Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2383 KiB  
Article
Potential Human and Plant Pathogenic Species in Airborne PM10 Samples and Relationships with Chemical Components and Meteorological Parameters
by Salvatore Romano, Mattia Fragola, Pietro Alifano, Maria Rita Perrone and Adelfia Talà
Atmosphere 2021, 12(5), 654; https://doi.org/10.3390/atmos12050654 - 20 May 2021
Cited by 6 | Viewed by 3053
Abstract
A preliminary local database of potential (opportunistic) airborne human and plant pathogenic and non-pathogenic species detected in PM10 samples collected in winter and spring is provided, in addition to their seasonal dependence and relationships with meteorological parameters and PM10 chemical species. The PM10 [...] Read more.
A preliminary local database of potential (opportunistic) airborne human and plant pathogenic and non-pathogenic species detected in PM10 samples collected in winter and spring is provided, in addition to their seasonal dependence and relationships with meteorological parameters and PM10 chemical species. The PM10 samples, collected at a Central Mediterranean coastal site, were analyzed by the 16S rRNA gene metabarcoding approach, and Spearman correlation coefficients and redundancy discriminant analysis tri-plots were used to investigate the main relationships. The screening of 1187 detected species allowed for the detection of 76 and 27 potential (opportunistic) human and plant pathogens, respectively. The bacterial structure of both pathogenic and non-pathogenic species varied from winter to spring and, consequently, the inter-species relationships among potential human pathogens, plant pathogens, and non-pathogenic species varied from winter to spring. Few non-pathogenic species and even fewer potential human pathogens were significantly correlated with meteorological parameters, according to the Spearman correlation coefficients. Conversely, several potential plant pathogens were strongly and positively correlated with temperature and wind speed and direction both in winter and in spring. The number of strong relationships between presumptive (human and plant) pathogens and non-pathogens, and meteorological parameters slightly increased from winter to spring. The sample chemical composition also varied from winter to spring. Some potential human and plant pathogens were correlated with chemicals mainly associated with marine aerosol and/or with soil dust, likely because terrestrial and aquatic environments were the main habitats of the detected bacterial species. The carrier role on the species seasonal variability was also investigated. Full article
(This article belongs to the Special Issue Bioaerosols: Composition, Meteorological Impact, and Transport)
Show Figures

Figure 1

36 pages, 57857 KiB  
Review
Recent Advances in Our Understanding of Tropical Cyclone Intensity Change Processes from Airborne Observations
by Robert F. Rogers
Atmosphere 2021, 12(5), 650; https://doi.org/10.3390/atmos12050650 - 19 May 2021
Cited by 16 | Viewed by 5304
Abstract
Recent (past ~15 years) advances in our understanding of tropical cyclone (TC) intensity change processes using aircraft data are summarized here. The focus covers a variety of spatiotemporal scales, regions of the TC inner core, and stages of the TC lifecycle, from preformation [...] Read more.
Recent (past ~15 years) advances in our understanding of tropical cyclone (TC) intensity change processes using aircraft data are summarized here. The focus covers a variety of spatiotemporal scales, regions of the TC inner core, and stages of the TC lifecycle, from preformation to major hurricane status. Topics covered include (1) characterizing TC structure and its relationship to intensity change; (2) TC intensification in vertical shear; (3) planetary boundary layer (PBL) processes and air–sea interaction; (4) upper-level warm core structure and evolution; (5) genesis and development of weak TCs; and (6) secondary eyewall formation/eyewall replacement cycles (SEF/ERC). Gaps in our airborne observational capabilities are discussed, as are new observing technologies to address these gaps and future directions for airborne TC intensity change research. Full article
(This article belongs to the Special Issue Rapid Intensity Changes of Tropical Cyclones)
Show Figures

Figure 1

15 pages, 7600 KiB  
Article
Accelerated Time and High-Resolution 3D Modeling of the Flow and Dispersion of Noxious Substances over a Gigantic Urban Area—The EMERGENCIES Project
by Olivier Oldrini, Patrick Armand, Christophe Duchenne, Sylvie Perdriel and Maxime Nibart
Atmosphere 2021, 12(5), 640; https://doi.org/10.3390/atmos12050640 - 18 May 2021
Cited by 4 | Viewed by 2331
Abstract
Accidental or malicious releases in the atmosphere are more likely to occur in built-up areas, where flow and dispersion are complex. The EMERGENCIES project aims to demonstrate the operational feasibility of three-dimensional simulation as a support tool for emergency teams and first responders. [...] Read more.
Accidental or malicious releases in the atmosphere are more likely to occur in built-up areas, where flow and dispersion are complex. The EMERGENCIES project aims to demonstrate the operational feasibility of three-dimensional simulation as a support tool for emergency teams and first responders. The simulation domain covers a gigantic urban area around Paris, France, and uses high-resolution metric grids. It relies on the PMSS modeling system to model the flow and dispersion over this gigantic domain and on the Code_Saturne model to simulate both the close vicinity and the inside of several buildings of interest. The accelerated time is achieved through the parallel algorithms of the models. Calculations rely on a two-step approach: the flow is computed in advance using meteorological forecasts, and then on-demand release scenarios are performed. Results obtained with actual meteorological mesoscale data and realistic releases occurring both inside and outside of buildings are presented and discussed. They prove the feasibility of operational use by emergency teams in cases of atmospheric release of hazardous materials. Full article
Show Figures

Figure 1

23 pages, 93677 KiB  
Article
Exposure Assessment of Climate Extremes over the Europe–Mediterranean Region
by Mehmet Barış Kelebek, Fulden Batibeniz and Barış Önol
Atmosphere 2021, 12(5), 633; https://doi.org/10.3390/atmos12050633 - 17 May 2021
Cited by 16 | Viewed by 4200
Abstract
The use of a compact set of climate change indexes enhances our understanding of the combined impacts of extreme climatic conditions. In this study, we developed the modified Climate Extremes Index (mCEI) to obtain unified information about different types of extremes. For this [...] Read more.
The use of a compact set of climate change indexes enhances our understanding of the combined impacts of extreme climatic conditions. In this study, we developed the modified Climate Extremes Index (mCEI) to obtain unified information about different types of extremes. For this purpose, we calculated 10 different climate change indexes considering the temperature extremes, extreme precipitation, and moisture surplus and drought over the Europe–Mediterranean (EURO–MED) region for the 1979–2016 period. As a holistic approach, mCEI provides spatiotemporal information, and the high-resolution grid-based data allow us to accomplish detailed country-based and city-based analyses. The analyses indicate that warm temperature extremes rise significantly over the EURO–MED region at a rate of 1.9% decade−1, whereas the cold temperature extremes decrease. Extreme drought has a significant increasing trend of 3.8% decade−1. Although there are regional differences, extreme precipitation indexes have a significant increasing tendency. According to the mCEI, the major hotspots for the combined extremes are the Mediterranean coasts, the Balkan countries, Eastern Europe, Iceland, western Russia, western Turkey, and western Iraq. The decadal changes of mCEI for these regions are in the range of 3–5% decade−1. The city-scale analysis based on urbanized locations reveals that Fes (Morocco), Izmir (Turkey), Marseille and Aix-en-Provence (France), and Tel Aviv (Israel) have the highest increasing trend of mCEI, which is greater than 3.5% decade−1. Full article
Show Figures

Graphical abstract

13 pages, 19913 KiB  
Article
Human Health Risk Assessment of Air Pollution in the Regions of Unsustainable Heating Sources. Case Study—The Tourist Areas of Southern Poland
by Agnieszka Gruszecka-Kosowska, Jacek Dajda, Ewa Adamiec, Edeltrauda Helios-Rybicka, Marek Kisiel-Dorohinicki, Radosław Klimek, Dariusz Pałka and Jarosław Wąs
Atmosphere 2021, 12(5), 615; https://doi.org/10.3390/atmos12050615 - 10 May 2021
Cited by 6 | Viewed by 2753
Abstract
Air pollution is one of the main factors affecting human health. Air quality is especially important in the tourist areas developed with facilities for outdoor activities. During the winter season of 2017/2018, the concentrations of particulate matter (PM10, PM2.5, [...] Read more.
Air pollution is one of the main factors affecting human health. Air quality is especially important in the tourist areas developed with facilities for outdoor activities. During the winter season of 2017/2018, the concentrations of particulate matter (PM10, PM2.5, PM1), CO, O3, and NO2 were studied in 12 attractive tourist villages in the surroundings of the Czorsztyn Reservoir in southern Poland. Air pollutant measurements were performed continuously, using a single ground-based Alphasense air sensor. Our assessment of human health risk (HHRA), arising from inhalation exposure to air contaminants, was calculated for both local inhabitants and tourists, based on actual measured values. It was found that pollutant concentrations exceeded both permissible and recommended levels of PM10 and PM2.5. The mean total noncarcinogenic risk values were equal to 9.58 (unitless) for adults and 9.68 (unitless) for children and infants, under the resident exposure scenario. However, under the tourist exposure scenario, the mean total risk was equal to 1.63 (unitless) for adults and 1.64 (unitless) for children and infants. The risk to tourists was lower than that to inhabitants due to shorter exposure times. The target non-carcinogenic value of 1, calculated for PM10, PM2.5, and NO2, was significantly exceeded in total risk, under the residential exposure scenario, in reference to all the local subpopulations. In the majority of the investigated locations, the total risk exceeded the value of 1, under the tourist scenario, for all the subpopulations analysed. PM2.5 was recognised to be the most important contaminant in our risk analysis, in view of its share in the total risk value. Full article
(This article belongs to the Special Issue Air Pollution, Air Quality and Human Health)
Show Figures

