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Abstract: Mobile robots have become increasingly important across various sectors and are now
essential in agriculture due to their ability to navigate effectively and precisely in crop fields. Navi-
gation involves the integration of several technologies, including robotics, control theory, computer
vision, and artificial intelligence, among others. Challenges in robot navigation, particularly in
agriculture, include mapping, localization, path planning, obstacle detection, and guiding control.
Accurate mapping, localization, and obstacle detection are crucial for efficient navigation, while
guiding the robotic system is essential to execute tasks accurately and for the safety of crops and
the robot itself. Therefore, this study introduces a Guiding Manager for autonomous mobile robots
specialized for laser-based weeding tools in agriculture. The focus is on the robot’s tracking, which
combines a lateral controller, a spiral controller, and a linear speed controller to adjust to the different
types of trajectories that are commonly followed in agricultural environments, such as straight lines
and curves. The controllers have demonstrated their usefulness in different real work environments
at different nominal speeds, validated on a tracked mobile platform with a width of about 1.48 m, in
complex and varying field conditions including loose soil, stones, and humidity. The lateral controller
presented an average absolute lateral error of approximately 0.076 m and an angular error of about
0.0418 rad, while the spiral controller presented an average absolute lateral error of about 0.12 m and
an angular error of about 0.0103 rad, with a horizontal accuracy of about ±0.015 m and an angular
accuracy of about ±0.009 rad, demonstrating its effectiveness in real farm tests.

Keywords: precision agriculture; autonomous robots; robot guiding; robot lateral control; robot
spiral control

1. Introduction

Mobile robots have become increasingly prevalent in our modern world, playing vital
roles in various applications, from manufacturing [1] and logistics [2] to healthcare [3]
and exploration [4], with paramount importance in agriculture [5] throughout the last
decades. A fundamental aspect of a mobile robot’s functionality is its ability to navigate
and maneuver effectively in its environment, and this capability hinges mainly on its
steering mechanisms. In the context of mobile robots, navigation refers to how these
machines control the vehicle’s position, speed, and attitude as a function of time [6].
Guidance denotes establishing the desired trajectory from the robot’s current position to a
final position, including the desired changes in linear speed, angular speed, and associated
accelerations for following the desired trajectory [7].

The navigation of mobile robots encompasses a wide range of technologies and tech-
niques, drawing from disciplines such as robotics, control theory, computer vision, and
artificial intelligence [8,9]. As mobile robots become more sophisticated and versatile, their
navigation mechanisms continue to evolve, enabling them to operate autonomously and
safely in a variety of environments and scenarios [10]. Effective guidance is crucial for
deploying robots in economic sectors such as agriculture, which this article focuses on.
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Critical challenges in robot navigation, in general, and particularly in agriculture,
are mapping, localization, path planning, obstacle detection, and tracking control [11].
Building an accurate map of the environment (Mapping) is essential for navigation in an
agricultural field; thus, robots must simultaneously map the environment while localizing
themselves [12]. Creating and updating maps in real time can be challenging, especially
in dynamic or unstructured environments; another challenge is Localization: robots must
accurately determine their position within an environment to prevent navigation fail-
ures [13]. Localization methods often rely on sensors like Global Navigation Satellite
System (GNSS) [14], LIDARs [15], or computer vision [16], and each has its advantages and
limitations. GNSS solutions are preferred for agriculture in open fields where GNSS-denied
areas are rare; however, denied areas are relatively common when navigating entire farms.

Once a robot knows its position and has a map of the environment, it needs to plan
a safe and efficient path to its destination while considering various factors like terrain,
obstacles, and the robot’s capabilities. The module responsible for finding a path is a Path
Planner, generally associated with the Path Supervisor [17]. This module oversees the robot
following the path defined by the planner and guarantees the fulfillment of the specifica-
tions, such as preventing collisions. The Planner generates the path according to the known
obstacles, but new static and dynamic obstacles can appear in its environment. Therefore,
robots need to perceive their surroundings accurately to detect obstacles and navigate
around them. This involves challenges in sensor accuracy [18], occlusion handling [19], and
the ability to distinguish between static and moving obstacles [20]. The Obstacle Detection
System guarantees these activities. Finally, the robot needs a Tracking Controller to ensure
an accurate following of the trajectory defined by the planner.

Controlling these two key aspects (planning and tracking) is challenging due to non-
linear robot dynamics, noise in perception systems, ground disturbances, and several
unidentified parameters [21]. The developed methods include classic Proportional-Integral-
Derivative (PID) methods [22], sliding mode controllers (SMC) [23], flatness-based al-
gorithms, optimal linear-quadratic techniques [24], backstepping-based strategies [25],
optimal preview controllers [26], and optimization-based methods [27].

Selecting an appropriate control algorithm can be challenging since the performance of
different techniques can vary depending on the situation. In the last decade, several studies
have compared different control methodologies. For instance, fuzzy controllers were
compared with PID controllers in [28], several robust controllers were contrasted in [29],
predictive methods were compared with Linear Quadratic methods in [30], the Linear
Quadratic technique was confronted with the sliding mode in [31], and kinematic-based
algorithms were studied in [32]. However, these studies did not reflect the performance
of controllers in real-world situations with unexpected disturbances. In [33], the authors
compared trajectory tracking controllers under disturbances and sensor noise, but they
only reported the comparison of two flatness-based controllers.

