
����������
�������

Citation: Elazzazi, M.; Jawad, L.;

Hilfi, M.; Pandya, A. A Natural

Language Interface for an

Autonomous Camera Control System

on the da Vinci Surgical Robot.

Robotics 2022, 11, 40. https://

doi.org/10.3390/robotics11020040

Academic Editors: Mario Selvaggio,

Sara Moccia and Bruno Scaglioni

Received: 9 February 2022

Accepted: 22 March 2022

Published: 25 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

A Natural Language Interface for an Autonomous Camera
Control System on the da Vinci Surgical Robot
Maysara Elazzazi 1, Luay Jawad 2, Mohammed Hilfi 1 and Abhilash Pandya 1,*

1 Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA;
melazzazi@wayne.edu (M.E.); mhilfi@wayne.edu (M.H.)

2 Department of Computer Science, Wayne State University, Detroit, MI 48202, USA; ljawad@wayne.edu
* Correspondence: apandya@ece.eng.wayne.edu

Abstract: Positioning a camera during laparoscopic and robotic procedures is challenging and
essential for successful operations. During surgery, if the camera view is not optimal, surgery
becomes more complex and potentially error-prone. To address this need, we have developed a voice
interface to an autonomous camera system that can trigger behavioral changes and be more of a
partner to the surgeon. Similarly to a human operator, the camera can take cues from the surgeon to
help create optimized surgical camera views. It has the advantage of nominal behavior that is helpful
in most general cases and has a natural language interface that makes it dynamically customizable
and on-demand. It permits the control of a camera with a higher level of abstraction. This paper
shows the implementation details and usability of a voice-activated autonomous camera system.
A voice activation test on a limited set of practiced key phrases was performed using both online
and offline voice recognition systems. The results show an on-average greater than 94% recognition
accuracy for the online system and 86% accuracy for the offline system. However, the response time
of the online system was greater than 1.5 s, whereas the local system was 0.6 s. This work is a step
towards cooperative surgical robots that will effectively partner with human operators to enable
more robust surgeries. A video link of the system in operation is provided in this paper.

Keywords: da Vinci; robotic surgery; laparoscopic surgery; autonomous camera control; natural
language processing

1. Introduction

Over 20 years, more than 25 K publications relating to robotic surgical systems were
peer reviewed with clinical and engineering-based research into robotic surgery [1]. With
the integration of robotics in surgery, many robotic surgical procedures have been safely
and successfully completed. However, the clinical systems are still master–slave controllers
with minimal (if any) autonomous behaviors. One area where automation could make a
substantial difference is in camera viewpoint automation [2]. Maintaining an optimal view
of the surgical scene is fundamental to surgery success.

Positioning a camera during laparoscopic procedures is challenging. During surgery, if
the camera view is not optimal, surgery becomes more complex and potentially error-prone.
The camera operator must try to predict the surgeon’s needs, and the surgeon must operate
safely and effectively despite any potential undesirable movements by the camera operator.
This is no longer the case in fully robotic surgeries, as the surgeon is responsible for the
camera’s movement. However, this introduces a new problem wherein the surgeon must
stop operating to move the camera. The distracting shift in focus can lead to accepting
suboptimal views, longer surgery times, and potentially dangerous situations such as
having tools out of the view. Therefore, automatic camera positioning systems that solve
some of these problems have been developed and could be used to a significant extent in
both traditional laparoscopic and fully robotic surgeries. However, there are times when

Robotics 2022, 11, 40. https://doi.org/10.3390/robotics11020040 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11020040
https://doi.org/10.3390/robotics11020040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://doi.org/10.3390/robotics11020040
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11020040?type=check_update&version=3

Robotics 2022, 11, 40 2 of 17

the surgeon’s strategies change with different stages of surgery, and these changes can
be unpredictable.

A critical barrier to overcome in camera positioning during surgery is that it is difficult
to precisely articulate the ideal camera placement. There is a lack of documentation on
how a camera operator should move a camera during laparoscopic procedures or how a
camera should be placed for proper views during robotic procedures. We have interviewed
expert robotic surgeons about camera placement. While they can describe context-specific
rules of thumb, they cannot provide general principles from which an autonomous system
can be derived [3]. Indeed, to quote a surgeon: “When it’s hard for me to communicate
what I want to see, then I just take over the camera.” An autonomous system for camera
placement in robotic surgery will similarly need to take direction from the surgeon.

To address this need, we have developed a voice interface to our existing autonomous
camera system that can trigger behavioral changes and be more of a partner to the surgeon.
Similarly to a human operator, it can take cues from the surgeon to help create optimized
surgical camera views. It has the advantage of nominal behavior that is helpful in most
general cases and has a natural language interface that makes it dynamically customizable
and on-demand. It permits the control of a camera with a higher level of abstraction.

We introduce the utilization of Natural Language Processing (NLP) as an interface for
an autonomous camera system (Figure 1). By introducing this interface, we allow surgeons
to utilize preference-driven camera control algorithms. Voice interfacing can create an
environment where the surgeon can access the algorithm’s parameters. This feature enables
the surgeon to adjust parameters to fit the current surgical situation or personal preference.

Robotics 2022, 11, x FOR PEER REVIEW 2 of 17

times when the surgeon’s strategies change with different stages of surgery, and these

changes can be unpredictable.

A critical barrier to overcome in camera positioning during surgery is that it is diffi-

cult to precisely articulate the ideal camera placement. There is a lack of documentation

on how a camera operator should move a camera during laparoscopic procedures or how

a camera should be placed for proper views during robotic procedures. We have inter-

viewed expert robotic surgeons about camera placement. While they can describe context-

specific rules of thumb, they cannot provide general principles from which an autono-

mous system can be derived [3]. Indeed, to quote a surgeon: “When it’s hard for me to

communicate what I want to see, then I just take over the camera.” An autonomous system

for camera placement in robotic surgery will similarly need to take direction from the

surgeon.

To address this need, we have developed a voice interface to our existing autono-

mous camera system that can trigger behavioral changes and be more of a partner to the

surgeon. Similarly to a human operator, it can take cues from the surgeon to help create

optimized surgical camera views. It has the advantage of nominal behavior that is helpful

in most general cases and has a natural language interface that makes it dynamically cus-

tomizable and on-demand. It permits the control of a camera with a higher level of ab-

straction.

We introduce the utilization of Natural Language Processing (NLP) as an interface

for an autonomous camera system (Figure 1). By introducing this interface, we allow sur-

geons to utilize preference-driven camera control algorithms. Voice interfacing can create

an environment where the surgeon can access the algorithm’s parameters. This feature

enables the surgeon to adjust parameters to fit the current surgical situation or personal

preference.

Figure 1. Overview of the da Vinci Surgical System and the Natural Language Processing (NLP)

integration hardware. Our system uses a voice interface. The traditional interfaces are buttons and

foot pedals to control the da Vinci system. The Alexa echo-dot system (with built-in microphone

and speaker) is mounted near the user.

2. Background

Historically, surgical robotic platforms such as the da Vinci have utilized foot pedals,

hardware buttons, and touchpads for menu navigation and robot operation. Research has

shown that providing more direct human–robot interaction methods can decrease surgi-

cal time. For instance, Staub et al. utilized a gesture-based input method for directly ac-

cessing robotic commands without navigating a menu. This method of operation took

significantly less time to command the robot [4].

Similarly, voice recognition and Natural Language Processing technologies have also

been introduced into the medical field, from document creation and analysis to robot

Figure 1. Overview of the da Vinci Surgical System and the Natural Language Processing (NLP)
integration hardware. Our system uses a voice interface. The traditional interfaces are buttons and
foot pedals to control the da Vinci system. The Alexa echo-dot system (with built-in microphone and
speaker) is mounted near the user.

2. Background

Historically, surgical robotic platforms such as the da Vinci have utilized foot pedals,
hardware buttons, and touchpads for menu navigation and robot operation. Research has
shown that providing more direct human–robot interaction methods can decrease surgical
time. For instance, Staub et al. utilized a gesture-based input method for directly accessing
robotic commands without navigating a menu. This method of operation took significantly
less time to command the robot [4].

Similarly, voice recognition and Natural Language Processing technologies have also
been introduced into the medical field, from document creation and analysis to robot

Robotics 2022, 11, 40 3 of 17

control [5–12]. In using this technology within the operating room (OR), we can see its
effect in preventing the need for extra surgical staff and the ability for the surgeons to
interact with surgical equipment directly [6]. These methods have also been applied to
surgical robotics by using voice-controlled endoscopic manipulators.

One of the first uses of voice-controlled robotics in the OR was AESOP; a seven
degree-of-freedom arm used to maneuver a laparoscopic surgery camera [5,7,9,11,13]. This
voice-controlled robot enabled surgeons to utilize either joystick or voice control as needed.
In practicing on cadavers, it becomes clear that there are some situations where joystick
control is necessary and others where voice control allows for the greatest flexibility. One
particular note during this study was the impact of unrecognized spoken commands on
time and safety, particularly in attempting to stop the voice recognition mode [11]. In
addition, AESOP was controlled with very low-level commands such as “Move Left” and
“Move In”. This robot and associated technology did not merge into mainstream surgical
robotics. We conjecture that, to be a helpful tool, a higher level of abstraction of commands
is needed. For instance, as we have developed here, commands such as “Follow my Right
tool”, etc., would potentially make it easier to adopt.