Figure 1

27 pages, 4702 KiB  
Article
Aerosol and Cloud Detection Using Machine Learning Algorithms and Space-Based Lidar Data
by John E. Yorks, Patrick A. Selmer, Andrew Kupchock, Edward P. Nowottnick, Kenneth E. Christian, Daniel Rusinek, Natasha Dacic and Matthew J. McGill
Atmosphere 2021, 12(5), 606; https://doi.org/10.3390/atmos12050606 - 7 May 2021
Cited by 20 | Viewed by 5490
Abstract
Clouds and aerosols play a significant role in determining the overall atmospheric radiation budget, yet remain a key uncertainty in understanding and predicting the future climate system. In addition to their impact on the Earth’s climate system, aerosols from volcanic eruptions, wildfires, man-made [...] Read more.
Clouds and aerosols play a significant role in determining the overall atmospheric radiation budget, yet remain a key uncertainty in understanding and predicting the future climate system. In addition to their impact on the Earth’s climate system, aerosols from volcanic eruptions, wildfires, man-made pollution events and dust storms are hazardous to aviation safety and human health. Space-based lidar systems provide critical information about the vertical distributions of clouds and aerosols that greatly improve our understanding of the climate system. However, daytime data from backscatter lidars, such as the Cloud-Aerosol Transport System (CATS) on the International Space Station (ISS), must be averaged during science processing at the expense of spatial resolution to obtain sufficient signal-to-noise ratio (SNR) for accurately detecting atmospheric features. For example, 50% of all atmospheric features reported in daytime operational CATS data products require averaging to 60 km for detection. Furthermore, the single-wavelength nature of the CATS primary operation mode makes accurately typing these features challenging in complex scenes. This paper presents machine learning (ML) techniques that, when applied to CATS data, (1) increased the 1064 nm SNR by 75%, (2) increased the number of layers detected (any resolution) by 30%, and (3) enabled detection of 40% more atmospheric features during daytime operations at a horizontal resolution of 5 km compared to the 60 km horizontal resolution often required for daytime CATS operational data products. A Convolutional Neural Network (CNN) trained using CATS standard data products also demonstrated the potential for improved cloud-aerosol discrimination compared to the operational CATS algorithms for cloud edges and complex near-surface scenes during daytime. Full article
(This article belongs to the Special Issue Lidar Remote Sensing Techniques for Atmospheric Aerosols)
Show Figures

Figure 1

18 pages, 524 KiB  
Article
On the uU Relationship in the Stable Atmospheric Boundary Layer over Arctic Sea Ice
by Dmitry Chechin
Atmosphere 2021, 12(5), 591; https://doi.org/10.3390/atmos12050591 - 2 May 2021
Cited by 3 | Viewed by 2153
Abstract
A relationship between the friction velocity u and mean wind speed U in a stable atmospheric boundary layer (ABL) over Arctic sea ice was considered. To that aim, the observations collected during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment [...] Read more.
A relationship between the friction velocity u and mean wind speed U in a stable atmospheric boundary layer (ABL) over Arctic sea ice was considered. To that aim, the observations collected during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment were used. The observations showed the so-called “hockey-stick” shape of the uU relationship, which consists of a slow increase of u with increasing wind speed for U<Utr and a more rapid almost linear increase of u for U>Utr, where Utr is the wind speed of transition between the two regimes. Such a relationship is most pronounced at the highest observational levels, namely at 9 and 14 m, and is also sharper when the air-surface temperature difference exceeds its average values for stable conditions. It is shown that the Monin–Obukhov similarity theory (MOST) reproduces the observed uU relationship rather well. This suggests that at least for the SHEBA dataset, there is no contradiction between MOST and the “hockey-stick” shape of the uU relationship. However, the SHEBA data, as well as the single-column simulations show that for cases with strong stability, u significantly decreases with height due to the shallowness of the ABL. It was shown that when u was assumed independent of height, the value of the normalized drag coefficient, i.e., of the so-called stability correction function for momentum, calculated using observations at a certain level, can be significantly underestimated. To overcome this, the decrease of u with height was taken into account in the framework of MOST using local scaling instead of the scaling with surface fluxes. Using such an extended MOST brought the estimates of the normalized drag coefficient closer to the Businger–Dyer relation. Full article
(This article belongs to the Special Issue The Stable Boundary Layer: Observations and Modeling)
Show Figures

Figure 1

13 pages, 1076 KiB  
Article
Polarimetric Radar Characteristics of Tornadogenesis Failure in Supercell Thunderstorms
by Matthew Van Den Broeke
Atmosphere 2021, 12(5), 581; https://doi.org/10.3390/atmos12050581 - 30 Apr 2021
Cited by 6 | Viewed by 2372
Abstract
Many nontornadic supercell storms have times when they appear to be moving toward tornadogenesis, including the development of a strong low-level vortex, but never end up producing a tornado. These tornadogenesis failure (TGF) episodes can be a substantial challenge to operational meteorologists. In [...] Read more.
Many nontornadic supercell storms have times when they appear to be moving toward tornadogenesis, including the development of a strong low-level vortex, but never end up producing a tornado. These tornadogenesis failure (TGF) episodes can be a substantial challenge to operational meteorologists. In this study, a sample of 32 pre-tornadic and 36 pre-TGF supercells is examined in the 30 min pre-tornadogenesis or pre-TGF period to explore the feasibility of using polarimetric radar metrics to highlight storms with larger tornadogenesis potential in the near-term. Overall the results indicate few strong distinguishers of pre-tornadic storms. Differential reflectivity (ZDR) arc size and intensity were the most promising metrics examined, with ZDR arc size potentially exhibiting large enough differences between the two storm subsets to be operationally useful. Change in the radar metrics leading up to tornadogenesis or TGF did not exhibit large differences, though most findings were consistent with hypotheses based on prior findings in the literature. Full article
(This article belongs to the Special Issue Radar Applications for Severe Weather Understanding and Nowcasting)
Show Figures

Figure 1

20 pages, 2341 KiB  
Article
Basic Statistical Estimation Outperforms Machine Learning in Monthly Prediction of Seasonal Climatic Parameters
by Eslam A. Hussein, Mehrdad Ghaziasgar, Christopher Thron, Mattia Vaccari and Antoine Bagula
Atmosphere 2021, 12(5), 539; https://doi.org/10.3390/atmos12050539 - 23 Apr 2021
Cited by 6 | Viewed by 3150
Abstract
Machine learning (ML) has been utilized to predict climatic parameters, and many successes have been reported in the literature. In this paper, we scrutinize the effectiveness of five widely used ML algorithms in the monthly prediction of seasonal climatic parameters using monthly image [...] Read more.
Machine learning (ML) has been utilized to predict climatic parameters, and many successes have been reported in the literature. In this paper, we scrutinize the effectiveness of five widely used ML algorithms in the monthly prediction of seasonal climatic parameters using monthly image data. Specifically, we quantify the predictive performance of these algorithms applied to five climatic parameters using various combinations of features. We compare the predictive accuracy of the resulting trained ML models to that of basic statistical estimators that are computed directly from the training data. Our results show that ML never significantly outperforms the statistical baseline, and underperforms for most feature sets. Unlike previous similar studies, we provide error bars for the relative performance of different predictors based on jackknife estimates applied to differences in predictive error magnitudes. We also show that the practice of shuffling data sequences which was employed in some previous references leads to data leakage, resulting in over-estimated performance. Ultimately, the paper demonstrates the importance of using well-grounded statistical techniques when producing and analyzing the results of ML predictive models. Full article
(This article belongs to the Special Issue Statistical Methods in Weather Forecasting)
Show Figures