In more recent work, Zhu et al. [34] developed a comparative study and validation
of multiple control architectures of a small skid-steer mobile robot in an orchard. The
study consisted of comparing a Proportional-Derivative (PD) controller with (i) a SMC
controller, (ii) a Control Lyapunov Function (CFL), (iii) a Nonlinear Model Predictive
Control (NMPC), (iv) a Tube-Based Nonlinear Model Predictive Control (TBNMPC), and
(v) a Model Predictive Sliding Mode Control (MPSMC). It was shown that the SMC and
TBNMPC controllers exhibited greater resilience against varying disruptions during both
wide and narrow maneuvers. Moreover, the authors analyzed an Integral Absolute Error
(IAE) that shows that the MPSMC had the overall lowest actuation effort; although it was
only about 5% of an improvement compared to the PD controller. It should be noted that
the authors use the same control laws to follow both straight and curved lines, and it is
expected that the rest of the strategies will surpass the performance of the PD controller.

In summary, most comparative works are performed under controlled situations or
in simulation and do not represent a viable solution, especially in applications in an agri-
cultural domain where the environmental conditions and the configuration of the robotic
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system are highly variable. The experience with developing guidance controllers [35] and
control architectures [36] indicates that classical solutions can solve the guidance problem
in this type of condition and for the application studied in this work. Therefore, selection
based on previous theoretical and experimental studies is advisable. Furthermore, the prac-
tical comparison is ineffective when selecting guiding algorithms for real robot applications
due to time and cost.

This work presents an autonomous robot Guiding Manager for laser-based weeding
in agriculture that encompasses a Local Planner and Supervisor, an Obstacle Detection
System, and a Tracking Controller to guide the autonomous robot. The proposed approach
was implemented on a mobile platform to configure a fully autonomous robot in charge of
performing selective high-power laser treatment for weed control in maize, sugar beet, and
wheat fields and was exhaustively validated in real operating conditions over 9 months
in 3 different experimental farms. Thus, Section 2 presents the vehicle and sketches the
Smart Navigation Manager that contains the Guiding Manager, which is given in Section 3.
Section 4 describes the tests in a real farm to validate the algorithms in a specific agricultural
task. Finally, Section 5 summarizes the results, and Section 6 presents the most relevant
conclusions.

2. Materials and Methods

This study is a part of a comprehensive system that uses laser technologies for weeding
in agriculture. The system consists of a powerful laser source that can generate 500 W of
energy to eliminate weed meristems. An AI-based perception system helps to distinguish
between weed and crop plants and locate the meristems of the weeds. Finally, a scanner
is used to aim the laser beam at the meristems. These essential components are carried
throughout the field onboard an autonomous robot. The overall system is supported
by the information provided by IoT sensors and cloud communications for information
exchange [37].

This section presents only the essential equipment on which the guiding system is
built and validated. It is split into (i) the vehicle, a commercial mobile platform that
has been adapted to carry a high-power laser system to selectively eliminate weeds, and
(ii) the Smart Navigation Manager, which coordinates the different subsystems in the robot,
specifically the Tracking Controllers that enable autonomous navigation.

2.1. The Vehicle

The vehicle used in this study uses a modification of the commercial Carob robot
from Agreenculture (AGC), Toulouse, France, as the mobile platform. This robot uses a
caterpillar-based platform, which enables it to operate as a skid-steer mechanism. The
distance between the tracks can be adjusted to fit the crop-row space. It is powered by an
engine and batteries, and it can move at a maximum speed of about 6 km/h. The robot has
a high level of accuracy, ±0.015 m, and uses a Global Navigation Satellite System (GNSS).
Specifically for this study, a Real-Time Kinematic (RTK) GNSS was used [37]. Figure 1a
illustrates the Carob mobile platform and Figure 1b shows the final design for the operative
autonomous robot, including the controller, the laser weeding tool, and the boxes for the
laser sources and chillers. The mobile platform’s current characteristics are indicated in
Table 1.

The mobile platform is trusted by two motors powered by a brushless generator
equipped with a powerful, electronically controlled three-cylinder engine, whose engine
speed is regulated according to the battery charge level and the task requirement. This
battery has a battery management system to safely charge and discharge. The battery also
provides electric energy for additional equipment: laser weeding tool, central controller,
Internet of Things (IoT) devices, and Smart Navigation Manager (SNM).
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microcontroller (MK66) for real-time management 
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Figure 1. (a) Initial mobile platform and (b) final autonomous robot configuration with the Laser
weeding tool.

Table 1. Mobile platform characteristics.

Characteristics Values

Dimensions 1.76 m × 1.5 m × 1.647 m (W × L × H)

Ground clearance 0.60 m

Distance between tracks Adaptable from 0.80 m to 2.20 m

Track thickness 0.18 m

Speed Maximum 6 km/h (1.67 m/s) because of current regulations

Weight 980 kg

Payload Carries up to 800 kg (up to 15◦ slope)
Tows up to 800 kg (on flat terrain)

Payload distribution

On both sides of the primary propulsion system

Under the robot between the tracks

A 3-point hitch can be added to carry additional weight or systems

Position accuracy ±0.015 m (±2 × 10−3 m at GNSS antenna). Connection to Galileo,
Glonass & Beidu (L1&L2 for GPS, E5a for Galileo)

Communications WIFI/LoRa/BLE and CANopen for communications of tools
and actuators

Power supply

19 kW diesel engine, 14 kW generator

48 V (from 40 to 56 V dc)

Tool power up to 7.2 kW with the current tool plug

Energetic autonomy 16 to 24 h. It depends on the fuel tank (26 to 50 L) and the usage of
the robot

Mechanical attachments
for other systems

Two 10-cm square metal beams (front and back of the robot)

A 3-point hitch (Cat 0 or 1) at the back can be added

Operator interfaces The remote controller is included for manual movement

Communications with an
external computer

CANopen is the primary communication protocol in the robot
(or J1939)
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Table 1. Cont.