The current state-of-the-art automated camera control involves visual servoing and
different tool tracking/prediction algorithms [14–16]. Several autonomous camera systems
have been created for the specific application of minimally invasive surgery [17–21]. For
tracking, most of these systems used image processing or robot kinematics to identify the
position of the tooltips relative to the camera. The methods generally use a limited number
of rules to set the camera’s target position and zoom level to move the camera. For instance,
we have implemented a set of rules on our da Vinci platform that positions the camera to
point to the midpoint of two tracked tooltips and alters the zoom level as necessary to keep
them in the camera’s view [18,19]. Briefly, this autonomous camera algorithm maintains the
field of view around the tools so that the surgeon does not have to stop working to press the
clutch and move the camera, and then continue working again. The algorithm utilizes the
kinematic properties of the Patient Side Manipulator (PSM) to generate a midpoint between
the left and right PSMs. Inner and outer zones govern the mechanical zoom and the field of
view. Although this system outperforms an expert camera controller with essential metrics
such as keeping the tool in the field of view, the expert camera operator still resulted in
faster execution times [19].

The design of our current system is an extension of our previous da Vinci work [19].
It was also strongly influenced by extensive interviews we performed with eight laparo-
scopic surgeons on camera control during 11 surgical subtasks (suturing, dissection, clip
application, etc.) [3]. Some of the key findings were that surgeons often prefer to teach by
demonstration and that different subtasks had different requirements (highlighting the
necessity of context/subtask awareness). We also obtained important information from
observing numerous minimally invasive surgeries [22]. For example, we have observed
cases where the surgeon had to move the camera nearly 100 times in an hour.

Moreover, to avoid further camera work, the surgeons sometimes let one or more
instruments leave the camera’s view. By examining our interviews and interactions with
surgeons, we have also learned that the surgeon must maintain a view of the surgery
through the video screen for as long as possible without removing their head from the
console. In addition, the surgeon must be capable of operating the algorithms to their
preference. The developed system is designed to minimize the surgeon’s workload and to
address these situations and suggestions.

Recent advancements in artificial intelligence, voice recognition, and NLP have facili-
tated a much more intelligent, natural, and accurate speech recognition experience. Several
interfaces and open-source projects are available today that simplify the integration of well-
developed and well-trained neural networks for speech recognition. The popular Alexa
interface is a good and ubiquitous example of this. We chose Alexa as our online interface
due to the ease of integration for the proof-of-concept presented here. Furthermore, we
also utilized, tested, and compared Alexa to Vosk [23], a system that does not compromise

Robotics 2022, 11, 40 4 of 17

patient security and executes locally, which is preferable for actual implementation in
an OR.

3. Materials and Methods

This section shows the implementation details of several valuable extensions of our
baseline autonomous camera algorithm and their natural-language integration. Essen-
tially, a voice interface relative to the da Vinci system will allow the natural control of
the parameters of the autocamera algorithm. For instance, the inner and outer zones
(used to control the zoom level) can be configured to allow direct zoom control during
specific subprocedures.

This section will first describe our da Vinci robot and the test platform. It will then
explain the Alexa interface required for natural language processing. Lastly, each of the
seven commands extending the baseline algorithms is detailed. These commands include
the following:

• “Start/Stop the autocamera”—toggles whether the endoscope should automatically
follow the trajectory of the tools;

• “Find my tools”—finds the surgeon’s tools when out of the field of view;
• “Track left/middle/right”—has the autocamera algorithm follow the right, middle, or

left tool;
• “Keep left/middle/right”—maintains a point in space specified by the right, middle,

or left tool position within the field of view;
• “Change inner/outer zoom level”—changes the settings associated with zoom control.

After each command has been recognized, the system responds back with either
“Done” or a beep indicating that the action was triggered.

3.1. The da Vinci Standard Surgical System and Kit

Our research laboratory has a da Vinci Standard Surgical System modified to operate
with the da Vinci Research Kit (dVRK) [24]. As shown in Figure 2, it uses open-source
software and hardware control boxes to command and read feedback from the robotic
system. This equipment, combined with the Robot Operating System (ROS) software
framework [25], is used for this research study. We also have a software simulation of our
da Vinci test platform used for algorithm prototyping and the playback/visualization of
the recorded data [26].

3.2. Software Interface

Two voice assistants were integrated for testing and comparison. The voice assistant
applications are built with the ROS middleware for direct access to dVRK state infor-
mation and control capabilities. Both implementations were tested on a 64-bit Ubuntu
18.04 machine with an Intel i7-3770k CPU with 16 GB RAM. We describe both system
implementations next.

The total system architecture was developed with modularity in mind to enable a wide
variety of surgical assistants (user interfaces, voice assistants, and autonomous assistants).
Future implementations can easily replace the voice assistant node by using the same
assistant bridge interface. After the voice request is made and the correct function in the
Voice Assistant is triggered, data captured in ROS messages with information from the
voice assistant are communicated to the assistant bridge. The bridge handles surgeon
requests by directly interacting with the da Vinci console or editing the desired software
settings and parameters.

Robotics 2022, 11, 40 5 of 17

Robotics 2022, 11, x FOR PEER REVIEW 4 of 17

compromise patient security and executes locally, which is preferable for actual imple-

mentation in an OR.

3. Materials and Methods

This section shows the implementation details of several valuable extensions of our

baseline autonomous camera algorithm and their natural-language integration. Essen-

tially, a voice interface relative to the da Vinci system will allow the natural control of the

parameters of the autocamera algorithm. For instance, the inner and outer zones (used to

control the zoom level) can be configured to allow direct zoom control during specific

subprocedures.

This section will first describe our da Vinci robot and the test platform. It will then

explain the Alexa interface required for natural language processing. Lastly, each of the

seven commands extending the baseline algorithms is detailed. These commands include

the following:

• “Start/Stop the autocamera”—toggles whether the endoscope should automatically

follow the trajectory of the tools;

• “Find my tools”—finds the surgeon’s tools when out of the field of view;

• “Track left/middle/right”—has the autocamera algorithm follow the right, middle, or

left tool;

• “Keep left/middle/right”—maintains a point in space specified by the right, middle,

or left tool position within the field of view;

• “Change inner/outer zoom level”—changes the settings associated with zoom con-

trol.

After each command has been recognized, the system responds back with either

“Done” or a beep indicating that the action was triggered.

3.1. The da Vinci Standard Surgical System and Kit

Our research laboratory has a da Vinci Standard Surgical System modified to operate

with the da Vinci Research Kit (dVRK) [24]. As shown in Figure 2, it uses open-source

software and hardware control boxes to command and read feedback from the robotic

system. This equipment, combined with the Robot Operating System (ROS) software

framework [25], is used for this research study. We also have a software simulation of our

da Vinci test platform used for algorithm prototyping and the playback/visualization of

the recorded data [26].

(a) (b)

Figure 2. Overview of our da Vinci surgical system setup. (a) Our da Vinci Surgical System is a test
platform for algorithm implementation (top) and subsequent operator view through the endoscope
(bottom). (b) Software simulation of the da Vinci test platform is used for algorithm prototyping
and data playback/visualization. The simulated robot closely matches the real one, allowing rapid
development and testing to be performed first in simulation.

3.2.1. Online NLP Interface (Alexa)

The first application is based on Alexa, Amazon’s cloud-based voice service for Natural
Language Processing. Amazon provides a well-documented and advanced toolset for
creating “Skills” to integrate with their services [27]. Skills allow the creation of a set of
phrases (intents) that can contain sets of variables (slots). For testing purposes, we also
opened a secure tunnel to our localhost using ngrok [28]. The ngrok tool allowed us to field
intents from the Amazon web server for hardware interaction. The backend connection
to the Amazon Skill was developed in Python using the open-source package flask-ask.
Commands are spoken to Alexa and registered by the skill; then, data from the request
are forwarded via ngrok to the local flask-ask and ROS Python applications for handling
(Figure 3).

3.2.2. Offline NLP Interface (Vosks)

The second voice assistant implemented is an offline implementation of speech recogni-
tion. This application relies on Vosk, an open-source program based on the Kaldi toolkit for
speech recognition [23,29]. Vosk’s architecture is similar but is processed locally and does
not require an online server or internet connection. We used a USB connected microphone
(ReSpeaker Mic Array v2.0 (Seeed Studios Inc., Shenzhen, China)) for testing.

Models for speech recognition are provided by Vosk, which contain the language
model, the acoustic model, and the phonetic dictionary used in the recognition graph. Our
implementation consists of an adapted language model that includes only the grammar
spoken in the subset of commands utilized. This limited grammar set increases speed and
accuracy and prevents the possibility of recognizing unintended commands. As with the
Alexa implementation shown in Figure 3, the architecture for this system remains the same
with the exception that the voice is processed and handled within the local host and voice
module alone, thus eliminating the need for any cloud or online server.

Robotics 2022, 11, 40 6 of 17

Robotics 2022, 11, x FOR PEER REVIEW 5 of 17

Figure 2. Overview of our da Vinci surgical system setup. (a) Our da Vinci Surgical System is a test

platform for algorithm implementation (top) and subsequent operator view through the endoscope

(bottom). (b) Software simulation of the da Vinci test platform is used for algorithm prototyping

and data playback/visualization. The simulated robot closely matches the real one, allowing rapid

development and testing to be performed first in simulation.

3.2. Software Interface

Two voice assistants were integrated for testing and comparison. The voice assistant

applications are built with the ROS middleware for direct access to dVRK state infor-

mation and control capabilities. Both implementations were tested on a 64-bit Ubuntu

18.04 machine with an Intel i7-3770k CPU with 16 GB RAM. We describe both system

implementations next.

The total system architecture was developed with modularity in mind to enable a

wide variety of surgical assistants (user interfaces, voice assistants, and autonomous as-

sistants). Future implementations can easily replace the voice assistant node by using the

same assistant bridge interface. After the voice request is made and the correct function

in the Voice Assistant is triggered, data captured in ROS messages with information from

the voice assistant are communicated to the assistant bridge. The bridge handles surgeon

requests by directly interacting with the da Vinci console or editing the desired software

settings and parameters.