Figure 1

20 pages, 6132 KiB  
Article
A Machine Learning Based Ensemble Forecasting Optimization Algorithm for Preseason Prediction of Atlantic Hurricane Activity
by Xia Sun, Lian Xie, Shahil Umeshkumar Shah and Xipeng Shen
Atmosphere 2021, 12(4), 522; https://doi.org/10.3390/atmos12040522 - 20 Apr 2021
Cited by 9 | Viewed by 2915
Abstract
In this study, nine different statistical models are constructed using different combinations of predictors, including models with and without projected predictors. Multiple machine learning (ML) techniques are employed to optimize the ensemble predictions by selecting the top performing ensemble members and determining the [...] Read more.
In this study, nine different statistical models are constructed using different combinations of predictors, including models with and without projected predictors. Multiple machine learning (ML) techniques are employed to optimize the ensemble predictions by selecting the top performing ensemble members and determining the weights for each ensemble member. The ML-Optimized Ensemble (ML-OE) forecasts are evaluated against the Simple-Averaging Ensemble (SAE) forecasts. The results show that for the response variables that are predicted with significant skill by individual ensemble members and SAE, such as Atlantic tropical cyclone counts, the performance of SAE is comparable to the best ML-OE results. However, for response variables that are poorly modeled by individual ensemble members, such as Atlantic and Gulf of Mexico major hurricane counts, ML-OE predictions often show higher skill score than individual model forecasts and the SAE predictions. However, neither SAE nor ML-OE was able to improve the forecasts of the response variables when all models show consistent bias. The results also show that increasing the number of ensemble members does not necessarily lead to better ensemble forecasts. The best ensemble forecasts are from the optimally combined subset of models. Full article
(This article belongs to the Special Issue Machine Learning Applications in Earth System Science)
Show Figures

Figure 1

22 pages, 20329 KiB  
Article
Understanding the Role of Mean and Eddy Momentum Transport in the Rapid Intensification of Hurricane Irma (2017) and Hurricane Michael (2018)
by Alrick Green, Sundararaman G. Gopalakrishnan, Ghassan J. Alaka, Jr. and Sen Chiao
Atmosphere 2021, 12(4), 492; https://doi.org/10.3390/atmos12040492 - 14 Apr 2021
Cited by 4 | Viewed by 3011
Abstract
The prediction of rapid intensification (RI) in tropical cyclones (TCs) is a challenging problem. In this study, the RI process and factors contributing to it are compared for two TCs: an axis-symmetric case (Hurricane Irma, 2017) and an asymmetric case (Hurricane Michael, 2018). [...] Read more.
The prediction of rapid intensification (RI) in tropical cyclones (TCs) is a challenging problem. In this study, the RI process and factors contributing to it are compared for two TCs: an axis-symmetric case (Hurricane Irma, 2017) and an asymmetric case (Hurricane Michael, 2018). Both Irma and Michael became major hurricanes that made significant impacts in the United States. The Hurricane Weather Research and Forecasting (HWRF) Model was used to examine the connection between RI with forcing from the large-scale environment and the subsequent evolution of TC structure and convection. The observed large-scale environment was reasonably reproduced by HWRF forecasts. Hurricane Irma rapidly intensified in an environment with weak-to-moderate vertical wind shear (VWS), typically favorable for RI, leading to the symmetric development of vortical convective clouds in the cyclonic, vorticity-rich environment. Conversely, Hurricane Michael rapidly intensified in an environment of strong VWS, typically unfavorable for RI, leading to major asymmetries in the development of vortical convective clouds. The tangential wind momentum budget was analyzed for these two hurricanes to identify similarities and differences in the pathways to RI. Results suggest that eddy transport terms associated with convective processes positively contributed to vortex spin up in the early stages of RI and inhibited spin up in the later stages of RI in both TCs. In the early stages of RI, the mean transport terms exhibited notable differences in these TCs; they dominated the spin-up process in Irma and were of secondary importance to the spin-up process in Michael. Favorable aspects of the environment surrounding Michael appeared to aid in the RI process despite hostile VWS. Full article
(This article belongs to the Special Issue Rapid Intensity Changes of Tropical Cyclones)
Show Figures

Figure 1

22 pages, 857 KiB  
Review
Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances
by Fotoula Droulia and Ioannis Charalampopoulos
Atmosphere 2021, 12(4), 495; https://doi.org/10.3390/atmos12040495 - 14 Apr 2021
Cited by 81 | Viewed by 11290
Abstract
Climate change is a continuous spatiotemporal reality, possibly endangering the viability of the grapevine (Vitis vinifera L.) in the future. Europe emerges as an especially responsive area where the grapevine is largely recognised as one of the most important crops, playing a [...] Read more.
Climate change is a continuous spatiotemporal reality, possibly endangering the viability of the grapevine (Vitis vinifera L.) in the future. Europe emerges as an especially responsive area where the grapevine is largely recognised as one of the most important crops, playing a key environmental and socio-economic role. The mounting evidence on significant impacts of climate change on viticulture urges the scientific community in investigating the potential evolution of these impacts in the upcoming decades. In this review work, a first attempt for the compilation of selected scientific research on this subject, during a relatively recent time frame (2010–2020), is implemented. For this purpose, a thorough investigation through multiple search queries was conducted and further screened by focusing exclusively on the predicted productivity parameters (phenology timing, product quality and yield) and cultivation area alteration. Main findings on the potential impacts of future climate change are described as changes in grapevine phenological timing, alterations in grape and wine composition, heterogeneous effects on grapevine yield, the expansion into areas that were previously unsuitable for grapevine cultivation and significant geographical displacements in traditional growing areas. These compiled findings may facilitate and delineate the implementation of effective adaptation and mitigation strategies, ultimately potentiating the future sustainability of European viticulture. Full article
Show Figures

Figure 1

12 pages, 945 KiB  
Article
Estimations of the Erythemal UV Doses and the Amount of the Sun-Synthesized Vitamin D by Adults during the Cruise to Spitsbergen–Polar Measurement Campaign (2–21 July 2017)
by Agnieszka Czerwińska and Wiktoria Czuchraj
Atmosphere 2021, 12(4), 474; https://doi.org/10.3390/atmos12040474 - 9 Apr 2021
Cited by 3 | Viewed by 1959
Abstract
UV index (UVI) measurements were carried out by the hand-held instrument Solarmeter 6.5 onboard of MS Horyzont II during the cruise from Poland (Gdynia) to Spitsbergen (and back) in the period from 2 to 21 July 2017. A method is proposed to estimate [...] Read more.
UV index (UVI) measurements were carried out by the hand-held instrument Solarmeter 6.5 onboard of MS Horyzont II during the cruise from Poland (Gdynia) to Spitsbergen (and back) in the period from 2 to 21 July 2017. A method is proposed to estimate the erythemal doses and sun-synthesized amount of vitamin D from a limited number of daily UVI observations. This study shows that the erythema could appear in a person with Caucasian type of skin characterized by Minimum Erythema Dose (MED) ~250 J m−2 after ~1 h exposure near the polar circle and up to few hours in the Svalbard. During this time, it was possible to get the dose of vitamin D3 equivalent to ~1000 IU of oral intake. The protection against UV overexposure should be applied even if UVI values during the cruise in the Arctic were always below the World Meteorological Organization (WMO) warning threshold of 3. To provide adequate amount of vitamin D, the exposure should be continued until getting 1 MED, after which the vitamin supplementation (or a diet rich in vitamin D) is necessary. Full article
(This article belongs to the Section Biometeorology)
Show Figures

Figure 1

20 pages, 7672 KiB  
Article
Comparative Numerical Study of PM2.5 in Exit-and-Entrance Areas Associated with Transboundary Transport over China, Japan, and Korea
by Cheol-Hee Kim, Fan Meng, Mizuo Kajino, Jaehyun Lim, Wei Tang, Jong-Jae Lee, Yusuke Kiriyama, Jung-Hun Woo, Keiichi Sato, Toshihiro Kitada, Hiroaki Minoura, Jiyoung Kim, Kyoung-Bin Lee, Soona Roh, Hyun-Young Jo and Yu-Jin Jo
Atmosphere 2021, 12(4), 469; https://doi.org/10.3390/atmos12040469 - 8 Apr 2021
Cited by 17 | Viewed by 3334
Abstract
We report the results of year-long PM2.5 (particulate matter less than 2.5 µm in diameter) simulations over Northeast Asia for the base year of 2013 under the framework of the Long-range Transboundary Air Pollutants in Northeast Asia (LTP) project. LTP is a [...] Read more.
We report the results of year-long PM2.5 (particulate matter less than 2.5 µm in diameter) simulations over Northeast Asia for the base year of 2013 under the framework of the Long-range Transboundary Air Pollutants in Northeast Asia (LTP) project. LTP is a tripartite project launched by China, Japan, and Korea for cooperative monitoring and modeling of the long-range transport (LRT) of air pollutants. In the modeling aspect in the LTP project, each country’s modeling group employs its own original air quality model and options. The three regional air quality models employed by the modeling groups are WRF-CAMx, NHM-RAQM2, and WRF-CMAQ. PM2.5 concentrations were simulated in remote exit-and-entrance areas associated with the LRT process over China, Japan, and Korea. The results showed apparent bias that remains unexplored due to a series of uncertainties from emission estimates and inherent model limitations. The simulated PM10 levels at seven remote exit-and-entrance sites were underestimated with the normalized mean bias of 0.4 ± 0.2. Among the four chemical components of PM2.5 (SO42−, NO3, organic carbon (OC), and elemental carbon (EC)), the largest inter-model variability was in OC, with the second largest discrepancy in NO3. Our simulation results also indicated that under considerable SO42− levels, favorable environments for ammonium nitrate formation were found in exit-and-entrance areas between China and Korea, and gas-aerosol partitioning for semi-volatile species of ammonium nitrate could be fully achieved prior to arrival at the entrance areas. Other chemical characteristics, including NO3/SO42− and OC/EC ratios, are discussed to diagnose the LRT characteristics of PM2.5 in exit-and-entrance areas associated with transboundary transport over China, Japan, and Korea. Full article
(This article belongs to the Special Issue Aerosol Pollution in Asia)
Show Figures