Characteristics Values

Controller A combination of a microprocessor (IMX8) and a microcontroller
(MK66) for real-time management

Safety system used by
AGC vehicles

Bumpers

Safety button

LIDAR

2.2. Smart Navigation Manager

The Smart Navigation Manager (SNM) focuses on providing navigation in agricultural
scenarios and comprises the Guiding Manager and the Smart Operation Manager. The
Guiding Manager specifically takes care of the algorithms that compose the Local Mission
Planner and Supervisor, the Obstacle Detection System, and the Tracking Controllers
(Figure 2). It runs on a high-performance industrial computer with the characteristics
indicated in Table 2 (Figure 3). The Smart Operation Manager, which is the module that
acquires processes and delivers information based on cloud computing technology, and
communicates with the rest of the modules, falls out of the scope of this study.
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The Guiding Manager uses the Robot Operative System (ROS) [38] as a middleware
since it is a common communication framework widely used by software designers to
build robot applications. ROS is used as a meta-operating tool for testing the prototype
and has interfaces to communicate with the components outlined below:

• The robot;
• The sensor system;
• The agricultural tools.

ROS’s versatile publisher/subscriber communication model enables message adapta-
tion for IoT, such as Queuing Telemetry Transportation (MQTT). Therefore, ROS is allocated
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inside the central controller, which works as a master for the other components communi-
cating with the central controller. ROS can use the Future Internet Ware (FIWARE) [39], a
curated framework of open-source platform components to accelerate the development of
Smart Solutions; this is fostered by the European Union.

Table 2. Central controller characteristics.

Characteristics Values

Processor 6C/12T Intel I7-8700 (3.20/4.60 GHz,12 M
Cache, 65 W).

Memory 16 GB DDR4 2666 MHz.

Disk Auxiliary disk; SSD 2 TB

Ports
• 6 × Gigabit Ethernet, including 4 PoE+
• 4 × USB 3.1 Gen2 (10 Gbps) ports
• 4 × USB 3.1 Gen1 (5 Gbps) ports

Communications Industrial 4G LTE Wi-Fi router for professional
M2M & IoT applicationsTeltonika RUTX11 LTE

Weight 15 kg (includes an enclosure, ventilation, and
power protection systems)

Dimensions 240 × 225 × 111 mm3

Enclosure dimensions 400 × 500 × 200 mm3

Power 288 W

Required power supply (Voltage) +24 V DC

Graphic card
Asus GTX 1660 Phoenix Super OC 6 Gb
GDDR6 (NVIDIA CUDA® Cores 1408, 6 GB
GDDR6, 120 W)
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3. The Guiding Manager

This work focuses on the description and assessment of the Guiding Manager, which
consists of the Local Planner and Local Supervisor, the Obstacle Detection System, and the
Steering Controller.
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3.1. Local Planner and Supervisor

These modules allow the development of a mission to be planned and supervised
locally at a robot level. Given a user-defined mission or command, this module defines
how to achieve (execute) that command. It considers the robot’s current position and the
command’s final objective (including the intermediate goals that constitute the mission)
and calculates the appropriate trajectories and behaviors to achieve the final point. This
module integrates both absolute localization (through GNSS) and relative localization
(odometry), and from the planning and navigation point of view, the system decides to use
one localization method or the other on its own.

Within local planning, two fundamental strategies were developed:

• GoToGoal: This is used to reach any robot’s position and orientation given an initial
robot’s position and orientation. This planner is based on the Dubins Paths [40],
which is a highly used strategy in open environments where only a few obstacles are
present, as in the case of agriculture. Furthermore, it is a simple and optimal strategy
to implement when connecting any two points with predefined orientations, which
is key in the agricultural environment, where vehicles can be significant in size and
not be able to rotate on their own axis. These paths are the most efficient trajectories
for linking an initial location (xi, yi, αi) and a final location (xf, yf, αf) within the two-
dimensional Euclidean plane (specifically, the x-y plane). These trajectories are subject
to limitations on their curvature (maximum curvature constraints); they demand
specified initial, αi, and final, αf, orientations and assume that the vehicle navigating
these routes can exclusively move forward (Figure 4). Grid-based methods [41], cell
decomposition [42], or potential fields [43] are other strategies that have been evaluated
in agricultural environments to define point-to-point trajectories; they are especially
implemented in small robots. Factors such as (i) high memory consumption to build
the grid maps, (ii) discretization issues that can lead to insufficient precision in path
planning, and (iii) their complexity with irregular shapes and dynamic environments
are some of the drawbacks due to which these strategies were discarded.

• LineFollowing: This is used to reach a point aligned to the current robot position and
orientation following a straight line.
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The trajectories generated by both planners are executed mainly by three main con-
trollers (Lateral Controller, Spiral Controller, and Linear Speed Controller) detailed in the
Tracking Controller section.