3.2.1. Online NLP Interface (Alexa)

The first application is based on Alexa, Amazon’s cloud-based voice service for Nat-

ural Language Processing. Amazon provides a well-documented and advanced toolset

for creating “Skills” to integrate with their services [27]. Skills allow the creation of a set

of phrases (intents) that can contain sets of variables (slots). For testing purposes, we also

opened a secure tunnel to our localhost using ngrok [28]. The ngrok tool allowed us to

field intents from the Amazon web server for hardware interaction. The backend connec-

tion to the Amazon Skill was developed in Python using the open-source package flask-

ask. Commands are spoken to Alexa and registered by the skill; then, data from the re-

quest are forwarded via ngrok to the local flask-ask and ROS Python applications for han-

dling (Figure 3).

Figure 3. Architecture diagram for the Alexa voice assistant showing the local setup with the voice

module communicating intents to the server and responses coming back as tokenized data through

the secure tunnel. Moreover, the voice assistant’s abstraction from interaction with the hardware

and software algorithms is shown. Orange circles (Voice Assistant and Assistant Bridge) are ROS

nodes we created for interaction between voice and hardware.

Figure 3. Architecture diagram for the Alexa voice assistant showing the local setup with the voice
module communicating intents to the server and responses coming back as tokenized data through
the secure tunnel. Moreover, the voice assistant’s abstraction from interaction with the hardware and
software algorithms is shown. Orange circles (Voice Assistant and Assistant Bridge) are ROS nodes
we created for interaction between voice and hardware.

3.3. Voice Interface Implementation
3.3.1. Creating an On-Demand Autocamera System

The “start” and “stop” autocamera commands provide the surgeon the ability, when
desired, to start or stop the autocamera software. Start and stop is communicated via a ROS
topic through the assistant bridge and tells the autocamera algorithm when to publish joint
commands to the Endoscopic Camera Manipulator (ECM) to follow the midpoint between
the Patient Side Manipulator (PSM) tools. Shown in Algorithm 1, setting run to false will
prevent the commands from being published and keep the ECM only in the position it was
moved to by the operator or the final position before receiving the stop command.

Algorithm 1 Start/Stop.

Robotics 2022, 11, x FOR PEER REVIEW 6 of 18

3.2.2. Offline NLP Interface (Vosks)

The second voice assistant implemented is an offline implementation of speech

recognition. This application relies on Vosk, an open-source program based on the Kaldi

toolkit for speech recognition [23,29]. Vosk’s architecture is similar but is processed locally

and does not require an online server or internet connection. We used a USB connected

microphone (ReSpeaker Mic Array v2.0 (Seeed Studios Inc., Shenzhen, China)) for testing.

Models for speech recognition are provided by Vosk, which contain the language

model, the acoustic model, and the phonetic dictionary used in the recognition graph. Our

implementation consists of an adapted language model that includes only the grammar

spoken in the subset of commands utilized. This limited grammar set increases speed and

accuracy and prevents the possibility of recognizing unintended commands. As with the

Alexa implementation shown in Figure 3, the architecture for this system remains the

same with the exception that the voice is processed and handled within the local host and

voice module alone, thus eliminating the need for any cloud or online server.

3.3. Voice Interface Implementation

3.3.1. Creating an On-Demand Autocamera System

The “start” and “stop” autocamera commands provide the surgeon the ability, when

desired, to start or stop the autocamera software. Start and stop is communicated via a

ROS topic through the assistant bridge and tells the autocamera algorithm when to pub-

lish joint commands to the Endoscopic Camera Manipulator (ECM) to follow the midpoint

between the Patient Side Manipulator (PSM) tools. Shown in Algorithm 1, setting run to

false will prevent the commands from being published and keep the ECM only in the

position it was moved to by the operator or the final position before receiving the stop

command.

 Algorithm 1 Start/Stop

1. function autocamera_algorithm(run)

 Input: Single boolean value (run) indicating run state of the autocamera

 Output: None

2. While run = True

3.

4.

5.

ecm_desired← compute_view_angle(joint_angles, cam_info)

ecm_desired← find_zoom_level(joint_angles, cam_info, ecm_desired)

move_joint(ecm_desired)

6. end

3.3.2. Find My Tools

Find my tools is a command that directs da Vinci to place the surgeon’s tools back

into the camera’s center field of view. It allows the surgeon to work without the full capa-

bility of the autocamera and allows the surgeon to quickly find the tools. The implemen-

tation shown in Algorithm 2, is similar to that of the autocamera algorithm. First, the joint

values are used in the function to find the location of the two PSMs. The 3D coordinates

are averaged to find the middle of the two tools. A rotation matrix is then calculated to

provide the rotation between the current endoscopic manipulator position and the mid-

point location of the two tools. The rotation matrix is then multiplied by the current en-

doscopic orientation to provide the desired look-at direction. The inverse kinematics are

computed to provide the joint angles required to position the endoscope. The zoom level

is adjusted to bring the tools within the field of view.

3.3.2. Find My Tools

Find my tools is a command that directs da Vinci to place the surgeon’s tools back into
the camera’s center field of view. It allows the surgeon to work without the full capability
of the autocamera and allows the surgeon to quickly find the tools. The implementation
shown in Algorithm 2, is similar to that of the autocamera algorithm. First, the joint
values are used in the function to find the location of the two PSMs. The 3D coordinates
are averaged to find the middle of the two tools. A rotation matrix is then calculated to
provide the rotation between the current endoscopic manipulator position and the midpoint

Robotics 2022, 11, 40 7 of 17

location of the two tools. The rotation matrix is then multiplied by the current endoscopic
orientation to provide the desired look-at direction. The inverse kinematics are computed
to provide the joint angles required to position the endoscope. The zoom level is adjusted
to bring the tools within the field of view.

Algorithm 2 Find Tools.

1. function find_tools(joint_values, cam_info)
Input: arm joint angles (joint_values) and camera projection matrix (cam_info)
Output: None

2. psm1_pos← forward_kinematics(joint_values (“psm1”))
3. psm2_pos← forward_kinematics(joint_values (“psm2”))
4. midpoint← psm1_pos + psm2_pos / 2
5. rot← ecm_to_midpoint_rotation(joint_values(“ecm”), midpoint)
6. ecm_desired← inverse_kinematics(rot*ecm_current)
7. move_joint(ecm_desired)
8. autocamera_algorithm(False)
9. end

Figure 4 shows the tested implementation method of find my tools in the Rviz simula-
tion software. The blue arrow is an indication of the current Endoscopic orientation. The
red dot is the calculated midpoint of the two PSM tools. After commanding find my tools,
ECM is positioned at an angle that places the tools back in the field of view of the operator.

Robotics 2022, 11, x FOR PEER REVIEW 7 of 17

 Output: None

2. psm1_pos ← forward_kinematics(joint_values (“psm1”))

3. psm2_pos ← forward_kinematics(joint_values (“psm2”))

4. midpoint ← psm1_pos + psm2_pos / 2

5. rot ← ecm_to_midpoint_rotation(joint_values(“ecm”), midpoint)

6. ecm_desired ← inverse_kinematics(rot*ecm_current)

7. move_joint(ecm_desired)

8. autocamera_algorithm(False)

9. end

Figure 4 shows the tested implementation method of find my tools in the Rviz simu-

lation software. The blue arrow is an indication of the current Endoscopic orientation. The

red dot is the calculated midpoint of the two PSM tools. After commanding find my tools,

ECM is positioned at an angle that places the tools back in the field of view of the operator.

(a) (b)

Figure 4. This figure shows how the camera view is altered to place the tools in the field of view. (a)

Is the orientation of ECM when the tools would be out of the field of view. (b) The orientation of the

ECM after the find my tools voice command has been given, and the tools are placed back into the

field of view.

3.3.3. Track Left/Middle/Right

Track left/middle/right is an extension of the original autocamera algorithm that pro-

vides the da Vinci operator access to more preference-based settings that can easily be set

and accessed by the voice assistant. The original autocamera algorithm is modified to re-

locate the midpoint, derived initially through the centroid of the two PSM positions, to

reference the right or left PSM tool end effector. Depending on the operator’s selection

and through forward kinematics, Algorithm 3 finds the left and right tool 3D coordinates

and then determines the rotation matrix to the endpoint of either tool. By setting the right

or left tool as the midpoint, the autocamera algorithm works to keep the selected tool

within the center endoscopic field of view.

 Algorithm 3 Track Tool

1. function track(tool)

 Input: Single string value (tool) indicating which tool is to be tracked

 Output: None

2. autocamera_algorithm(joint_values, tool)

3.

4.

psm1_pos ← forward_kinematics(joint_values (“psm1”))

psm2_pos ← forward_kinematics(joint_values (“psm2”))

Figure 4. This figure shows how the camera view is altered to place the tools in the field of view.
(a) Is the orientation of ECM when the tools would be out of the field of view. (b) The orientation of
the ECM after the find my tools voice command has been given, and the tools are placed back into
the field of view.

3.3.3. Track Left/Middle/Right

Track left/middle/right is an extension of the original autocamera algorithm that
provides the da Vinci operator access to more preference-based settings that can easily be
set and accessed by the voice assistant. The original autocamera algorithm is modified to
relocate the midpoint, derived initially through the centroid of the two PSM positions, to
reference the right or left PSM tool end effector. Depending on the operator’s selection and
through forward kinematics, Algorithm 3 finds the left and right tool 3D coordinates and
then determines the rotation matrix to the endpoint of either tool. By setting the right or

Robotics 2022, 11, 40 8 of 17

left tool as the midpoint, the autocamera algorithm works to keep the selected tool within
the center endoscopic field of view.

Algorithm 3 Track Tool.