Figure 1

17 pages, 4078 KiB  
Article
The Environmental Effects of the April 2020 Wildfires and the Cs-137 Re-Suspension in the Chernobyl Exclusion Zone: A Multi-Hazard Threat
by Rocío Baró, Christian Maurer, Jerome Brioude, Delia Arnold and Marcus Hirtl
Atmosphere 2021, 12(4), 467; https://doi.org/10.3390/atmos12040467 - 8 Apr 2021
Cited by 6 | Viewed by 2423
Abstract
This paper demonstrates the environmental impacts of the wildfires occurring at the beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ). Due to the critical fire location, concerns arose about secondary radioactive contamination potentially spreading over Europe. The [...] Read more.
This paper demonstrates the environmental impacts of the wildfires occurring at the beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ). Due to the critical fire location, concerns arose about secondary radioactive contamination potentially spreading over Europe. The impact of the fire was assessed through the evaluation of fire plume dispersion and re-suspension of the radionuclide Cs-137, whereas, to assess the smoke plume effect, a WRF-Chem simulation was performed and compared to Tropospheric Monitoring Instrument (TROPOMI) satellite columns. The results show agreement of the simulated black carbon and carbon monoxide plumes with the plumes as observed by TROPOMI, where pollutants were also transported to Belarus. From an air quality and health perspective, the wildfires caused extremely bad air quality over Kiev, where the WRF-Chem model simulated mean values of PM2.5 up to 300 µg/m3 (during the first fire outbreak) over CEZ. The re-suspension of Cs-137 was assessed by a Bayesian inverse modelling approach using FLEXPART as the atmospheric transport model and Ukraine observations, yielding a total release of 600 ± 200 GBq. The increase in both smoke and Cs-137 emissions was only well correlated on the 9 April, likely related to a shift of the focus area of the fires. From a radiological point of view even the highest Cs-137 values (average measured or modelled air concentrations and modelled deposition) at the measurement site closest to the Chernobyl Nuclear Power Plant, i.e., Kiev, posed no health risk. Full article
Show Figures

Figure 1

16 pages, 4443 KiB  
Article
Vertical Characteristics of Pollution Transport in Hong Kong and Beijing, China
by Xin Yang, Wei Qian, Daoyi Gong, Chuanfeng Zhao, Pak-wai Chan, Wei Zhou, Yu Huang, Fang Zhang and Zhigang Li
Atmosphere 2021, 12(4), 457; https://doi.org/10.3390/atmos12040457 - 4 Apr 2021
Cited by 6 | Viewed by 2753
Abstract
Transported pollution plays an important role in the atmospheric environment of eastern China. This study analyzed the characteristics of surface winds at different air quality levels using meteorological station observations of both wind and mass concentrations of particulate matter with aerodynamic diameters <2.5 [...] Read more.
Transported pollution plays an important role in the atmospheric environment of eastern China. This study analyzed the characteristics of surface winds at different air quality levels using meteorological station observations of both wind and mass concentrations of particulate matter with aerodynamic diameters <2.5 μm (PM2.5) over Hong Kong and Beijing. In recent decades, wind directions at the surface exhibit a similar pattern for both good and poor air quality levels at all three stations, indicating a weak relationship between surface winds and air quality in Hong Kong. However, winds at a height of 1–2 km govern pollution accumulation. This dominant role is illustrated by a sudden change in wind direction within this layer and a simultaneous pollution accumulation stage on 8 January 2014. The controlling influence of winds at 1–2 km on both the deterioration and improvement of air quality is also supported by a distinct vertical wind distribution for all 21 monotonic increasing stages and 17 decreasing stages of PM2.5. In contrast, air pollution is transported to Beijing throughout the atmospheric layer that extends from the surface to a height of more than 3 km. This key difference may be due to variations in meteorology, topography, and emission sources between Hong Kong and Beijing. The results that layer of 1–2 km in Hong Kong and of surface to 3 km in Beijing is the height where pollution transport is most likely to occur are critical for forecasting severe haze episodes in eastern China. Full article
(This article belongs to the Special Issue Aerosol Pollution in Asia)
Show Figures

Figure 1

23 pages, 10102 KiB  
Article
Future Irrigation Water Requirements of the Main Crops Cultivated in the Niger River Basin
by Abdoulaye Oumarou Abdoulaye, Haishen Lu, Yonghua Zhu and Yousef Alhaj Hamoud
Atmosphere 2021, 12(4), 439; https://doi.org/10.3390/atmos12040439 - 29 Mar 2021
Cited by 9 | Viewed by 3694
Abstract
Precise agricultural predictions of climate change effects on crop water productivity are essential to ensure food security and alleviate water scarcity. In this regard, the present study provides an overview of the future impacts of climate change on the irrigation of agricultural products [...] Read more.
Precise agricultural predictions of climate change effects on crop water productivity are essential to ensure food security and alleviate water scarcity. In this regard, the present study provides an overview of the future impacts of climate change on the irrigation of agricultural products such as rice, millet, maize, cassava, sorghum, and sugar cane. These crops are some of the most-consumed foodstuffs in countries of the Niger River basin. This study is realized throughout 2020 to 2080, and three Global Climate Models (GCMs) (CSIRO, MIROC5, and ECHAM. MPI-ESM-LR) have been used. The GCMs data have been provided by the IPCC5 database. The irrigation water requirement for each crop was calculated using Smith’s CROPWAT approach. The Penman–Monteith equation recommended by the FAO was used to calculate the potential evapotranspiration. The inter-annual results of the IWR, according to the set of models selected, illustrate that the largest quantities of water used for irrigation are generally observed between January and March, and the lowest quantities are the most often seen between July and September. The majority of models also illustrate a peak in the IWR between March and April. Sorghum and millet are the crops consuming the least amount of water for irrigation; followed by cassava, then rice and corn, and finally sugar cane. The most significant IWRs, which have been predicted, will be between 16.3 mm/day (MIROC5 model, RCP 4.5) and 45.9 mm/day (CSIRO model, RCP 4.5), particularly in Mali, Niger, Algeria, and rarely in Burkina-Faso (CSIRO model, RCP4.5 and 8.5). The lowest IWRs predicted by the models will be from 1.29 mm/day (MIROC5 model, RCP 4.5) to 33.4 mm/day (CSIRO model, RCP 4.5); they will be observed according to the models in Guinea, southern Mali, Ivory Coast, center and southern Nigeria, and Cameroon. However, models predict sugarcane to be the plant with the highest IWR, between 0.25 mm/day (Benin in 2020–2040) and 25.66 mm/day (Chad in 2060–2080). According to the models’ predictions, millet is the crop with the most IWR, between 0.20 mm/day (Benin from 2020 to 2060) and 19.37 mm/day (Chad in 2060–2080). With the results of this study, the countries belonging to the Niger River basin can put in place robust policies in the water resources and agriculture sectors, thus ensuring food security and high-quality production of staple crops, and avoiding water scarcity while facing the negative impacts of climate change. Full article
Show Figures