The tasks performed by the robot are mainly of two types: Approximation and
Treatment. The development of these tasks is made up of the concatenation of the two
planners (GoToGoal and LineFollowing). The supervisor defines which planner should be
activated and is guided according to the task performance. Additionally, the supervisor
monitors the task execution and reports malfunctions to the operator. Figure 5 presents the
state diagram of the execution of the Treatment task, and Figure 6 shows the diagram of
the execution of the Approximation task. Since the robot does not have sensors in the rear
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part, it is essential to avoid maneuvers that require moving backward; therefore, the turns
to change crop rows in the field will be executed using the GoToGoal planner.
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3.2. Obstacle Detection System

Given the vehicle’s characteristics and the application for which it is designed, only
forward movement has been enabled. In this case, it is only necessary to have an obstacle
detection system in the front part of the robot. Therefore, a LIDAR is used as the main
sensor for obstacle detection. It is located in the front of the robot, just above the safety
bumper (Figure 7). The LIDAR comprises 4 layers (light beams) with a separation of
2.5 degrees between them. The LIDAR has been arranged and flipped with a clearance of
almost half a meter from the ground so that most of the light beams have contact with the
ground and obstacles (Figure 7). For obstacle detection, only layer 1 is used to identify the
obstacles. This arrangement allows the obstacle defined in the ISO 18497:2018 [44] standard
to be detected (Figure 7).

For the LIDAR point cloud filtering, an open-access library [45] was integrated within
the Guiding Manager, which returns the positions of the obstacles and classifies them
in circles or segments. This strategy has proven itself to be very useful given that for
this application, as indicated above, the use of common approaches such as occupational
grids or potential fields were discarded. Therefore, a strategy was required to represent
the detected obstacles in such a way that trajectories based on Dubin’s curves could be
generated to avoid them.
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Within the obstacle detection system, there are two main behaviors that the robot can
perform based on the position of the obstacle concerning the robot (Figure 8):

• Avoid collision: The robot stops while there is an obstacle in the critical safety area.
• Avoid obstacle: If the robot is following a path and an obstacle is detected in the robot’s

warning area, a trajectory re-planning procedure is activated, and an intermediate
point is generated to avoid the obstacle. This procedure is not applied if the robot is in
a crop field to prevent stepping on the crop plants. The safety areas’ size depends on
the robot’s nominal speed (Figure 7).

Regarding the methodology for avoiding obstacles, a trajectory planner is integrated to
compute intermediate points in the planned trajectory if an obstacle is detected within the
warning zone and on the robot’s trajectory. This trajectory planner takes advantage of the
GoToGoal planner, which, as previously indicated, is based on Dubins’ paths. This guaran-
tees that the shortest path between two points in an Euclidean plane can be established by
concatenating arcs of a given radius and tangent straight lines.

During the missions, circumferences of equal and pre-defined radii are consistently
applied to create the arcs. Since only the minimum robot turning radius is considered, the
paths are always the shortest possible. Nonetheless, the variation in radius occurs when
obstacles are detected (Figure 8). When the obstacle detector provides the position and
radius of a new obstacle in the collision range (warning area), a new waypoint for the path
is entered into the calculation loop. If the obstacle is small enough, it will be represented
by a Dubin’s circle equal to the radius of the obstacle plus a safety margin. If the obstacle
is more significant, it will be represented by a straight segment defined by two ends. It is
evaluated through which end of the path is shorter, applying a circle of radius equal to the
robot’s minimum turning radius plus the safety margin. After avoiding the obstacle, the
original goal point is recovered, continuing the path.
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3.3. Tracking Controller

This module controls the mobile platform to track the trajectory computed by the
Local Planner. Corrections to the platform’s trajectory are based on the difference between
the desired position and orientation (pose) calculated by the Local Planner and the current
platform’s pose, given by the GNSS.

Given that the two commonly followed trajectories in agricultural environments are
straight lines and turns, the development of strategies oriented to the specific guidance of
these trajectories is proposed. Therefore, three control laws were implemented: (a) Lateral
Controller for straight paths, (b) Spiral Controller for curved paths, and (c) Linear Speed
Controller for smoothing both (i) the start of guidance and (ii) the reaching the target point
(Figure 9). Each control law was implemented to execute the different types of planning.
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3.3.1. Lateral Controller

The lateral controller tries to bring the robot to the desired trajectory in position and
orientation and move it at the desired speed, vd, when the trajectory is achieved. To do this,
the control law minimizes the distance, dt, from the control point to the desired trajectory
and the angle between the actual and desired trajectories, ϕ, using a classic proportional-
derivative (PD) controller in two variables: angular error (ϕ) and lateral error (dt). The
robot’s control point, CP, is located outside the robot’s body to facilitate its alignment with
the desired trajectory (Figure 9). The calculated variables are the robot’s angular speed
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around the z-axis, ωs, and the robot’s linear speed along the x-axis, ls. The established
control laws are as follows (Figure 9):

ωs = Kϕϕ + dirKPddt + dirKDd∆dt (1)

ls = Kvvdcos(Kω |ωs|) (2)

That is, ws is proportional to ϕ and dt, where Kϕ and KPd are the proportional gains,
respectively. dir is a parameter that depends on whether CP is on the left (dir = −1) or on
the right (dir = 1) of the desired trajectory. Moreover, ∆dt represents the variation of dt
between two consecutive time instants, and KDd represents the derivative gain.

ls is proportional to vd, where Kv is the proportional gain, and the term cos( Kra |ωs|)
adapts ls to ws. That is, when ws is high, ls is decreased and vice versa, in a similar way to
how car drivers behave. Kw also helps in tuning the proportional controller.