Robotics 2022, 11, x FOR PEER REVIEW 8 of 18

 Algorithm 3 Track Tool

1. function track(tool)

 Input: Single string value (tool) indicating which tool is to be tracked

 Output: None

2. autocamera_algorithm(joint_values, tool)

3.

4.

5.

psm1_pos ← forward_kinematics(joint_values (“psm1”))

psm2_pos ← forward_kinematics(joint_values (“psm2”))

if tool = right

6. midpoint ← psm1_pos

7. else if tool = left

8.

midpoint ← psm2_pos

9. else

10. midpoint ← (psm1_pos + psm2_pos) / 2

11.

12.

13.

rot ← ecm_to_midpoint_rotation(joint_values(“ecm”), midpoint)

ecm_desired ← inverse_kinematics(rot*ecm_current)

move_joint(ecm_desired)

14. end

Figure 5 shows the changes to the desired viewpoint position (red dot) and the sub-

sequent positioning of the endoscopic camera to track only that point. When either right

or left is selected for tracking, the algorithm will ignore information about the position of

the opposite manipulator, only focusing on maintaining the chosen tool within the oper-

ator’s field of view. The operator can also voice their selection to track the middle, which

will return to utilizing the original algorithm and centroid.

(a) (b)

Figure 5. This simulation shows how the camera moves to keep the left (or right) tool in the field of

view. (a) Shows the endoscope tracking and pointing towards the left tool. (b) Shows the endoscope

tracking and pointing to the right tool.

3.3.4. Keep Left/Middle/Right

Keep is another extension of the original autocamera algorithm. This command al-

lows the surgeon to maintain another point in space chosen by one of the tools within the

field of view. Shown in Algorithm 4, when the operator voices “keep left” or “keep right”,

the current position of either the left or right tool will be saved and used in the autocamera

algorithm computation. The algorithm relies on the forward kinematics of either the right

or left tool positions when the operator voices the selection to determine the saved posi-

tion. That position is then maintained and utilized along with the midpoint of the two

tools to create a centroid centered on the two PSM tools and the selected position. The

Figure 5 shows the changes to the desired viewpoint position (red dot) and the
subsequent positioning of the endoscopic camera to track only that point. When either
right or left is selected for tracking, the algorithm will ignore information about the position
of the opposite manipulator, only focusing on maintaining the chosen tool within the
operator’s field of view. The operator can also voice their selection to track the middle,
which will return to utilizing the original algorithm and centroid.

Robotics 2022, 11, x FOR PEER REVIEW 8 of 17

5.

if tool = right

6. midpoint ← psm1_pos

7. else if tool = left

8.

midpoint ← psm2_pos

9. else

10. midpoint ← (psm1_pos + psm2_pos) / 2

11.

12.

13.

rot ← ecm_to_midpoint_rotation(joint_values(“ecm”), midpoint)

ecm_desired ← inverse_kinematics(rot*ecm_current)

move_joint(ecm_desired)

14. end

Figure 5 shows the changes to the desired viewpoint position (red dot) and the sub-

sequent positioning of the endoscopic camera to track only that point. When either right

or left is selected for tracking, the algorithm will ignore information about the position of

the opposite manipulator, only focusing on maintaining the chosen tool within the oper-

(a) (b)

Figure 5. This simulation shows how the camera moves to keep the left (or right) tool in the field of

view. (a) Shows the endoscope tracking and pointing towards the left tool. (b) Shows the endoscope

tracking and pointing to the right tool.

3.3.4. Keep Left/Middle/Right

Keep is another extension of the original autocamera algorithm. This command al-

lows the surgeon to maintain another point in space chosen by one of the tools within the

field of view. Shown in Algorithm 4, when the operator voices “keep left” or “keep right”,

the current position of either the left or right tool will be saved and used in the autocamera

algorithm computation. The algorithm relies on the forward kinematics of either the right

or left tool positions when the operator voices the selection to determine the saved posi-

tion. That position is then maintained and utilized along with the midpoint of the two

tools to create a centroid centered on the two PSM tools and the selected position. The

autocamera algorithm factors in the third point to keep both tools and the saved position

within the field of view. If the keep method is called without the right or left tool through

voicing a command such as “keep middle” or “keep off”, the algorithm will default back

to the original midpoint of the two PSM tools and disregard the previously chosen posi-

tion.

Algorithm 4 Keep Position

1. function keep(tool)

Input: Single string value (tool) indicating which tool position needs to be kept

Figure 5. This simulation shows how the camera moves to keep the left (or right) tool in the field of
view. (a) Shows the endoscope tracking and pointing towards the left tool. (b) Shows the endoscope
tracking and pointing to the right tool.

Robotics 2022, 11, 40 9 of 17

3.3.4. Keep Left/Middle/Right

Keep is another extension of the original autocamera algorithm. This command allows
the surgeon to maintain another point in space chosen by one of the tools within the field
of view. Shown in Algorithm 4, when the operator voices “keep left” or “keep right”, the
current position of either the left or right tool will be saved and used in the autocamera
algorithm computation. The algorithm relies on the forward kinematics of either the right
or left tool positions when the operator voices the selection to determine the saved position.
That position is then maintained and utilized along with the midpoint of the two tools to
create a centroid centered on the two PSM tools and the selected position. The autocamera
algorithm factors in the third point to keep both tools and the saved position within the
field of view. If the keep method is called without the right or left tool through voicing
a command such as “keep middle” or “keep off”, the algorithm will default back to the
original midpoint of the two PSM tools and disregard the previously chosen position.

Algorithm 4 Keep Position.

Robotics 2022, 11, x FOR PEER REVIEW 9 of 18

 Algorithm 4 Keep Position

1. function keep(tool)

 Input: Single string value (tool) indicating which tool position needs to be kept

 Output: None

2. if tool = “right”

3.

4.

keep_pos ← forward_kinematics(joint_values (“psm1”))

keep_set ← True

5. else if tool = “left”

6.

7.

keep_pos ← forward_kinematics (joint_values (“psm2”))

keep_set ← True

8. else

9. keep_set ← False

10. autocamera_algorithm(joint_values, keep_pos, keep_set)

11.

12.

13.

psm1_pos ← forward_kinematics(joint_values (“psm1”))

psm2_pos ← forward_kinematics(joint_values (“psm2”))

if keep_set = True

14. midpoint ← (psm1_pos + psm2_pos + keep_pos) / 3

15. else

16. midpoint ← (psm1_pos + psm2_pos) / 2

17.

18.

19.

rot ← ecm_to_midpoint_rotation(joint_values(“ecm”), midpoint)

ecm_desired ← inverse_kinematics(rot*ecm_current)

move_joint(ecm_desired)

20. end

 In Error! Reference source not found., the keep algorithm can be seen portrayed in

simulation. The red dot corresponds to the desired camera viewpoint calculated in Algo‐

rithm 3 as the midpoint. The white box is a drawn‐in representation of the camera frus‐

tum. In Error! Reference source not found.a, the midpoint can be seen centered between

the tools and the camera viewpoint before selecting the keep position. In Error! Refer‐

ence source not found.b, the selection of the keep position after the voice command is

highlighted as the orange “X”. It is at this point in which the end effector’s position is

saved, and the auto camera algorithm considers the position into its midpoint calcula‐

tion. In this simulated scenario, “keep right” was commanded; thus, the right tool posi‐

tion is used in midpoint calculation and viewpoint selection. The effect of the save posi‐

tion can be seen by the midpoint marker in Error! Reference source not found.b as it

moves closer to the right tool even when the tools are closer together in a position that

would remove the saved position from the field of view, as Error! Reference source not

found.c shows the newly configured midpoint remains in a position that allows it to be

captured by the endoscopic field of view.

In Figure 6, the keep algorithm can be seen portrayed in simulation. The red dot
corresponds to the desired camera viewpoint calculated in Algorithm 3 as the midpoint.
The white box is a drawn-in representation of the camera frustum. In Figure 6a, the
midpoint can be seen centered between the tools and the camera viewpoint before selecting
the keep position. In Figure 6b, the selection of the keep position after the voice command
is highlighted as the orange “X”. It is at this point in which the end effector’s position is
saved, and the auto camera algorithm considers the position into its midpoint calculation.
In this simulated scenario, “keep right” was commanded; thus, the right tool position is
used in midpoint calculation and viewpoint selection. The effect of the save position can be
seen by the midpoint marker in Figure 6b as it moves closer to the right tool even when
the tools are closer together in a position that would remove the saved position from the
field of view, as Figure 6c shows the newly configured midpoint remains in a position that
allows it to be captured by the endoscopic field of view.

Robotics 2022, 11, 40 10 of 17

Robotics 2022, 11, x FOR PEER REVIEW 9 of 17

Output: None

2. if tool = “right”

3.

4.

keep_pos ← forward_kinematics(joint_values (“psm1”))

keep_pos ← forward_kinematics(joint_values (“psm1”))

5. else if tool = “left”

6.

7.

keep_pos ← forward_kinematics (joint_values (“psm2”))

keep_set ← True

8. else

9. keep_set ← False

10. autocamera_algorithm(joint_values, keep_pos, keep_set)

11.

12.

13.

psm1_pos ← forward_kinematics(joint_values (“psm1”))

psm2_pos ← forward_kinematics(joint_values (“psm2”))

if keep_set = True

14. midpoint ← (psm1_pos + psm2_pos + keep_pos) / 3

15. else

16. midpoint ← (psm1_pos + psm2_pos) / 2

17.

18.