Figure 1

10 pages, 272 KiB  
Review
Particulate Matter and Associated Metals: A Link with Neurotoxicity and Mental Health
by Nicole A. Potter, Gabriella Y. Meltzer, Oyemwenosa N. Avenbuan, Amna Raja and Judith T. Zelikoff
Atmosphere 2021, 12(4), 425; https://doi.org/10.3390/atmos12040425 - 26 Mar 2021
Cited by 31 | Viewed by 4227
Abstract
Particulate air pollution (PM) is a mixture of heterogenous components from natural and anthropogenic sources and contributes to a variety of serious illnesses, including neurological and behavioral effects, as well as millions of premature deaths. Ultrafine (PM0.1) and fine-size ambient particles [...] Read more.
Particulate air pollution (PM) is a mixture of heterogenous components from natural and anthropogenic sources and contributes to a variety of serious illnesses, including neurological and behavioral effects, as well as millions of premature deaths. Ultrafine (PM0.1) and fine-size ambient particles (PM2.5) can enter the circulatory system and cross the blood–brain barrier or enter through the optic nerve, and then upregulate inflammatory markers and increase reactive oxygen species (ROS) in the brain. Toxic and neurotoxic metals such as manganese (Mn), zinc (Zn), lead (Pb), copper (Cu), nickel (Ni), and barium (Ba) can adsorb to the PM surface and potentially contribute to the neurotoxic effects associated with PM exposure. Epidemiological studies have shown a negative relationship between exposure to PM-associated Mn and neurodevelopment amongst children, as well as impaired dexterity in the elderly. Inhaled PM-associated Cu has also been shown to impair motor performance and alter basal ganglia in schoolchildren. This paper provides a brief review of the epidemiological and toxicological studies published over the last five years concerning inhaled PM, PM-relevant metals, neurobiology, and mental health outcomes. Given the growing interest in mental health and the fact that 91% of the world’s population is considered to be exposed to unhealthy air, more research on PM and PM-associated metals and neurological health is needed for future policy decisions and strategic interventions to prevent public harm. Full article
(This article belongs to the Special Issue Metals in Ambient Particles: Sources and Effects on Human Health)
33 pages, 10460 KiB  
Article
Cloud Cover over the Sahara during the Summer and Associated Circulation Features
by Nada Selami, Geneviève Sèze, Marco Gaetani, Jean-Yves Grandpeix, Cyrille Flamant, Juan Cuesta and Noureddine Benabadji
Atmosphere 2021, 12(4), 428; https://doi.org/10.3390/atmos12040428 - 26 Mar 2021
Cited by 2 | Viewed by 4120
Abstract
Over the Sahara in summer, the activity of the Saharan thermal low pressure system (SHL), which is linked to the West-African monsoon dynamics and the mid-latitude circulation, is modulated by dust concentration and water-vapor transport. In this context, the role of clouds over [...] Read more.
Over the Sahara in summer, the activity of the Saharan thermal low pressure system (SHL), which is linked to the West-African monsoon dynamics and the mid-latitude circulation, is modulated by dust concentration and water-vapor transport. In this context, the role of clouds over western Sahara remains under-investigated. Using Meteosat-Second-Generation geostationary satellite data, for the first time the variability of cloud occurrence over Sahara by type in summer, at diurnal, daily and intra-seasonal time scales for the 2008–2014 period is documented. Using European Center for Medium-range Weather Forecasting (ECMWF) Reanalysis (ERA) Interim (ERAI) reanalysis, cloud cover occurrences are characterized in terms of regional circulation patterns and moisture balance. We show that, over West-Sahara and Hoggar, mid-top clouds are the most frequent cloud-type in summer. Their summit reaches between 500 hPa and 400 hPa and lies just above the top of the Saharan Atmospheric Boundary Layer (SABL). During the rest of the year, high-top clouds are the most frequent. The variations in the spatial distribution of mid-top cloud occurrence coincide with the seasonal displacement and strengthening of the SHL and, in the mid-troposphere, of the Saharan anticyclone. Mid-top clouds occur most frequently when, at large scale, mass and humidity converge in the lower SABL due to heating on an extensive surface, and diverge in the upper SABL. Their diurnal cycle, with minimal frequency around 10 UTC and maximum in the evening, is consistent with the diurnal development of the Saharan Convective-Boundary-Layer. The frequency of high cloud increases when anticyclonic circulations at mid-level and upper-level retreat to the southeast and upper-level trough from mid-latitudes can penetrate more southwards. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 3376 KiB  
Article
Estimation of Elements’ Concentration in Air in Kosovo through Mosses as Biomonitors
by Musaj Paçarizi, Trajče Stafilov, Robert Šajn, Krste Tašev and Flamur Sopaj
Atmosphere 2021, 12(4), 415; https://doi.org/10.3390/atmos12040415 - 24 Mar 2021
Cited by 6 | Viewed by 4426
Abstract
Elements atmospheric deposition was studied by mosses method in Kosovo. Mosses are a very useful tool for atmospheric deposition of elements monitoring, owing to their physiological and morphological characteristics. Moss samples were collected from 45 locations, they were cleaned from leaves, twigs and [...] Read more.
Elements atmospheric deposition was studied by mosses method in Kosovo. Mosses are a very useful tool for atmospheric deposition of elements monitoring, owing to their physiological and morphological characteristics. Moss samples were collected from 45 locations, they were cleaned from leaves, twigs and other materials, they were grinded, digested in a microwave system and analyzed by spectroscopy Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). A total of 25 elements concentration in collected moss samples was determined: Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Ti, Tl, V and Zn. Extremely high concentrations of Pb and Zn were found in moss samples from the areas of Zveçan and Stanterg where the ore processing facilities are located, as well as the tailings landfill in Mitrovica which is nearby in the south, which reflects eminent air pollution. High concentrations of As and Cd were also measured in the same sampling points. The obtained results were processed by multivariate statistical analysis/factor analysis, which resulted in four factors, one anthropogenic and three geogenic or mixed geogenic-anthropogenic. The factor analysis revealed that the area with the highest atmospheric deposition of potentially toxic elements is the basin of Kosovo, from the north in Leposaviç to the south in Hani i Elezit because of the industrial plants laying in this line. Full article
(This article belongs to the Section Biometeorology)
Show Figures

Figure 1

18 pages, 5508 KiB  
Article
Improved Algorithms for Remote Sensing-Based Aerosol Retrieval during Extreme Biomass Burning Events
by Sonoyo Mukai, Itaru Sano and Makiko Nakata
Atmosphere 2021, 12(3), 403; https://doi.org/10.3390/atmos12030403 - 20 Mar 2021
Cited by 17 | Viewed by 2665
Abstract
This study proposed an aerosol characterization process using satellites for severe biomass burning events. In general, these severely hazy cases are labeled as “undecided” or “hazy.” Because atmospheric aerosols are significantly affected by factors such as air quality, global climate change, local environmental [...] Read more.
This study proposed an aerosol characterization process using satellites for severe biomass burning events. In general, these severely hazy cases are labeled as “undecided” or “hazy.” Because atmospheric aerosols are significantly affected by factors such as air quality, global climate change, local environmental risk, and human and biological health, efficient and accurate algorithms for aerosol retrieval are required for global satellite data processing. Our previous classification of aerosol types was based primarily on near-ultraviolet (UV) data, which facilitated subsequent aerosol retrieval. In this study, algorithms for aerosol classification were expanded to events with serious biomass burning aerosols (SBBAs). Once a biomass burning event is identified, the appropriate radiation simulation method can be applied to characterize the SBBAs. The second-generation global imager (SGLI) on board the Japanese mission JAXA/Global Change Observation Mission-Climate contains 19 channels, including red (674 nm) and near-infrared (869 nm) polarization channels with a high resolution of 1 km. Using the large-scale wildfires in Kalimantan, Indonesia in 2019 as an example, the complementarity between the polarization information and the nonpolarized radiance measurements from the SGLI was demonstrated to be effective in radiation simulations for biomass burning aerosol retrieval. The retrieved results were verified using NASA/AERONET ground-based measurements, and then compared against JAXA/SGLI/L2-version-1 products, and JMA/Himawari-8/AHI observations. Full article
(This article belongs to the Special Issue Aerosol Pollution in Asia)
Show Figures

Figure 1

22 pages, 5663 KiB  
Article
Balloons and Quadcopters: Intercomparison of Two Low-Cost Wind Profiling Methods
by Mikhail Varentsov, Victor Stepanenko, Irina Repina, Arseniy Artamonov, Vasiliy Bogomolov, Natalia Kuksova, Ekaterina Marchuk, Artem Pashkin and Alexander Varentsov
Atmosphere 2021, 12(3), 380; https://doi.org/10.3390/atmos12030380 - 14 Mar 2021
Cited by 17 | Viewed by 3299
Abstract
Experimental field campaigns are an essential part of atmospheric research, as well as of university education in the field of atmospheric physics and meteorology. Experimental field observations are needed to improve the understanding of the surface-atmosphere interaction and atmospheric boundary layer (ABL) physics [...] Read more.
Experimental field campaigns are an essential part of atmospheric research, as well as of university education in the field of atmospheric physics and meteorology. Experimental field observations are needed to improve the understanding of the surface-atmosphere interaction and atmospheric boundary layer (ABL) physics and develop corresponding model parameterizations. Information on the ABL wind profiles is essential for the interpretation of other observations. However, wind profile measurements above the surface layer remain challenging and expensive, especially for the field campaigns performed in remote places and harsh conditions. In this study, we consider the experience of using two low-cost methods for the wind profiling, which may be easily applied in the field studies with modest demands on logistical opportunities, available infrastructure, and budget. The first one is a classical and well-known method of pilot balloon sounding, i.e., when balloon is treated as a Lagrangian particle and tracked by theodolite observations of angular coordinates. Second one is based on a vertical sounding with a popular and relatively cheap mass-market quadcopter DJI Phantom 4 Pro and utilizes its built-in opportunity to restore the wind vector from quadcopter tilt angles. Both methods demonstrated reasonable agreement and applicability even in harsh weather conditions and complex terrain. Advantages and shortcomings of these methods, as well as practical recommendations for their use are discussed. For the drone-based wind estimation, the importance of calibration by comparison to high-quality wind observations is shown. Full article
(This article belongs to the Special Issue Atmospheric and Ocean Optics: Atmospheric Physics II)
Show Figures