The control parameters were tuned empirically, adjusting the convergence times and
minimizing the error in both control variables. The experiments were conducted from the
threshold speed of the moving platform (0.1 m/s) to the maximum speed allowed by the
ground conditions and the mechanical stiffness of the moving platform (0.8 m/s).

3.3.2. Spiral Controller

One of the frequent maneuvers carried out by autonomous robots when navigating
crop fields is rotation, which can appear when tracking a trajectory or performing a U-turn
at the end of a row to face the next. In this study, the controller proposed by [46], based on a
previous study by Boyadzhiev, 1999 [47], was adapted to enable the robot to follow circles.
This algorithm uses a spiral curve as a general solution for robot turns. As a circle is a spiral
with specific parameters, this solution is applicable for generating the circles in the Dubins’
trajectories or circle U-turns. Spirals have demonstrated their value in path-planning tasks
because their curvature changes proportionally along their arc length and have been used
to generate continuous-curvature paths [48,49]. Although only a few applications have
been given to them as control laws for tracking curvatures [50], they can serve as a general
solution acting as a control algorithm for the curvatures in the Dubins’ path.

This method relies on the fact that a spiral is described as a trajectory followed by a
point Op moving on a plane concerning an invariant point Os, spiral center (Figure 10).
Suppose v is the velocity vector of Op, (v is tangent to the spiral trajectory) whose norm is
represented as v(t). In this case, d is the vector linking Os to Op with the norm d(t), and α(t)
is the angle from v to d, then when v(t) and α(t) are constants (i.e., v(t) = vc and α(t) = αc),
Op describes a spiral centered in Os.
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Therefore, a spiral is defined by an αc and a given d(0). The spiral behaves as follows:

– If 0 < αc < π, Op moves counter-clockwise concerning Os.
– If −π < αc < 0, Op moves clockwise.
– If 0 ≤ αc < π/2 or −π/2 ≤ αc < 0, d(t) diminishes with time (Figure 10a), i.e., Op

describes an inward spiral around Os.
– If π/2 < αc ≤ π or −π ≤ αc < −π/2, d(t) increases with time (Figure 10b), i.e., Op

describes an outward spiral around Os.
– If αc = π/2 or αc = −π/2, d(t) = d(0), Op moves in a circle of radius d(0) around Os.

A method to follow a spiral involves creating a controller that guides the angle α(t)
towards a desired angle αd. The value of αd determines whether the spiral is inward,
outward, or circular. Once the robot has reached the spiral, it can either increase, decrease,
or maintain its distance d(t) from the center of the spiral.

To build this controller, a constant desired linear velocity, v(t) = vd, was imposed. Thus,
the error is given as follows:

e(t) = α(t)− αd. (3)

Computing
.
e(t)

.
e(t) =

.
α(t) (4)

From Figure 11, the relationship between the rotation angle (θ) and the angle of the
robot with respect to the fixed reference system (β) is obtained:

α(t) = π − θ(t) + β(t) (5)
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Then
.
α(t) = −

.
θ(t) +

.
β (6)

where
.
θ(t) is the robot’s angular speed, ω(t), and

.
β(t) is the angular speed of d, which is

calculated by
.
β(t) =

vpd(t)
d(t)

(7)

where vpd is the v(t) component perpendicular to d (Figure 11), i.e.,

.
β(t) =

v(t)
d(t)

sin α(t) (8)
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Finally, Equation (4) becomes

.
e(t) = −ω(t) +

v(t)
d(t)

sin α(t) (9)

Therefore,
.
e(t) depends on v(t) and ω(t). However, v(t) is constant and known. Thus,

the controller will focus only on controlling ω(t), i.e.,

ω(t) = − .
e(t) +

v(t)
d(t)

sin α(t) (10)

Moreover, to make the error e(t) null, a controller proportional is defined. Thus, it
follows that

ω(t) = λe(t) +
v(t)
d(t)

sin α(t) (11)

This controller allows the robot to follow any spiral or circumference (different turning
radius). In this case study, various turning radii were evaluated (between 0.75 m and
2 m), depending on the space available to make U-turns at the headlands of the crop fields.
Moreover, for each mission, a predetermined turning radius was defined, which allows a
minimum turn with adequate platform behavior. It should be noted that for a skid-steer
platform to rotate about a designated center, it is necessary to select the angular and linear
velocities. To always have both tracks moving forward, the turning radius must be greater
than the distance between tracks. This behavior has been defined as desired to minimize
the damage caused to the ground by tracks. Therefore, the nominal turning radius selection
was determined based on the smooth behavior of the platform while turning and the
available turning space.

3.3.3. Linear Speed Controller

A linear speed controller is required to accelerate/decelerate the robot. A minimum
threshold speed, vth, was defined to stop the mobile platform without abrupt and fast
maneuvers. Therefore, this controller calculates a linear speed profile from vth to the
desired final speed, vd, when accelerating and a linear speed profile from the current speed,
vc, up to vth when decelerating. After reaching vth, the robot is ordered to stop. Figure 12
illustrates the process when the robot must stop at xs. The braking distance, db, is the space
the robot must travel to get vth. It can be a fixed distance or a function of vc. This simple
controller is satisfactory for achieving proper linear speed features.
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4. Testing the Guiding Manager

