reduce human error but they also allow front-line staff to reduce direct contact, focusing their attention on higher priority tasks and creating separation from direct exposure to infection. This paper presents a review of various types of robotic technologies and their uses in the healthcare sector. The reviewed technologies are a collaboration between academia and the healthcare industry, demonstrating the research and testing needed in the creation of service robots before they can be deployed in real-world applications and use cases. We focus on how robots can provide benefits to patients, healthcare workers, customers, and organisations during the COVID-19 pandemic. Furthermore, we investigate the emerging focal issues of effective cleaning, logistics of patients and supplies, reduction of human errors, and remote monitoring of patients to increase system capacity, efficiency, resource equality in hospitals, and related healthcare environments. Full article
(This article belongs to the Section Medical Robotics and Service Robotics)
Show Figures

Figure 1

Review
Localization and Mapping for Robots in Agriculture and Forestry: A Survey
Robotics 2020, 9(4), 97; https://doi.org/10.3390/robotics9040097 - 21 Nov 2020
Cited by 28 | Viewed by 4012
Abstract
Research and development of autonomous mobile robotic solutions that can perform several active agricultural tasks (pruning, harvesting, mowing) have been growing. Robots are now used for a variety of tasks such as planting, harvesting, environmental monitoring, supply of water and nutrients, and others. [...] Read more.
Research and development of autonomous mobile robotic solutions that can perform several active agricultural tasks (pruning, harvesting, mowing) have been growing. Robots are now used for a variety of tasks such as planting, harvesting, environmental monitoring, supply of water and nutrients, and others. To do so, robots need to be able to perform online localization and, if desired, mapping. The most used approach for localization in agricultural applications is based in standalone Global Navigation Satellite System-based systems. However, in many agricultural and forest environments, satellite signals are unavailable or inaccurate, which leads to the need of advanced solutions independent from these signals. Approaches like simultaneous localization and mapping and visual odometry are the most promising solutions to increase localization reliability and availability. This work leads to the main conclusion that, few methods can achieve simultaneously the desired goals of scalability, availability, and accuracy, due to the challenges imposed by these harsh environments. In the near future, novel contributions to this field are expected that will help one to achieve the desired goals, with the development of more advanced techniques, based on 3D localization, and semantic and topological mapping. In this context, this work proposes an analysis of the current state-of-the-art of localization and mapping approaches in agriculture and forest environments. Additionally, an overview about the available datasets to develop and test these approaches is performed. Finally, a critical analysis of this research field is done, with the characterization of the literature using a variety of metrics. Full article
(This article belongs to the Special Issue Advances in Agriculture and Forest Robotics)
Show Figures

Figure 1

Review
A Review on Design of Upper Limb Exoskeletons
Robotics 2020, 9(1), 16; https://doi.org/10.3390/robotics9010016 - 17 Mar 2020
Cited by 126 | Viewed by 10026
Abstract
Exoskeleton robotics has ushered in a new era of modern neuromuscular rehabilitation engineering and assistive technology research. The technology promises to improve the upper-limb functionalities required for performing activities of daily living. The exoskeleton technology is evolving quickly but still needs interdisciplinary research [...] Read more.
Exoskeleton robotics has ushered in a new era of modern neuromuscular rehabilitation engineering and assistive technology research. The technology promises to improve the upper-limb functionalities required for performing activities of daily living. The exoskeleton technology is evolving quickly but still needs interdisciplinary research to solve technical challenges, e.g., kinematic compatibility and development of effective human–robot interaction. In this paper, the recent development in upper-limb exoskeletons is reviewed. The key challenges involved in the development of assistive exoskeletons are highlighted by comparing available solutions. This paper provides a general classification, comparisons, and overview of the mechatronic designs of upper-limb exoskeletons. In addition, a brief overview of the control modalities for upper-limb exoskeletons is also presented in this paper. A discussion on the future directions of research is included. Full article
Show Figures

Figure 1

Review
A Review of the Literature on the Lower-Mobility Parallel Manipulators of 3-UPU or 3-URU Type
Robotics 2020, 9(1), 5; https://doi.org/10.3390/robotics9010005 - 13 Jan 2020
Cited by 12 | Viewed by 3516
Abstract
Various 3-UPU architectures feature two rigid bodies connected to one another through three kinematic chains (limbs) of universal–prismatic–universal (UPU) type. They were first proposed in the last decade of the 20th century and have animated discussions among researchers for more-or-less two decades. Such [...] Read more.
Various 3-UPU architectures feature two rigid bodies connected to one another through three kinematic chains (limbs) of universal–prismatic–universal (UPU) type. They were first proposed in the last decade of the 20th century and have animated discussions among researchers for more-or-less two decades. Such discussions brought to light many features of lower-mobility parallel manipulators (PMs) that were unknown until then. The discussions also showed that such architectures may be sized into translational PMs, parallel wrists, or even reconfigurable (metamorphic) PMs. Even though commercial robots with these architectures have not yet been built, the interest in them remains. Consequently, a review of the literature on these architectures, highlighting their contribution to the progress of lower-mobility PM design, is still of interest for the scientific community. This paper aims at presenting a critical review of the results that have been obtained up until now. Full article
(This article belongs to the Special Issue Kinematics and Robot Design II, KaRD2019)
Show Figures

Figure 1

Review
Human–Robot Collaboration in Manufacturing Applications: A Review
Robotics 2019, 8(4), 100; https://doi.org/10.3390/robotics8040100 - 06 Dec 2019
Cited by 133 | Viewed by 11440
Abstract
This paper provides an overview of collaborative robotics towards manufacturing applications. Over the last decade, the market has seen the introduction of a new category of robots—collaborative robots (or “cobots”)—designed to physically interact with humans in a shared environment, without the typical barriers [...] Read more.
This paper provides an overview of collaborative robotics towards manufacturing applications. Over the last decade, the market has seen the introduction of a new category of robots—collaborative robots (or “cobots”)—designed to physically interact with humans in a shared environment, without the typical barriers or protective cages used in traditional robotics systems. Their potential is undisputed, especially regarding their flexible ability to make simple, quick, and cheap layout changes; however, it is necessary to have adequate knowledge of their correct uses and characteristics to obtain the advantages of this form of robotics, which can be a barrier for industry uptake. The paper starts with an introduction of human–robot collaboration, presenting the related standards and modes of operation. An extensive literature review of works published in this area is undertaken, with particular attention to the main industrial cases of application. The paper concludes with an analysis of the future trends in human–robot collaboration as determined by the authors. Full article
(This article belongs to the Special Issue Advances in Italian Robotics)
Show Figures

Figure 1

Back to TopTop