Graphical abstract

19 pages, 1387 KiB  
Article
Validation of Ensemble-Based Probabilistic Tropical Cyclone Intensity Change
by Ryan D. Torn and Mark DeMaria
Atmosphere 2021, 12(3), 373; https://doi.org/10.3390/atmos12030373 - 12 Mar 2021
Cited by 4 | Viewed by 2250
Abstract
Although there has been substantial improvement to numerical weather prediction models, accurate predictions of tropical cyclone rapid intensification (RI) remain elusive. The processes that govern RI, such as convection, may be inherently less predictable; therefore a probabilistic approach should be adopted. Although there [...] Read more.
Although there has been substantial improvement to numerical weather prediction models, accurate predictions of tropical cyclone rapid intensification (RI) remain elusive. The processes that govern RI, such as convection, may be inherently less predictable; therefore a probabilistic approach should be adopted. Although there have been numerous studies that have evaluated probabilistic intensity (i.e., maximum wind speed) forecasts from high resolution models, or statistical RI predictions, there has not been a comprehensive analysis of high-resolution ensemble predictions of various intensity change thresholds. Here, ensemble-based probabilities of various intensity changes are computed from experimental Hurricane Weather Research and Forecasting (HWRF) and Hurricanes in a Multi-scale Ocean-coupled Non-hydrostatic (HMON) models that were run for select cases during the 2017–2019 seasons and verified against best track data. Both the HWRF and HMON ensemble systems simulate intensity changes consistent with RI (30 knots 24 h1; 15.4 m s1 24 h1) less frequent than observed, do not provide reliable probabilistic predictions, and are less skillful probabilistic forecasts relative to the Statistical Hurricane Intensity Prediction System Rapid Intensification Index (SHIPS-RII) and Deterministic to Probabilistic Statistical (DTOPS) statistical-dynamical systems. This issue is partly alleviated by applying a quantile-based bias correction scheme that preferentially adjusts the model-based intensity change at the upper-end of intensity changes. While such an approach works well for high-resolution models, this bias correction strategy does not substantially improve ECMWF ensemble-based probabilistic predictions. By contrast, both the HWRF and HMON systems provide generally reliable predictions of intensity changes for cases where RI does not take place. Combining the members from the HWRF and HMON ensemble systems into a large multi-model ensemble does not improve upon HMON probablistic forecasts. Full article
(This article belongs to the Special Issue Rapid Intensity Changes of Tropical Cyclones)
Show Figures

Figure 1

16 pages, 3262 KiB  
Article
Development of a Health-Based Index to Identify the Association between Air Pollution and Health Effects in Mexico City
by Kevin Cromar, Laura Gladson, Mónica Jaimes Palomera and Lars Perlmutt
Atmosphere 2021, 12(3), 372; https://doi.org/10.3390/atmos12030372 - 12 Mar 2021
Cited by 10 | Viewed by 3369
Abstract
Health risks from air pollution continue to be a major concern for residents in Mexico City. These health burdens could be partially alleviated through individual avoidance behavior if accurate information regarding the daily health risks of multiple pollutants became available. A split sample [...] Read more.
Health risks from air pollution continue to be a major concern for residents in Mexico City. These health burdens could be partially alleviated through individual avoidance behavior if accurate information regarding the daily health risks of multiple pollutants became available. A split sample approach was used in this study to create and validate a multi-pollutant, health-based air quality index. Poisson generalized linear models were used to assess the impacts of ambient air pollution (i.e., fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ground-level ozone (O3)) on a total of 610,982 daily emergency department (ED) visits for respiratory disease obtained from 40 facilities in the metropolitan area of Mexico City from 2010 to 2015. Increased risk of respiratory ED visits was observed for interquartile increases in the 4-day average concentrations of PM2.5 (Risk Ratio (RR) 1.03, 95% CI 1.01–1.04), O3 (RR 1.03, 95% CI 1.01–1.05), and to a lesser extent NO2 (RR 1.01, 95% CI 0.99–1.02). An additive, multi-pollutant index was created using coefficients for these three pollutants. Positive associations of index values with daily respiratory ED visits was observed among children (ages 2–17) and adults (ages 18+). The use of previously unavailable daily health records enabled an assessment of short-term ambient air pollution concentrations on respiratory morbidity in Mexico City and the creation of a health-based air quality index, which is now currently in use in Mexico City. Full article
(This article belongs to the Special Issue Challenges in Measuring and Assessing Environmental Health)
Show Figures

Figure 1

21 pages, 5665 KiB  
Article
High-Resolution Numerical Modelling of Near-Surface Atmospheric Fields in the Complex Terrain of James Ross Island, Antarctic Peninsula
by Michael Matějka, Kamil Láska, Klára Jeklová and Jiří Hošek
Atmosphere 2021, 12(3), 360; https://doi.org/10.3390/atmos12030360 - 9 Mar 2021
Cited by 2 | Viewed by 2530
Abstract
The Antarctic Peninsula belongs to the regions of the Earth that have seen the highest increase in air temperature in the past few decades. The warming is reflected in degradation of the cryospheric system. The impact of climate variability and interactions between the [...] Read more.
The Antarctic Peninsula belongs to the regions of the Earth that have seen the highest increase in air temperature in the past few decades. The warming is reflected in degradation of the cryospheric system. The impact of climate variability and interactions between the atmosphere and the cryosphere can be studied using numerical atmospheric models. In this study, the standard version of the Weather Research and Forecasting (WRF) model was validated on James Ross Island in the northern part of the Antarctic Peninsula. The aim of this study was to verify the WRF model output at 700 m horizontal resolution using air temperature, wind speed and wind direction observations from automatic weather stations on the Ulu Peninsula, the northernmost part of James Ross Island. Validation was carried out for two contrasting periods (summer and winter) in 2019/2020 to assess possible seasonal effects on model accuracy. Simulated air temperatures were in very good agreement with measurements (mean bias −1.7 °C to 1.4 °C). The exception was a strong air temperature inversion during two of the winter days when a significant positive bias occurred at the coastal and lower-altitude locations on the Ulu Peninsula. Further analysis of the WRF estimates showed a good skill in simulating near-surface wind speed with higher correlation coefficients in winter (0.81–0.93) than in summer (0.41–0.59). However, bias and RMSE for wind speed tended to be better in summer. The performance of three WRF boundary layer schemes (MYJ, MYNN, QNSE) was further evaluated. The QNSE scheme was generally more accurate than MYNN and MYJ, but the differences were quite small and varied with time and place. The MYNN and QNSE schemes tended to achieve better wind speed simulation quality than the MYJ scheme. The model successfully captured wind direction, showing only slight differences to the observed values. It was shown that at lower altitudes the performance of the model can vary greatly with time. The model results were more accurate during high wind speed southwestern flow, while the accuracy decreased under weak synoptic-scale forcing, accompanied by an occurrence of mesoscale atmospheric processes. Full article
Show Figures