Several tests were conducted to validate the controllers and the implemented archi-
tecture from January to September 2023. The main tests were carried out in an experi-
mental farm setup at the Centre for Automation and Robotics (CAR) in Madrid, Spain
(40◦18′45.166′′ N, −3◦28′51.096′′ W). This experimental farm consists of a set of roads
connecting the farm’s diverse elements, including buildings and crop fields (Figure 13). To
represent relevant field conditions, nine fields were configured, each with dimensions of
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approximately 20 m × 20 m, with headlands to perform the U-turns to change the crop
rows of roughly 5 m. These fields were seeded with different crops, including maize, sugar
beets, and wheat.
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Moreover, during August 2023, further tests were carried out in two other experimen-
tal fields: (i) research facility Højbakkegaard (12◦17′59.624′′ N, 55◦40′11.389′′ W), belonging
to the University of Copenhagen, in Taastrup, Denmark, during 17 and 18 August; and
(ii) the farm Van den Borne Aardappelen, belonging to Van den Borne (5◦10′32.241′′ N,
51◦19′12.298′′ W), in Reusel, The Netherlands, during 23–26 August. In the farm in Den-
mark, two fields of approximately 40 m × 9 m were set up, one field seeded with maize
and the second with sugar beet. On the other hand, on the farm in The Netherlands, two
fields of maize and sugar beet were planted, with the first measuring roughly 37 m × 9 m
and the second measuring about 37 m × 6 m.

The tests consisted of the robot executing a mission composed mainly of the above-
mentioned parts: (i) field Approximation and (ii) field Treatment. In the Approximation
stage, the robot started in some part of the farm, ordinarily close to the crop fields, and
had to follow a set of geographical waypoints previously defined that allowed it to reach
the beginning of the crop field. In some cases, these waypoints followed both dirt and
asphalt roads. In certain situations, the terrain varied significantly: the experimental site in
Spain had loose, stone-filled soil, while the fields in Denmark and The Netherlands were
actual farms, offering more favorable ground conditions for the controllers. Additionally,
humidity levels varied across different test scenarios, particularly during the experiments
conducted in The Netherlands. Unfortunately, these soil conditions were not recorded,
so in the analysis of the tests, it is impossible to carry out a characterization. Figure 14a
presents an example of the robot path executing an Approximation task, which consists of
reaching the starting point of the crop field. Moreover, Figure 14b gives the corresponding
lateral errors of the tracking action associated with both the Lateral and Spiral Controllers.

On the other hand, the Treatment part represented the robot’s navigation in the crop
field while performing some action/treatment. The positions of each crop row were known
a priori, so a treatment map with complete coverage of the field was created, ensuring crop
safety. Figure 15a presents an example of the robot path following a Treatment planning,
which consists of 6 passes through the field, and their respective U-turns. Moreover,
Figure 15b presents the corresponding lateral errors of each pass associated with the
lateral controller.
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Figure 15. Example of the trajectory followed by the robot when executing a Treatment task. (a) Robot
path in a field in Arganda del Rey experimental farm (reference system in enu with with a fixed
local reference); (b) mean lateral error of each FollowLine at each time-step, with 10 Hz being the
frequency of the controller.

In this case study, the treatment corresponds to selective weed management through
the use of a targeted high-power laser. In some tests, the high-power laser system was
active and executing treatment. However, in most tests, the robot navigated without the
high-power laser system being operational. In all tests, the robot carried the laser weeding
tool (Figure 1).

In both parts of the mission execution, the GoToGoal and the LineFollowing planners
were used, depending on the robot’s task. During the Approximation stage, the following of
the roads was mainly executed by the LineFollowing planner, even though the paths were
not necessarily all straight. This is dependent on the condition that the lateral controller
can adjust the robot’s position if the trajectory does not represent tight turns. On the other
hand, in the presence of considerable changes in direction, which can be from 45 degrees,
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the GoToGoal planner was used. The nominal linear speed of the robot varied from 0.1 m/s
to 0.8 m/s, depending on the different tests of the high-power laser system. In the turns,
the robot was defined to go at a maximum linear speed of about 0.2 m/s.

The missions carried out included both approximation and treatment. Only missions
with at least three passes or crossings through the crop field were selected, so 66 missions
were analyzed. These missions correspond to a total operation time of approximately
13.4 h, with an average mission time of about 12 min. The total distance traveled by
the robot in those 66 missions was about 9.3 km, where the LineFollowing planner was
active, approximately 7.2 km, corresponding to 411 situations. In contrast, the GoToGoal
planner only navigated about 2.08 km, related to 316 situations. This is mainly because
the missions focused on navigation within the field. Therefore, the situations where
the LineFollowing planner was activated corresponded to longer trajectories compared
to short-turn trajectories planned by the GoToGoal planner. Furthermore, based on the
characteristics of the robot and the weeding tool, which had a treatment width of about
1 m, the robot carried out navigation, performing treatment in 1 ha in total.

5. Results

To evaluate the performance of the controllers, three main measurements were executed:

1. The error when reaching the Goal Point (waypoint).
2. The average lateral error during the following of the planned trajectory.
3. The average angular error during the following of the planned trajectory.

The results obtained from these three indicators include the lateral, spiral, and speed
controllers, which are presented as below.

5.1. Reach Error Results

As indicated above, the error obtained by the controllers when reaching the target
point (Goal Point) was analyzed. In this case, the absolute reach error is defined as the
Euclidean distance between the Goal Point and the longitudinal robot’s axis, xr (Figure 11).
Moreover, in this case, the spiral and lateral controllers affect the error measurement of the
linear speed controller, so the analysis is carried out jointly.