19.

rot ← ecm_to_midpoint_rotation(joint_values(“ecm”), midpoint)

ecm_desired ← inverse_kinematics(rot*ecm_current)

move_joint(ecm_desired)

20. end

In Figure 6, the keep algorithm can be seen portrayed in simulation. The red dot cor-

responds to the desired camera viewpoint calculated in Algorithm 3 as the midpoint. The

white box is a drawn-in representation of the camera frustum. In Figure 6a, the midpoint

can be seen centered between the tools and the camera viewpoint before selecting the keep

position. In Figure 6b, the selection of the keep position after the voice command is high-

lighted as the orange “X”. It is at this point in which the end effector’s position is saved,

and the auto camera algorithm considers the position into its midpoint calculation. In this

simulated scenario, “keep right” was commanded; thus, the right tool position is used in

midpoint calculation and viewpoint selection. The effect of the save position can be seen

by the midpoint marker in Figure 6b as it moves closer to the right tool even when the

tools are closer together in a position that would remove the saved position from the

field

(a) (b) (c)

Figure 6. This figure shows how the viewpoint is kept between the selected point and the current

tool position. The view centers around these two points along with any given point in the three-

dimensional space. (a) Shows the camera view before selection. (b) Shows the adjusted camera view

Figure 6. This figure shows how the viewpoint is kept between the selected point and the current
tool position. The view centers around these two points along with any given point in the three-
dimensional space. (a) Shows the camera view before selection. (b) Shows the adjusted camera view
and the selected point drawn in as “X”. (c) Shows the adjusted midpoint and camera view after
selection and moving to keep the chosen point in view.

3.3.5. Change Inner/Outer Zoom

With the midpoint/tools in 2D camera coordinates, Algorithm 5 can be applied to
maintain an appropriate zoom level and avoid unnecessary movement. The location of the
tools in the 2D view determines the distance/zoom level. If the tools draw close together,
the camera moves in. Conversely, as the tools move towards the outer edges of the view,
the camera is zoomed out. There is also a dead zone to prevent camera movement if the
tools are near the center of the view by an acceptable distance. The inner and outer edges
of the dead zone are adjustable for different procedures and surgeon preferences. Those
values are the original parameters of the autocamera that were maintained behind software
configuration. Here, we expose these values to the operator through voice commands for
preference-driven algorithm utilization. The zoom computation is altered to include the
operator’s voice-selected inner and outer zoom levels.

Algorithm 5 Inner/Outer Zoom Level Adjustment.

Robotics 2022, 11, x FOR PEER REVIEW 10 of 18

(a) (b) (c)

Figure 6. This figure shows how the viewpoint is kept between the selected point and the current

tool position. The view centers around these two points along with any given point in the three-

dimensional space. (a) Shows the camera view before selection. (b) Shows the adjusted camera view

and the selected point drawn in as “X”. (c) Shows the adjusted midpoint and camera view after

selection and moving to keep the chosen point in view.

3.3.5. Change Inner/Outer Zoom

With the midpoint/tools in 2D camera coordinates, Algorithm 5 can be applied to

maintain an appropriate zoom level and avoid unnecessary movement. The location of

the tools in the 2D view determines the distance/zoom level. If the tools draw close to-

gether, the camera moves in. Conversely, as the tools move towards the outer edges of the

view, the camera is zoomed out. There is also a dead zone to prevent camera movement

if the tools are near the center of the view by an acceptable distance. The inner and outer

edges of the dead zone are adjustable for different procedures and surgeon preferences.

Those values are the original parameters of the autocamera that were maintained behind

software configuration. Here, we expose these values to the operator through voice com-

mands for preference-driven algorithm utilization. The zoom computation is altered to

include the operator’s voice-selected inner and outer zoom levels.

 Algorithm 5 Inner/Outer Zoom Level Adjustment

1. function inner_outer_zoom_adj_algorithm(inner, outer)

Input: Two Float values (inner, outer) indicating the inner and outer zoom values

respectively

 Output: Endoscopic hardware zoom value

2. adjust_zoom_level(joint_angles, cam_info, inner, outer)

3.

4.

5.

6.

7.

mid ← image_center

psm1_pos, psm2_pos ← forward_kinematics(joint_angles(‘psm1’,’psm2’))

dx,dy ← tool_to_mid_distance()

ax,ay ← mid_to_image_edge_distance()

if psm1_pos and psm2_pos in inner

8. return min(dx/ax, dy/ay)

9. else if psm1_pos and psm2_pos in outer

10. return -1 * min((ax-dx)/ax, (ay-dy)/ay)

11. else

12. return

13. end

Robotics 2022, 11, 40 11 of 17

Figure 7 shows the real-time change in the simulated endoscopic camera view of the
inner and outer zoom levels. Figure 7a shows the original parameter selection included in
the startup of the autocamera. The inner circle indicates the inner zoom level, and the outer
circle indicates the outer zoom level. The space between the two circles is referred to as
the dead zone. The green and light blue dots in the simulated camera output are the 2D
positions of the right and left PSMs, and the blue dot is the calculated midpoint between the
two tools. Figure 7b shows the same view, but the inner zoom level increased from 0.08 to
0.2. After changing the inner zoom level, the endoscope manipulator zoomed out to move
the tools from being inside the inner zoom level to just within the dead zone. Figure 7c
shows the resultant position after setting the outer zoom value from 0.08 to the same inner
value of 0.2. After moving the tools outside the outer zone, the endoscopic manipulator
zooms out to maintain the right and left PSM positions to just within the dead zone.

Robotics 2022, 11, x FOR PEER REVIEW 11 of 17

(a) (b) (c)

Figure 7. The simulated camera view resulting from the Rviz simulation. (a) Shows the original

parameters of the autocamera inner and outer zoom values. (b) The result in simulation of voicing

the command to change the inner zoom level. (c) The result in simulation of voicing the command

to change the outer zoom level.

4. Results/Discussion

4.1. Behavior of Voice Commands

4.1.1. Viewpoints Generated with Commands Issued

The “start” and “stop” commands activate the activation states of the autocamera

algorithm. These commands allow the surgeon to quickly switch on the autocamera when

necessary and switch it off again when manual control is desired. Performing this on-

demand prevents the surgeon’s needs from conflicting with the autocamera system.

The “find tools” command will move the camera such that both tools will be in view,

as seen in Figure 8. This can be used by a surgeon operating without the autocamera al-

gorithm to locate both tools quickly should they be out of view. It is more efficient than

having to move the camera manually and adjusting the zoom level, and it is safer as the

tools will be out of view for less time.

(a)

(b)

Figure 8. Demonstration of the “Find Tools” command. The “Find Tools” command begins with the

tools at the edge of the camera view and is shown to move the camera to center the view on the

tools. (a) Tools out of view. (b) Tools in view.

The “track” commands set the endoscopic camera to find the chosen tool (left/mid-

dle/right) and to keep it in view. In Figure 9, each set of four images demonstrates one

command. The left image is an external photo of the setup, and the right image shows the

view from the endoscopic camera. The difference between the top and bottom rows of

each command is meant to relate the effect of the command. Figure 9a shows that when

set to “track left,” the camera centers on the left tool, regardless of the position of the right

Figure 7. The simulated camera view resulting from the Rviz simulation. (a) Shows the original
parameters of the autocamera inner and outer zoom values. (b) The result in simulation of voicing
the command to change the inner zoom level. (c) The result in simulation of voicing the command to
change the outer zoom level.

4. Results/Discussion
4.1. Behavior of Voice Commands
4.1.1. Viewpoints Generated with Commands Issued

The “start” and “stop” commands activate the activation states of the autocamera
algorithm. These commands allow the surgeon to quickly switch on the autocamera
when necessary and switch it off again when manual control is desired. Performing this
on-demand prevents the surgeon’s needs from conflicting with the autocamera system.

The “find tools” command will move the camera such that both tools will be in view,
as seen in Figure 8. This can be used by a surgeon operating without the autocamera
algorithm to locate both tools quickly should they be out of view. It is more efficient than
having to move the camera manually and adjusting the zoom level, and it is safer as the
tools will be out of view for less time.

The “track” commands set the endoscopic camera to find the chosen tool (left/middle/right)
and to keep it in view. In Figure 9, each set of four images demonstrates one command.
The left image is an external photo of the setup, and the right image shows the view from
the endoscopic camera. The difference between the top and bottom rows of each command
is meant to relate the effect of the command. Figure 9a shows that when set to “track left,”
the camera centers on the left tool, regardless of the position of the right tool. In Figure 9b,
the camera centers on the midpoint of the two patient-side manipulators, which is the
original functionality of the autocamera algorithm. Figure 9c demonstrates the “track right”
command, with the camera view focused on the right tool.

Robotics 2022, 11, 40 12 of 17

Robotics 2022, 11, x FOR PEER REVIEW 11 of 17

(a) (b) (c)

Figure 7. The simulated camera view resulting from the Rviz simulation. (a) Shows the original

parameters of the autocamera inner and outer zoom values. (b) The result in simulation of voicing

the command to change the inner zoom level. (c) The result in simulation of voicing the command

to change the outer zoom level.

4. Results/Discussion

4.1. Behavior of Voice Commands

4.1.1. Viewpoints Generated with Commands Issued

The “start” and “stop” commands activate the activation states of the autocamera

algorithm. These commands allow the surgeon to quickly switch on the autocamera when

necessary and switch it off again when manual control is desired. Performing this on-

demand prevents the surgeon’s needs from conflicting with the autocamera system.

The “find tools” command will move the camera such that both tools will be in view,

as seen in Figure 8. This can be used by a surgeon operating without the autocamera al-

gorithm to locate both tools quickly should they be out of view. It is more efficient than

having to move the camera manually and adjusting the zoom level, and it is safer as the

tools will be out of view for less time.

(a)

(b)

Figure 8. Demonstration of the “Find Tools” command. The “Find Tools” command begins with the

tools at the edge of the camera view and is shown to move the camera to center the view on the

tools. (a) Tools out of view. (b) Tools in view.