Figure 1

17 pages, 5012 KiB  
Article
Analysis of the Vertical Air Motions and Raindrop Size Distribution Retrievals of a Squall Line Based on Cloud Radar Doppler Spectral Density Data
by Ningkun Ma, Liping Liu, Yichen Chen and Yang Zhang
Atmosphere 2021, 12(3), 348; https://doi.org/10.3390/atmos12030348 - 7 Mar 2021
Cited by 2 | Viewed by 2029
Abstract
A squall line is a type of strongly organized mesoscale convective system that can cause severe weather disasters. Thus, it is crucial to explore the dynamic structure and hydrometeor distributions in squall lines. This study analyzed a squall line over Guangdong Province on [...] Read more.
A squall line is a type of strongly organized mesoscale convective system that can cause severe weather disasters. Thus, it is crucial to explore the dynamic structure and hydrometeor distributions in squall lines. This study analyzed a squall line over Guangdong Province on 6 May 2016 that was observed using a Ka-band millimeter-wave cloud radar (CR) and an S-band dual-polarization radar (PR). Doppler spectral density data obtained by the CR were used to retrieve the vertical air motions and raindrop size distribution (DSD). The results showed the following: First, the CR detected detailed vertical profiles and their evolution before and during the squall line passage. In the convection time segment (segment B), heavy rain existed with a reflectivity factor exceeding 35 dBZ and a velocity spectrum width exceeding 1.3 m s−1. In the PR detection, the differential reflectivity factor (Zdr) was 1–2 dB, and the large specific differential phase (Kdp) also represented large liquid water content. In the transition and stratiform cloud time segments (segments B and C), the rain stabilized gradually, with decreasing cloud tops, stable precipitation, and a 0 °C layer bright band. Smaller Kdp values (less than 0.9) were distributed around the 0 °C layer, which may have been caused by the melting of ice crystal particles. Second, from the CR-retrieved vertical air velocity, before squall line passage, downdrafts dominated in local convection and weak updrafts existed in higher-altitude altostratus clouds. In segment B, the updraft air velocity reached more than 8 m s−1 below the 0 °C layer. From segments C to D, the updrafts changed gradually into weak and wide-ranging downdrafts. Third, in the comparison of DSD values retrieved at 1.5 km and DSD values on the ground, the retrieved DSD line was lower than the disdrometer, the overall magnitude of the DSD retrieved was smaller, and the difference decreased from segments C to D. The standardized intercept parameter (Nw) and shape parameter (μ) of the DSD retrieved at 1.8 km showed good agreement with the disdrometer results, and the mass-weighted mean diameter (Dm) was smaller than that on the ground, but very close to the PR-retrieved Dm result at 2 km. Therefore, comparing with the DSD retrieved at around 2 km, the overall number concentration remained unchanged and Dm got larger on the ground, possibly reflecting the process of raindrop coalescence. Lastly, the average vertical profiles of several quantities in all segments showed that, first of all, the decrease of Nw and Dm with height in segments C and D was similar, reflecting the collision effect of falling raindrops. The trends were opposite in segment B, indicating that raindrops underwent intense mixing and rapid collision and growth in this segment. Then, PR-retrieved Dm profiles can verify the rationality of the CR-retrieved Dm. Finally, a vertical velocity profile peak generated a larger Dm especially in segments C and D. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

15 pages, 4147 KiB  
Article
Potential Source Contribution Function Analysis of High Latitude Dust Sources over the Arctic: Preliminary Results and Prospects
by Stefano Crocchianti, Beatrice Moroni, Pavla Dagsson Waldhauserová, Silvia Becagli, Mirko Severi, Rita Traversi and David Cappelletti
Atmosphere 2021, 12(3), 347; https://doi.org/10.3390/atmos12030347 - 7 Mar 2021
Cited by 16 | Viewed by 2689
Abstract
The results of a preliminary investigation of the dust sources in the Arctic based on their geochemical properties by potential source contribution function (PSCF) analysis are presented in this paper. For this purpose, we considered one year of aerosol geochemical data from Ny-Ålesund, [...] Read more.
The results of a preliminary investigation of the dust sources in the Arctic based on their geochemical properties by potential source contribution function (PSCF) analysis are presented in this paper. For this purpose, we considered one year of aerosol geochemical data from Ny-Ålesund, Svalbard, and a short list of chemical elements (i.e., Al, Fe, Mn, Ti, Cr, V, Ni, Cu, and Zn) variably related to the dust fraction. Based on PSCF analysis: (i) four different dust source areas (i.e., Eurasia, Greenland, Arctic-Alaska, and Iceland) were characterized by distinguishing geochemical ranges and seasonal occurrence; and (ii) a series of typical dust days from the distinct source areas were identified based on the corresponding back trajectory patterns. Icelandic dust samples revealed peculiar but very variable characteristics in relation to their geographical source regions marked by air mass back trajectories. The comparison between pure and mixed Icelandic dust samples (i.e., aerosols containing Icelandic dust along with natural and/or anthropogenic components) revealed the occurrence of different mixing situations. Comparison with Icelandic soils proved the existence of dilution effects related to the emission and the transport processes. Full article
(This article belongs to the Special Issue Long-Range Transport of Dust over the High-Latitude Regions)
Show Figures

Figure 1

11 pages, 596 KiB  
Article
The Effect of Non-Compliance of Diesel Vehicle Emissions with Euro Limits on Mortality in the City of Milan
by Paolo Crosignani, Alessandro Nanni, Nicola Pepe, Cristina Pozzi, Camillo Silibello, Andrea Poggio and Marianna Conte
Atmosphere 2021, 12(3), 342; https://doi.org/10.3390/atmos12030342 - 6 Mar 2021
Cited by 8 | Viewed by 2715
Abstract
Diesel exhaust is hazardous to human health. In time, this has led the EU to impose on manufacturers lower and lower emission standards. These limits are very challenging in particular for nitrogen oxides (NOx) emitted by diesel-fueled vehicles. For the town [...] Read more.
Diesel exhaust is hazardous to human health. In time, this has led the EU to impose on manufacturers lower and lower emission standards. These limits are very challenging in particular for nitrogen oxides (NOx) emitted by diesel-fueled vehicles. For the town of Milan (Italy), we used a complex modeling system that takes into account the NOx emissions from vehicular traffic and other urban sources, as well as their dispersion and chemical transformations in the atmosphere related to meteorological parameters. The traffic emissions in the Milan urban area were estimated using the geometric and structural characteristics of the road network, whereas the traffic flows were provided by the Environment and Territory Mobility Agency. Car emissions were estimated by the official European method COPERT 5. The nitrogen dioxide (NO2) concentrations were estimated under two scenarios: the actual scenario with real emissions and the Diesel Emission Standards Compliance (DESC) scenario. Using a recent meta-analysis, limited to European studies, we evaluated the relationship between NO2 concentrations and natural mortality. For the actual scenario, the NO2 annual concentration mean was 44.3 µg/m3, whereas under the DESC hypothetical scenario, this would have been of 37.7 µg/m3. This “extra” exposure of 6.6 µg/m3 of NO2 leads to a yearly excess of 574 “natural” deaths. Diesel emissions are very difficult to limit and are harmful for exposed people. This suggests that specific policies, including traffic limitations, need to be developed and enforced in urban environments. Full article
(This article belongs to the Special Issue Contributions of Aerosol Sources to Health Impacts)
Show Figures

Graphical abstract

16 pages, 9784 KiB  
Article
A Novel Convective Storm Location Prediction Model Based on Machine Learning Methods
by Hansoo Lee, Jonggeun Kim, Eun Kyeong Kim and Sungshin Kim
Atmosphere 2021, 12(3), 343; https://doi.org/10.3390/atmos12030343 - 6 Mar 2021
Cited by 4 | Viewed by 1953
Abstract
A weather radar is a frequently used device in remote sensing to identify meteorological phenomena using electromagnetic waves. It can observe atmospheric conditions in a wide area with a remarkably high spatiotemporal resolution, and its observation results are useful to meteorological research and [...] Read more.
A weather radar is a frequently used device in remote sensing to identify meteorological phenomena using electromagnetic waves. It can observe atmospheric conditions in a wide area with a remarkably high spatiotemporal resolution, and its observation results are useful to meteorological research and services. Recent research on data analysis using radar data has concentrated on applying machine learning techniques to solve complicated problems, including quality control, quantitative precipitation estimation, and convective storm prediction. Convective storms, which consist of heavy rains and winds, are closely related to real-life and cause significant loss of life and property. This paper proposes a novel approach utilizing the given convective storms’ temporal properties based on machine learning models to predict future locations. The experimental results showed that the machine learning-based prediction models are capable of nowcasting future locations of convective storms with a slight difference. Full article
(This article belongs to the Special Issue Weather Radar in Rainfall Estimation)
Show Figures

Figure 1

20 pages, 11478 KiB  
Article
The 2017 Mega-Fires in Central Chile: Impacts on Regional Atmospheric Composition and Meteorology Assessed from Satellite Data and Chemistry-Transport Modeling
by Rémy Lapere, Sylvain Mailler and Laurent Menut
Atmosphere 2021, 12(3), 344; https://doi.org/10.3390/atmos12030344 - 6 Mar 2021
Cited by 10 | Viewed by 3195
Abstract
In January 2017, historic forest fires occurred in south-central Chile. Although their causes and consequences on health and ecosystems were studied, little is known about their atmospheric effects. Based on chemistry-transport modeling with WRF-CHIMERE, the impact of the 2017 Chilean mega-fires on regional [...] Read more.
In January 2017, historic forest fires occurred in south-central Chile. Although their causes and consequences on health and ecosystems were studied, little is known about their atmospheric effects. Based on chemistry-transport modeling with WRF-CHIMERE, the impact of the 2017 Chilean mega-fires on regional atmospheric composition, and the associated meteorological feedback, are investigated. Fire emissions are found to increase pollutants surface concentration in the capital city, Santiago, by +150% (+30 µg/m3) for PM2.5 and +50% (+200 ppb) for CO on average during the event. Satellite observations show an intense plume extending over 2000 km, well reproduced by the simulations, with Aerosol Optical Depth at 550 nm as high as 4 on average during the days of fire activity, as well as dense columns of CO and O3. In addition to affecting atmospheric composition, meteorology is also modified through aerosol direct and indirect effects, with a decrease in surface radiation by up to 100 W/m2 on average, leading to reductions in surface temperatures by 1 K and mixing layer heights over land by 100 m, and a significant increase in cloud optical depth along the plume. Large deposition fluxes of pollutants over land, the Pacific ocean and the Andes cordillera are found, signaling potential damages to remote ecosystems. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