As indicated above, the robot’s localization system was based on GPS-RTK; its hori-
zontal accuracy was about ±0.015 m, and its refresh frequency was around 10 Hz. These
characteristics can affect the performance of the controllers in adequately identifying
whether the Goal Point has been reached. Therefore, to maintain the robustness of the
controllers, a parameter named distance threshold was defined, with a value of 0.05 m,
slightly more than double the standard deviation of the localization system. This means that
if a measured error was within this distance threshold, and the robot was behind the target
point, this situation was defined as the target point reached. On the other hand, if the robot
exceeds (passes over) the target point, the target point reached situation is automatically
activated. Unfortunately, it could not be recorded every time the robot reached the Goal
Point, whether it passed or was within that range.

5.1.1. Reach Error of the Lateral Controller

Figure 16a presents the histogram of the absolute error in all situations where the robot
reaches its goal while following a linear path. In 8.3% of the cases, the absolute error was
greater than 0.5 m. This is mainly because, in the tests carried out in some situations, the
robot stopped because it was necessary for an operator to approach the robot or because the
mission was aborted. By eliminating situations where the controller did not complete the
LineFollowing task, the absolute error in 44.4% of situations was less than 0.05 m, which
corresponds precisely with the distance threshold. Moreover, in 73.1% of situations, the
absolute error was less than 0.1 m. Even if the robot stops a few centimeters before or after
the end of the crop line, it does not considerably affect the execution of the mission and the
treatment. It should also be noted that these measurements were made while many other
tests were performed on the robot, including tests to evaluate the high-power laser. During
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these tests, a mean reach error of approximately 0.09 m was achieved, with a horizontal
accuracy of ±0.02 m.
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Figure 16b presents a graph of the error concerning the nominal speed of the robot.
The nominal speed is the maximum desired speed when following linear trajectories. In
this box and whisker plot, the average error values for all speeds are below 0.1 m, most of
which are close to 0.05 m. This means that regardless of the defined nominal speed, the
linear speed controller effectively reduced the robot’s speed to get as close as possible to
the target point. It should also be noted that the most significant errors are found between
the nominal speeds of 0.4 m/s and 0.5 m/s, which correspond to 53.5% of the analyzed
situations, given that this is the speed range desired by the high-power laser system to
be profitable.

5.1.2. Reach Error of the Spiral Controller

Figure 17 presents the histogram of the absolute error in all situations where the robot
reaches its goal while performing a turn, i.e., following a spiral. In 3.2% of the cases, the
absolute error was greater than 1 m. This situation is similar to the one presented above.
In some situations, the robot stopped either because it was necessary for an operator to
approach the robot or because the mission was aborted. Moreover, in 20% of the situations,
the controller stopped the robot at a distance between 0.5 m and 1 m from the goal point.
These situations were expected since the controller sought to reach not only the target
position but also the target orientation. The controller was defined so that it takes higher
priority to arrive at the desired orientation even if the robot is far from the target. This means
the robot reaches the target at an error distance of less than 0.5 m for 76.8% of the cases. For
this controller, this is a splendid result, considering the robot’s dimensions. During these
tests, a mean reach error of approximately 0.5 m was achieved, with a horizontal accuracy
of ±0.02 m. This result contrasts considerably concerning the Lateral Controller, given that
the execution of turns using a tracked robot in complex terrain conditions (presence of
stones, loose or wet terrain, etc.) can generate this discrepancy without considering the
robot’s dynamic model. In any case, these results were more than sufficient for the robot’s
intended navigation capabilities.
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5.2. Lateral Error Results

Another important indicator to evaluate the performance of the controllers, in partic-
ular the Lateral Controller and the Spiral Controller, is the lateral error in following the
planned trajectory. At each instant of control time, i.e., when a new position value was
obtained, the lateral error was calculated, which is one of the primary control variables
of the presented controllers. Therefore, the lateral error is defined as the perpendicular
distance between the robot and the trajectory point closest to the robot.

5.2.1. Lateral Error of the Lateral Controller

Figure 18a presents the histogram of the absolute lateral error in all situations where
the robot follows a linear path. In this case, the average error of the complete trajectory
is calculated each time a line has to be followed as a path. In 8.3% of the cases, the mean
lateral error was higher than 0.5 m. This percentage coincides with the previous percentage
of the reaching point error due to other factors unrelated to the development of the mission.
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Figure 18. Results of the Lateral Controller when the error is less than 0.5 m. (a) Histogram of the
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By eliminating those situations where the controller did not finish the following task, in
70% of the cases, the absolute error was less than 0.06 m. Moreover, in 79% of the situations,
the absolute error was less than 0.09 m. It should be noted that this corresponds to the
absolute lateral error. The situations where the error is greater is when the robot performs
the maneuver to enter the crop lines, as illustrated in Figure 16a, where after the beginning
of the row following (after 20% of the path), 48% of the situations the absolute error is less
than 0.03 m, while only the 17% of the situations the lateral error was below 0.03 m at the
beginning of the mission. During these tests, a mean lateral error of approximately 0.076
m was achieved, with a horizontal accuracy of ±0.02 m. Moreover, Figure 18b presents
a graph of the lateral error concerning the nominal speed of the robot. This box and
whisker plot represent a similar graph to the graph of the mean reach error concerning
the nominal speed. Therefore, it should be noted that the error in reaching the Goal Point
could correspond more to a lateral error than to a longitudinal error.