The “track” commands set the endoscopic camera to find the chosen tool (left/mid-

dle/right) and to keep it in view. In Figure 9, each set of four images demonstrates one

command. The left image is an external photo of the setup, and the right image shows the

view from the endoscopic camera. The difference between the top and bottom rows of

each command is meant to relate the effect of the command. Figure 9a shows that when

set to “track left,” the camera centers on the left tool, regardless of the position of the right

Figure 8. Demonstration of the “Find Tools” command. The “Find Tools” command begins with the
tools at the edge of the camera view and is shown to move the camera to center the view on the tools.
(a) Tools out of view. (b) Tools in view.

Robotics 2022, 11, x FOR PEER REVIEW 12 of 17

tool. In Figure 9b, the camera centers on the midpoint of the two patient-side manipula-

tors, which is the original functionality of the autocamera algorithm. Figure 9c demon-

strates the “track right” command, with the camera view focused on the right tool.

Near

Far

 (a) (b) (c)

Figure 9. The set of “track” commands given to the surgical robot. (a) The result after the operator

commands “track left”. (b) The result after the operator commands “track middle”. (c) The result

after the operator commands “track right”.

These commands will allow a surgeon to choose which tool to focus on during sur-

gery without manually shifting the camera. This is particularly useful when one of the

tools is used while the other sits idly or when one tool is being used more than the other.

The “track” commands allow the surgeon greater flexibility in using the manipulators

because they can have an unencumbered view if they do not require both tools.

The “keep” commands are used to set a position of interest to remain in the camera’s

view. The “keep left” will save the current position of the left tool and keep it in view even

when the tools are moved away. The “keep right” command will do the same but for the

right manipulator. As observed in Figure 10, the point is chosen with the “keep left” com-

mand, and it remains in view when the tools move to new positions.

(a) (b)

Figure 10. Demonstration of the “keep” command. The “keep” command used here is “keep left”

and, as such, keeps the current position of the left arm located in the left image. The right image

shows the yellow point remaining in view despite the tools moving far to the top of the scene. (a)

Set Position. (b) Position kept in view.

The “keep” commands will allow surgeons to choose points of interest to keep in

view during surgery. These points can be things such as a bleed, sutures, abnormalities,

or other artifacts. These commands make it so that the surgeon does not need to constantly

move the camera to check on points of interest and risk the tools going out of view, which

is also a safety issue.

The “change inner/outer zoom” commands allow the user greater flexibility when

the autocamera algorithm zooms in or out. In instances where the surgeon does not want

the algorithm to zoom out, they can set a large value to the outer zoom level; moreover,

Figure 9. The set of “track” commands given to the surgical robot. (a) The result after the operator
commands “track left”. (b) The result after the operator commands “track middle”. (c) The result
after the operator commands “track right”.

These commands will allow a surgeon to choose which tool to focus on during surgery
without manually shifting the camera. This is particularly useful when one of the tools
is used while the other sits idly or when one tool is being used more than the other. The
“track” commands allow the surgeon greater flexibility in using the manipulators because
they can have an unencumbered view if they do not require both tools.

The “keep” commands are used to set a position of interest to remain in the camera’s
view. The “keep left” will save the current position of the left tool and keep it in view
even when the tools are moved away. The “keep right” command will do the same but for
the right manipulator. As observed in Figure 10, the point is chosen with the “keep left”
command, and it remains in view when the tools move to new positions.

Robotics 2022, 11, 40 13 of 17

Robotics 2022, 11, x FOR PEER REVIEW 12 of 17

tool. In Figure 9b, the camera centers on the midpoint of the two patient-side manipula-

tors, which is the original functionality of the autocamera algorithm. Figure 9c demon-

strates the “track right” command, with the camera view focused on the right tool.

Near

Far

 (a) (b) (c)

Figure 9. The set of “track” commands given to the surgical robot. (a) The result after the operator

commands “track left”. (b) The result after the operator commands “track middle”. (c) The result

after the operator commands “track right”.

These commands will allow a surgeon to choose which tool to focus on during sur-

gery without manually shifting the camera. This is particularly useful when one of the

tools is used while the other sits idly or when one tool is being used more than the other.

The “track” commands allow the surgeon greater flexibility in using the manipulators

because they can have an unencumbered view if they do not require both tools.

The “keep” commands are used to set a position of interest to remain in the camera’s

view. The “keep left” will save the current position of the left tool and keep it in view even

when the tools are moved away. The “keep right” command will do the same but for the

right manipulator. As observed in Figure 10, the point is chosen with the “keep left” com-

mand, and it remains in view when the tools move to new positions.

(a) (b)

Figure 10. Demonstration of the “keep” command. The “keep” command used here is “keep left”

and, as such, keeps the current position of the left arm located in the left image. The right image

shows the yellow point remaining in view despite the tools moving far to the top of the scene. (a)

Set Position. (b) Position kept in view.

The “keep” commands will allow surgeons to choose points of interest to keep in

view during surgery. These points can be things such as a bleed, sutures, abnormalities,

or other artifacts. These commands make it so that the surgeon does not need to constantly

move the camera to check on points of interest and risk the tools going out of view, which

is also a safety issue.

The “change inner/outer zoom” commands allow the user greater flexibility when

the autocamera algorithm zooms in or out. In instances where the surgeon does not want

the algorithm to zoom out, they can set a large value to the outer zoom level; moreover,

Figure 10. Demonstration of the “keep” command. The “keep” command used here is “keep left”
and, as such, keeps the current position of the left arm located in the left image. The right image
shows the yellow point remaining in view despite the tools moving far to the top of the scene. (a) Set
Position. (b) Position kept in view.

The “keep” commands will allow surgeons to choose points of interest to keep in view
during surgery. These points can be things such as a bleed, sutures, abnormalities, or other
artifacts. These commands make it so that the surgeon does not need to constantly move
the camera to check on points of interest and risk the tools going out of view, which is also
a safety issue.

The “change inner/outer zoom” commands allow the user greater flexibility when
the autocamera algorithm zooms in or out. In instances where the surgeon does not want
the algorithm to zoom out, they can set a large value to the outer zoom level; moreover, in
instances where they do not want the algorithm to zoom in, they can set a small value to
the inner zoom level. In enlarging the inner and outer zoom levels equally, the surgeon
can create a wider or narrower field of view. By changing one and not the other, they can
increase the space within the dead zone while simultaneously viewing both a wide field of
view when the tools are much further apart and a narrower detailed field of view when
they are much closer together.

4.1.2. Voice Recognition Testing

We analyze the usability of our NLP models, specifically with the use of Alexa and Vosk
in control of the dVRK. For our test set, we executed three trials consisting of three different
individuals (authors). Each trial consisted of ten runs where the nine commands were
incrementally spoken through. Rather than repeating the same command consecutively, we
only voiced each command once per run. Repeating the commands over ten runs provided
the potential for them to be misspoken and allowed us to assess how easily they can be
articulated. Simultaneously, this can show how natural it is to use the voice interface when
faced with multiple commands.

There were two primary variables we were interested in capturing for data collection.
The first is the registration of the time when the voice recognition systems respond back
with a sound indicating that our command has triggered the subsequent algorithmic action.
The second is the percentage of which Alexa or Vosk correctly triggers the voiced command.
Over the course of the three trials, we recorded each of the ten runs and used the recording
along with the time provided by the application to analyze the accuracy and exact response
time. We then measured the time it took for the skill to be registered by the software.
Table 1 shows the accuracy comparison of commands spoken to both Alexa and Vosk. For
each person’s ten runs the commands that were correctly identified are represented as a

Robotics 2022, 11, 40 14 of 17

percentage. Similarly, the totals for all three trials are also represented as a percentage in
the last column of the chart.

Table 1. Comparison of accuracy for each command over three trials and ten runs per trial. Each trial
is a different person saying each of the commands ten times.

Command Trial 1 Accuracy (%) Trial 2 Accuracy (%) Trial 3 Accuracy (%) Total Accuracy (%)
Alexa Vosk Alexa Vosk Alexa Vosk Alexa Vosk

start autocamera 100 100 100 90 100 100 100 96.67
stop autocamera 90 60 100 70 90 40 93.33 56.67

track right 90 90 90 80 100 90 93.33 86.67
track left 100 100 90 100 80 100 90 100

track middle 100 80 80 100 90 80 90 86.67
keep left 100 100 90 60 80 80 90 80

keep right 100 100 90 100 100 100 96.67 100
keep off 80 80 90 90 100 90 90 86.67

Find my tools 100 100 90 70 80 90 90 86.67

Table 2 shows the overall timed averages and accuracy of the 30 test runs. Of the
270 commands voiced relative to Alexa, only 20 were not recognized or misinterpreted.
This produces an interpretation accuracy of 94.07%. Of the 270 commands voiced relative
to Vosk, 36 were not recognized or misinterpreted, producing an accuracy of 86.67%. This
accuracy can even be improved by creating more synonyms of natural commands to control
the autocamera’s algorithm and with increased fine tuning of the offline model. The average
time for Alexa to complete the requested change was 1.51 s, whereas the average time for
Vosk to complete the same request was 0.60 s.

Table 2. Total accuracy and total response time of all commands over the three trials.

Percent Command Accuracy Total Response Average 1

Alexa Vosk Alexa Vosk

94.07% 86.67% 1.51s 0.60s
1 Of all commands understood and requests completed.

The analysis of the phrases with the highest rate of accuracy is presented in Figure 11.
It is observed that the online system provides the most balanced set of accuracy with
no noticeable issues with any particular command. The Vosk system, however, shows
particular difficulty in recognizing certain commands. Future work should choose phrases
that have the highest accuracy and finetune models to create a more balanced system.

Robotics 2022, 11, x FOR PEER REVIEW 14 of 17

Table 2. Total accuracy and total response time of all commands over the three trials.