5.2.2. Lateral Error of the Spiral Controller

In the case of lateral error following the spirals, in 90.8% of the situations, the controller
could keep the robot at a distance less than 0.2 m of the desired turning radius (Figure 19a).
Considering that the robot’s width is 1.48 m, maintaining a distance of 0.2 m when turning
is more than satisfactory. An average of 0.12 m lateral error was obtained following the
circle, with a horizontal accuracy of ±0.02 m. Moreover, Figure 19b presents the averages
of lateral errors achieved for different turning radii. These results demonstrate that the
controller can adapt to different turning radii.
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Figure 19. Results of the Spiral Controller when the error is less than 0.5 m. (a) Histogram of the
mean lateral error; (b) graph of the mean lateral error versus diverse turning radius (the blue box
represents the interquartile range (IQR), with the median indicated by the red line within the box;
black whiskers extend to the most extreme non-outlier data points within 1.5 times the IQR from the
quartiles, while red crosses denote outliers outside this range).

5.3. Angular Error Results

The angular error refers to the difference of the robot’s orientation vector (yaw angle)
concerning the direction of the trajectory. Straight trajectories refer to the orientation in
the Cartesian XY plane of the Goal Point, while spiral trajectories are the error between
the orientation of the robot and the desired angle of rotation. In all tests, the spirals were
configured with α = π; therefore, they represented circles.
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5.3.1. Angular Error of the Lateral Controller following a Straight Path

Figure 20a presents the histogram of the lateral error in all situations where the robot
follows a straight path. Based on these data, a mean error of about −0.0033 rad was
achieved, with a variance of about 0.0034 rad2.
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5.3.2. Angular Error of the Lateral Controller following a Spiral Path

Figure 20b presents the histogram of the lateral error in all situations where the robot
follows a spiral path. A mean absolute error of about 0.0103 rad was achieved, with a
variance of approximately 0.000035829 rad2. In this case, the spiral controller presented a
more stable behavior than the lateral controller, maintaining the rotation angle.

6. Conclusions

Control and guidance systems are essential elements of mobile robots for outdoor
environments, particularly for agricultural landscapes, where ground conditions may be
unfavorable due to rugged terrain, loose soil, excessive moisture, and stones, among other
factors. This work presents a guidance manager based on a control architecture that allows
the supervision of various controllers for tracking outdoor trajectories. The controllers
developed mainly focus on straight and spiral trajectories separately, with the main purpose
of enabling the autonomous navigation of a mobile platform that carries a specialized tool
for selectively treating weeds using a high-power laser. The controllers are based on PID
control laws that seek to always maintain not only the position of the robotic platform on
the path but also its proper orientation, maintaining its integrity; this is especially essential
for navigation in crop fields. The controllers were evaluated intensively over nine months,
between January and September 2023, with a cumulative distance traveled of about 9.3 km
and a total accumulated operating time of approximately 13.4 h, on different farms in
Spain, Denmark, and Holland, thus demonstrating its ability to adapt to different scenarios,
terrain, and situations.

The controllers were evaluated taking into consideration three key performance in-
dicators: (1) the error in reaching the target point, (2) the average lateral error, and (3)
the average angular error in tracking trajectories. For the first, both the lateral and spiral
controllers affected the target’s reach error in conjunction with the linear speed controller.
Therefore, the analysis was carried out together, obtaining a mean total error of about
0.09 m for the lateral controller and 0.5 m for the spiral controller. On the other hand,
regarding the lateral error, a mean total error of approximately 0.076 m was obtained with
the lateral controller, and a mean error of about 0.12 m for the spiral controller. Based on
these tests, it is clear that the spiral controller performed worse than the linear controller,
which is basically generated by the complex terrain conditions when making such tight
turns that, in some cases, the turning radius was equal to or less than half the width of the
robot. It was shown that the performance of the spiral controller was not affected by the
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desired turning radius but that this controller, like the lateral controller, was configured to
prioritize maintaining the robot’s orientation (minimizing the angular error) by penalizing
the lateral error. Therefore, the analysis of the angular error yielded excellent results.

It is important to emphasize that the decision to prioritize the minimization of the
angular error is due to keeping the high-power laser tool aligned to the crop lines to
perform an effective treatment. This tool can adjust the lateral displacement of the targeting
system, so maintaining the orientation of the robotic system as a whole was essential.
Moreover, during all the tests, different soil conditions were encountered, including loose,
sandy soil heavily littered with stones, like in the experimental farm in Spain, or rain-
wet ground, as the farm in The Netherlands. Although different ground situations were
experienced, no significant effects were observed on the performance of the controllers.
In future work, it is necessary to continue validating these controllers and implement a
system capable of identifying and recording soil conditions in real-time to carry out a more
exhaustive analysis.

Like any PID-based controller, the main disadvantage observed in the proposed
approach is tuning the control constants. This depends on the mobile platform used, and
in some cases, it is necessary to adjust them for different ranges of nominal speeds. As
a primary future work, it is necessary to continue validating these controllers on diverse
mobile platforms with different morphologies. Moreover, the robot’s controllers could
be fine-tuned to enable different behaviors based on its location and the tool it uses, for
example, prioritizing the reduction of lateral error in road following or when the carried
implement is incapable of adjusting the lateral displacement of the tool. This requires
a controller supervisor to identify these situations and configure the controllers in real
time. This ability to automatically select such constants to define specific behaviors is
another line of research. Furthermore, it would be necessary in future work to evaluate the
performance in the change of controllers when the robot goes from tracking a straight line
to a curve path.
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