Percent Command Accuracy Total Response Average 1

Alexa Vosk Alexa Vosk

94.07% 86.67% 1.51s 0.60s
1 Of all commands understood and requests completed.

The analysis of the phrases with the highest rate of accuracy is presented in Figure

11. It is observed that the online system provides the most balanced set of accuracy with

no noticeable issues with any particular command. The Vosk system, however, shows

particular difficulty in recognizing certain commands. Future work should choose

phrases that have the highest accuracy and finetune models to create a more balanced

system.

(a) (b)

Figure 11. This graph shows the distribution of accuracy amongst all commands over the course of

the three trails. (a) Shows the percent accuracy of the 270 commands voiced to the online-based

Alexa system. (b) Shows the percent accuracy of the 270 commands voice to the offline-based Vosk

system.

Voice recognition technology, especially that of offline based systems, is still an active

research area. In our current work we notice a tradeoff between accuracy and time be-

tween the online and offline systems. Furthermore, Alexa customization is limited by

what is allowed by Amazon, including the implementation of only a few hot words, off-

site processing of voice commands, a microphone that can only be on for a limited amount

of time, and the need for extra phrases to trigger commands. Vosk, however, can over-

come some of those nuances of Alexa and Amazon’s usage requirements by allowing bet-

ter customization and implementation of commands and hot words, which are less tedi-

ous for the surgeon.

4.1.3. Safety Concerns for Use in Operating Room

We acknowledge the safety concerns surrounding voice recognition in the operating

room. Based on our initial testing, we can improve accuracy with further speech recogni-

tion training and tuning, especially with a limited number of commands. Over the course

of multiple surgeries, the system can improve as systematic data of commands are used

as feedback for further training of the NLP. For the OR, we foresee an offline implemen-

tation for patient privacy concerns and a directional microphone with appropriate filter-

ing to only allow the surgeon’s voice commands. Additionally, we would further optimize

and limit the commands to the ones specifically needed for endoscope control. There

should be immediate feedback for the recognized commands to indicate that they will be

executed. The system should also ask for clarification to repeat commands when unsure.

Our approach is geared towards camera manipulation, which is inherently safer than tool

manipulation since the camera is distant from the patient’s tissue. However, a physical

cut-off switch for any inadvertent endoscope movement should also be added.

Figure 11. This graph shows the distribution of accuracy amongst all commands over the course of
the three trails. (a) Shows the percent accuracy of the 270 commands voiced to the online-based Alexa
system. (b) Shows the percent accuracy of the 270 commands voice to the offline-based Vosk system.

Robotics 2022, 11, 40 15 of 17

Voice recognition technology, especially that of offline based systems, is still an active
research area. In our current work we notice a tradeoff between accuracy and time between
the online and offline systems. Furthermore, Alexa customization is limited by what
is allowed by Amazon, including the implementation of only a few hot words, off-site
processing of voice commands, a microphone that can only be on for a limited amount of
time, and the need for extra phrases to trigger commands. Vosk, however, can overcome
some of those nuances of Alexa and Amazon’s usage requirements by allowing better
customization and implementation of commands and hot words, which are less tedious for
the surgeon.

4.1.3. Safety Concerns for Use in Operating Room

We acknowledge the safety concerns surrounding voice recognition in the operating
room. Based on our initial testing, we can improve accuracy with further speech recognition
training and tuning, especially with a limited number of commands. Over the course of
multiple surgeries, the system can improve as systematic data of commands are used as
feedback for further training of the NLP. For the OR, we foresee an offline implementation
for patient privacy concerns and a directional microphone with appropriate filtering to
only allow the surgeon’s voice commands. Additionally, we would further optimize
and limit the commands to the ones specifically needed for endoscope control. There
should be immediate feedback for the recognized commands to indicate that they will be
executed. The system should also ask for clarification to repeat commands when unsure.
Our approach is geared towards camera manipulation, which is inherently safer than tool
manipulation since the camera is distant from the patient’s tissue. However, a physical
cut-off switch for any inadvertent endoscope movement should also be added.

5. Conclusions

The current clinical practice paradigms are to have either a separate camera operator
(for traditional laparoscopic surgery) or a surgeon-guided camera arm (for fully robotic
surgery). As stated in our previous work [19], there are several issues with these two
methods of camera control. Our previous work performed a quantitative human test
comparison with respect to a separate camera operator, a surgeon-guided camera, and our
autonomous camera systems. It showed that the autonomous algorithm outperformed the
traditional clutch and move mode of control. Our proposed project seeks to shift clinical
practice by introducing a form of autonomous and customizable robotics. Unlike existing
autonomous camera systems, our system operates with surgeon input/direction, which
may improve performance and creates a true partnership between a robotic camera system
and the human operator. At the same time, a camera system has little direct interaction
with the patient; thus, it represents a safer avenue for the introduction of autonomous
robotics to surgery. Given that this work is an extension of our autocamera algorithm, we
expect to see improvements in user performance in a future subject study.

This work is novel and will improve clinical practice in several ways. First, it improves
the interaction between the robot(s), autonomous camera system(s), and the human to
produce efficient, fault-tolerant, and safer systems. There is no current research that studies
the interaction of an automated camera system and the human in the loop. Second, it
was designed using guidance from experts. We leveraged this knowledge to provide a
framework for intelligent autonomous camera control and robot/tool guidance. Alleviating
the physical and cognitive burden of camera control will allow telerobotic operators to
focus on tasks that better use uniquely human capabilities or specialized skills. This will
allow tasks to be completed in a safer and more efficient fashion. Thus, our research will
enable cooperative robots to effectively support and partner with human operators to
enable more robust robotic surgeries.

The natural language enhanced automated systems will supplement the technical
capabilities of surgeons (in both fully robotic and traditional laparoscopic procedures) by
providing camera views that help them operate more accurately and with less mental

Robotics 2022, 11, 40 16 of 17

workload, potentially leading to fewer errors. The effect on clinical practice will be safer
procedures, lowered costs, and a consistent, automated experience for surgeons.

In the future, Natural Language Processing can be extended beyond camera control.
For instance, using our previous work on bleeding detection and prediction [30,31], an
overwatch system can be created to verbally warn the surgeon about unsafe tool movements
or even attenuate robot movements. In addition, using recording capability [32], the
surgeon could easily ask to record videos or even movements for later use. Moreover,
annotations during surgery for teaching and documentation purposes could be easily
achieved with voice interaction. The software for the system implementation is available
online [33–35]. A video of the system in operation is also available [36].

Author Contributions: Conceptualization, A.P.; methodology, M.E. and A.P.; software, M.E., A.P. and
L.J.; validation, M.E., A.P., L.J. and M.H.; formal analysis, M.E., A.P., L.J. and M.H.; investigation, M.E.,
A.P., L.J. and M.H.; resources, A.P.; data curation, M.E., A.P., L.J. and M.H.; writing—original draft
preparation, M.E., A.P., L.J. and M.H.; writing—review and editing M.E., A.P. and L.J.; visualization,
M.E., A.P. and L.J.; supervision, A.P.; project administration, M.E. and A.P.; funding acquisition, A.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported with funding from the Michigan Translational
Research and Commercialization (MTRAC), grant number 380137/23R343 and 192748/117E37; and
from the US Department of Veterans Affairs National Center for Patient Safety under grant “NCPS
Robotic Operations Task Excursion Analysis” (VA701-15-Q-O179/2VHF).

Acknowledgments: The authors of this paper would like to thank Mohammed Alawad for his
expertise on voice recognition and language processing; Moaz Elazzazi for editing together the video
used for demonstration of our work; Meghan Martin and Dayna Green, co-founders of Gals & Ghouls,
for their artistic work put into the realistic testbed seen in the resultant images; and both David
Edelman and Michael Klein for their expert medical insight and consultation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. D’Ettorre, C.; Mariani, A.; Stilli, A.; Rodriguez y Baena, F.; Valdastri, P.; Deguet, A.; Kazanzides, P.; Taylor, R.H.; Fischer, G.S.;

DiMaio, S.P. Accelerating Surgical Robotics Research: A Review of 10 Years with the da Vinci Research Kit. IEEE Robot. Autom.
Mag. 2021, 28, 56–78. [CrossRef]

2. Pandya, A.; Reisner, L.A.; King, B.; Lucas, N.; Composto, A.; Klein, M.; Ellis, R.D. A Review of Camera Viewpoint Automation in
Robotic and Laparoscopic Surgery. Robotics 2014, 3, 310–329. [CrossRef]

3. Ellis, R.D.; Munaco, A.J.; Reisner, L.A.; Klein, M.D.; Composto, A.M.; Pandya, A.K.; King, B.W. Task analysis of laparoscopic
camera control schemes. Int. J. Med. Robot. Comput. Assist. Surg. 2016, 12, 576–584. [CrossRef] [PubMed]

4. Staub, C.; Can, S.; Knoll, A.; Nitsch, V.; Karl, I.; Färber, B. Implementation and evaluation of a gesture-based input method in
robotic surgery. In Proceedings of the 2011 IEEE International Workshop on Haptic Audio Visual Environments and Games,
Qinhuangdao, China, 14–17 October 2011; pp. 1–7.

5. Allaf, M.E.; Jackman, S.V.; Schulam, P.G.; Cadeddu, J.A.; Lee, B.R.; Moore, R.G.; Kavoussi, L.R. Laparoscopic visual field: Voice vs
foot pedal interfaces for control of the AESOP robot. Surg. Endosc. 1998, 12, 1415–1418. [CrossRef] [PubMed]

6. El-Shallaly, G.E.; Mohammed, B.; Muhtaseb, M.S.; Hamouda, A.H.; Nassar, A.H. Voice recognition interfaces (VRI) optimize the
utilization of theatre staff and time during laparoscopic cholecystectomy. Minim. Invasive Ther. Allied Technol. 2005, 14, 369–371.
[CrossRef] [PubMed]

7. Kraft, B.M.; Jäger, C.; Kraft, K.; Leibl, B.J.; Bittner, R. The AESOP robot system in laparoscopic surgery: Increased risk or advantage
for surgeon and patient? Surg. Endosc. 2004, 18, 1216–1223. [CrossRef] [PubMed]

8. Mellia, J.A.; Basta, M.N.; Toyoda, Y.; Othman, S.; Elfanagely, O.; Morris, M.P.; Torre-Healy, L.; Ungar, L.H.; Fischer, J.P. Natural
Language Processing in Surgery: A Systematic Review and Meta-analysis. Ann. Surg. 2021, 273, 900–908. [CrossRef] [PubMed]

9. Mettler, L.; Ibrahim, M.; Jonat, W. One year of experience working with the aid of a robotic assistant (the voice-controlled optic
holder AESOP) in gynaecological endoscopic surgery. Hum. Reprod. 1998, 13, 2748–2750. [CrossRef] [PubMed]

10. Mewes, A.; Hensen, B.; Wacker, F.; Hansen, C. Touchless interaction with software in interventional radiology and surgery:
A systematic literature review. Int. J. Comput. Assist. Radiol. Surg. 2016, 12, 291–305. [CrossRef] [PubMed]

11. Nathan, C.O.; Chakradeo, V.; Malhotra, K.; D’Agostino, H.; Patwardhan, R. The voice-controlled robotic assist scope holder
AESOP for the endoscopic approach to the sella. Skull Base 2006, 16, 123–131. [CrossRef] [PubMed]

12. Perrakis, A.; Hohenberger, W.; Horbach, T. Integrated operation systems and voice recognition in minimally invasive surgery:
Comparison of two systems. Surg. Endosc. 2013, 27, 575–579. [CrossRef] [PubMed]

http://doi.org/10.1109/MRA.2021.3101646
http://doi.org/10.3390/robotics3030310
http://doi.org/10.1002/rcs.1716
http://www.ncbi.nlm.nih.gov/pubmed/26648563
http://doi.org/10.1007/s004649900871
http://www.ncbi.nlm.nih.gov/pubmed/9822469
http://doi.org/10.1080/13645700500381685
http://www.ncbi.nlm.nih.gov/pubmed/16754183
http://doi.org/10.1007/s00464-003-9200-z
http://www.ncbi.nlm.nih.gov/pubmed/15457381
http://doi.org/10.1097/SLA.0000000000004419
http://www.ncbi.nlm.nih.gov/pubmed/33074901
http://doi.org/10.1093/humrep/13.10.2748
http://www.ncbi.nlm.nih.gov/pubmed/9804224
http://doi.org/10.1007/s11548-016-1480-6
http://www.ncbi.nlm.nih.gov/pubmed/27647327
http://doi.org/10.1055/s-2006-939679
http://www.ncbi.nlm.nih.gov/pubmed/17268585
http://doi.org/10.1007/s00464-012-2488-9
http://www.ncbi.nlm.nih.gov/pubmed/22926891

Robotics 2022, 11, 40 17 of 17

13. Unger, S.; Unger, H.; Bass, R. AESOP robotic arm. Surg. Endosc. 1994, 8, 1131. [CrossRef] [PubMed]
14. Azizian, M.; Khoshnam, M.; Najmaei, N.; Patel, R.V. Visual servoing in medical robotics: A survey. Part I: Endoscopic and direct

vision imaging—Techniques and applications. Int. J. Med. Robot. Comput. Assist. Surg. 2014, 10, 263–274. [CrossRef] [PubMed]
15. Wei, G.-Q.; Arbter, K.; Hirzinger, G. Real-time visual servoing for laparoscopic surgery. Controlling robot motion with color

image segmentation. Eng. Med. Biol. Mag. IEEE 1997, 16, 40–45.
16. Bihlmaier, A.; Worn, H. Learning surgical know-how: Dexterity for a cognitive endoscope robot. In Proceedings of the Cybernetics

and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2015 IEEE 7th International
Conference on Engineering Education (ICEED), Kanazawa, Japan, 17–18 November 2015; pp. 137–142.

17. Da Col, T.; Mariani, A.; Deguet, A.; Menciassi, A.; Kazanzides, P.; De Momi, E. Scan: System for camera autonomous navigation
in robotic-assisted surgery. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 2996–3002.

18. Eslamian, S.; Reisner, L.A.; King, B.W.; Pandya, A.K. Towards the implementation of an autonomous camera algorithm on the da
vinci platform. In Medicine Meets Virtual Reality 22; IOS Press: Amsterdam, The Netherlands, 2016; pp. 118–123.

19. Eslamian, S.; Reisner, L.A.; Pandya, A.K. Development and evaluation of an autonomous camera control algorithm on the da
Vinci Surgical System. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16, e2036. [CrossRef]

20. Weede, O.; Bihlmaier, A.; Hutzl, J.; Müller-Stich, B.P.; Wörn, H. Towards cognitive medical robotics in minimal invasive surgery.
In Proceedings of the Conference on Advances in Robotics, Pune, India, 4–6 July 2013; pp. 1–8.

21. Weede, O.; Monnich, H.; Muller, B.; Worn, H. An intelligent and autonomous endoscopic guidance system for minimally invasive
surgery. In Proceedings of the IEEE International Confrence on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 5762–5768. Available online: https://go.exlibris.link/j6RcCL1h (accessed on 21 March 2022). [CrossRef]

22. Composto, A.M.; Reisner, L.A.; Pandya, A.K.; Edelman, D.A.; Jacobs, K.L.; Bagian, T.M. Methods to Characterize Operating
Room Variables in Robotic Surgery to Enhance Patient Safety. In Advances in Human Factors and Ergonomics in Healthcare; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 215–223.

23. Vosk Offline Speech Recognition API. Available online: https://alphacephei.com/vosk/ (accessed on 15 January 2022).
24. Chen, Z.; Deguet, A.; Taylor, R.; DiMaio, S.; Fischer, G.; Kazanzides, P. An Open-Source Hardware and Software Platform for

Telesurgical Robotics Research. In Proceedings of the MICCAI Workshop on Systems and Architecture for Computer Assisted
Interventions, Nagoya, Japan, 22–26 September 2013.

25. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating
System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; p. 5.

26. Open Source Robotics Foundation. RViz. 2015. Available online: http://wiki.ros.org/rviz (accessed on 1 March 2016).
27. Alexa Skills Builder. Available online: https://developer.amazon.com/en-US/alexa (accessed on 24 January 2022).
28. Ngrok. Available online: https://ngrok.com/ (accessed on 2 March 2022).
29. Povey, D.; Ghoshal, A.; Boulianne, G.; Burget, L.; Glembek, O.; Goel, N.; Hannemann, M.; Motlicek, P.; Qian, Y.; Schwarz, P. The

Kaldi speech recognition toolkit. In Proceedings of the IEEE 2011 Workshop on Automatic Speech Recognition and Understanding,
Waikoloa, HI, USA, 11–15 December 2011.

30. Rahbar, M.D.; Reisner, L.; Ying, H.; Pandya, A. An entropy-based approach to detect and localize intraoperative bleeding during
minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16, 1–9. [CrossRef]

31. Daneshgar Rahbar, M.; Ying, H.; Pandya, A. Visual Intelligence: Prediction of Unintentional Surgical-Tool-Induced Bleeding
during Robotic and Laparoscopic Surgery. Robotics 2021, 10, 37. [CrossRef]

32. Pandya, A.; Eslamian, S.; Ying, H.; Nokleby, M.; Reisner, L.A. A Robotic Recording and Playback Platform for Training Surgeons
and Learning Autonomous Behaviors Using the da Vinci Surgical System. Robotics 2019, 8, 9. [CrossRef]

33. Available online: https://github.com/careslab/dvrk_voice (accessed on 15 February 2022).
34. Available online: https://github.com/careslab/dvrk_autocamera (accessed on 15 February 2022).
35. Available online: https://github.com/careslab/dvrk_assistant_bridge (accessed on 15 February 2022).
36. Available online: https://youtu.be/UZa7xCtOYT0 (accessed on 15 February 2022).

http://doi.org/10.1007/BF00705739
http://www.ncbi.nlm.nih.gov/pubmed/7992194
http://doi.org/10.1002/rcs.1531
http://www.ncbi.nlm.nih.gov/pubmed/24106103
http://doi.org/10.1002/rcs.2036
https://go.exlibris.link/j6RcCL1h
http://doi.org/10.1109/ICRA.2011.5980216
https://alphacephei.com/vosk/
http://wiki.ros.org/rviz
https://developer.amazon.com/en-US/alexa
https://ngrok.com/
http://doi.org/10.1002/rcs.2166
http://doi.org/10.3390/robotics10010037
http://doi.org/10.3390/robotics8010009
https://github.com/careslab/dvrk_voice
https://github.com/careslab/dvrk_autocamera
https://github.com/careslab/dvrk_assistant_bridge
https://youtu.be/UZa7xCtOYT0

	Introduction
	Background
	Materials and Methods
	The da Vinci Standard Surgical System and Kit
	Software Interface
	Online NLP Interface (Alexa)
	Offline NLP Interface (Vosks)

	Voice Interface Implementation
	Creating an On-Demand Autocamera System
	Find My Tools
	Track Left/Middle/Right
	Keep Left/Middle/Right
	Change Inner/Outer Zoom

	Results/Discussion
	Behavior of Voice Commands
	Viewpoints Generated with Commands Issued
	Voice Recognition Testing
	Safety Concerns for Use in Operating Room

	Conclusions
	References