21 pages, 55647 KiB  
Article
Tephra4D: A Python-Based Model for High-Resolution Tephra Transport and Deposition Simulations—Applications at Sakurajima Volcano, Japan
by Kosei Takishita, Alexandros P. Poulidis and Masato Iguchi
Atmosphere 2021, 12(3), 331; https://doi.org/10.3390/atmos12030331 - 4 Mar 2021
Cited by 2 | Viewed by 3045
Abstract
Vulcanian eruptions (short-lived explosions consisting of a rising thermal) occur daily in volcanoes around the world. Such small-scale eruptions represent a challenge in numerical modeling due to local-scale effects, such as the volcano’s topography impact on atmospheric circulation and near-vent plume dynamics, that [...] Read more.
Vulcanian eruptions (short-lived explosions consisting of a rising thermal) occur daily in volcanoes around the world. Such small-scale eruptions represent a challenge in numerical modeling due to local-scale effects, such as the volcano’s topography impact on atmospheric circulation and near-vent plume dynamics, that need to be accounted for. In an effort to improve the applicability of Tephra2, a commonly-used advection-diffusion model, in the case of vulcanian eruptions, a number of key modifications were carried out: (i) the ability to solve the equations over bending plume, (ii) temporally-evolving three-dimensional meteorological fields, (iii) the replacement of the particle diameter distribution with observed particle terminal velocity distribution which provides a simple way to account for the settling velocity variation due to particle shape and density. We verified the advantage of our modified model (Tephra4D) in the tephra dispersion from vulcanian eruptions by comparing the calculations and disdrometer observations of tephra sedimentation from four eruptions at Sakurajima volcano, Japan. The simulations of the eruptions show that Tephra4D is useful for eruptions in which small-scale movement contributes significantly to ash transport mainly due to the consideration for orographic winds in advection. Full article
Show Figures

Figure 1

19 pages, 3531 KiB  
Article
Characteristics and Health Risk Assessment of PM2.5-Bound PAHs during Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China
by Mei Luo, Yuanyuan Ji, Yanqin Ren, Fuhong Gao, Hao Zhang, Lihui Zhang, Yanqing Yu and Hong Li
Atmosphere 2021, 12(3), 323; https://doi.org/10.3390/atmos12030323 - 1 Mar 2021
Cited by 14 | Viewed by 2510
Abstract
PM2.5 level has decreased significantly in Beijing in recent years due to the strict air quality control measures taken in Jingjinji Region and the surrounding areas. However, the variation characteristics of the concentrations of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in [...] Read more.
PM2.5 level has decreased significantly in Beijing in recent years due to the strict air quality control measures taken in Jingjinji Region and the surrounding areas. However, the variation characteristics of the concentrations of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing in recent years are still not so clear. In order to understand the pollution status of PM2.5-bound PAHs in Beijing, fifteen PAHs were measured in a typical urban area of Beijing from 1 March to 20 March 2018. The average mass concentration of the 15 PAHs was 21 ng/m3 and higher in the nighttime than that in the daytime. The proportion of 4-ring PAHs in 15 PAHs was highest (43%), while 6-ring PAHs was lowest (10%). The levels of PAHs were higher during heavy pollution episodes than those in non-heavy pollution episodes, and the proportions of 5- and 6-ring PAHs were increased during a heavy pollution episode. PAHs posed obvious carcinogenic risks to the exposed populations, and the risk was higher during heavy pollution episodes than the average value of the whole monitoring period. The main sources of PAHs were traffic emissions and coal/biomass burning. Air masses from the south-southeast had a great influence on the PM2.5 levels during a heavy pollution episode. It is recommended that not only the PM2.5 levels but also the PAHs levels bounded in PM2.5 should be controlled to protect human health in Beijing. Full article
(This article belongs to the Section Aerosols)
Show Figures

Graphical abstract

18 pages, 4313 KiB  
Article
Carbonaceous Aerosol in Polar Areas: First Results and Improvements of the Sampling Strategies
by Laura Caiazzo, Giulia Calzolai, Silvia Becagli, Mirko Severi, Alessandra Amore, Raffaello Nardin, Massimo Chiari, Fabio Giardi, Silvia Nava, Franco Lucarelli, Giulia Pazzi, Paolo Cristofanelli, Aki Virkkula, Andrea Gambaro, Elena Barbaro and Rita Traversi
Atmosphere 2021, 12(3), 320; https://doi.org/10.3390/atmos12030320 - 28 Feb 2021
Cited by 3 | Viewed by 2530
Abstract
While more and more studies are being conducted on carbonaceous fractions—organic carbon (OC) and elemental carbon (EC)—in urban areas, there are still too few studies about these species and their effects in polar areas due to their very low concentrations; further, studies in [...] Read more.
While more and more studies are being conducted on carbonaceous fractions—organic carbon (OC) and elemental carbon (EC)—in urban areas, there are still too few studies about these species and their effects in polar areas due to their very low concentrations; further, studies in the literature report only data from intensive campaigns, limited in time. We present here for the first time EC–OC concentration long-time data records from the sea-level sampling site of Ny-Ålesund, in the High Arctic (5 years), and from Dome C, in the East Antarctic Plateau (1 year). Regarding the Arctic, the median (and the interquartile range (IQR)) mass concentrations for the years 2011–2015 are 352 (IQR: 283–475) ng/m3 for OC and 4.8 (IQR: 4.6–17.4) ng/m3 for EC, which is responsible for only 3% of total carbon (TC). From both the concentration data sets and the variation of the average monthly concentrations, the influence of the Arctic haze on EC and OC concentrations is evident. Summer may be interested by high concentration episodes mainly due to long-range transport (e.g., from wide wildfires in the Northern Hemisphere, as happened in 2015). The average ratio of EC/OC for the summer period is 0.05, ranging from 0.02 to 0.10, and indicates a clean environment with prevailing biogenic (or biomass burning) sources, as well as aged, highly oxidized aerosol from long-range transport. Contribution from ship emission is not evident, but this result may be due to the sampling time resolution. In Antarctica, a 1 year-around data set from December 2016 to February 2018 is shown, which does not present a clear seasonal trend. The OC median (and IQR) value is 78 (64–106) ng/m3; for EC, it is 0.9 (0.6–2.4) ng/m3, weighing for 3% on TC values. The EC/OC ratio mean value is 0.20, with a range of 0.06–0.35. Due to the low EC and OC concentrations in polar areas, correction for the blank is far more important than in campaigns carried out in other regions, largely affecting uncertainties in measured concentrations. Through the years, we have thus developed a new sampling strategy that is presented here for the first time: samplers were modified in order to collect a larger amount of particulates on a small surface, enhancing the capability of the analytical method since the thermo-optical analyzer is sensitive to carbonaceous aerosol areal density. Further, we have recently coupled such modified samplers with a sampling strategy that makes a more reliable blank correction of every single sample possible. Full article
Show Figures

Figure 1

30 pages, 39088 KiB  
Article
Multi-Radar Analysis of the 20 May 2013 Moore, Oklahoma Supercell through Tornadogenesis and Intensification
by Clarice N. Satrio, David J. Bodine, Robert D. Palmer and Charles M. Kuster
Atmosphere 2021, 12(3), 313; https://doi.org/10.3390/atmos12030313 - 28 Feb 2021
Cited by 2 | Viewed by 3156
Abstract
A multi-radar analysis of the 20 May 2013 Moore, Oklahoma, U.S. supercell is presented using three Weather Surveillance Radars 1988 Doppler (WSR-88Ds) and PX-1000, a rapid-scan, polarimetric, X-band radar, with a focus on the period between 1930 and 2008 UTC, encompassing supercell maturation [...] Read more.
A multi-radar analysis of the 20 May 2013 Moore, Oklahoma, U.S. supercell is presented using three Weather Surveillance Radars 1988 Doppler (WSR-88Ds) and PX-1000, a rapid-scan, polarimetric, X-band radar, with a focus on the period between 1930 and 2008 UTC, encompassing supercell maturation through rapid tornado intensification. Owing to the 20-s temporal resolution of PX-1000, a detailed radar analysis of the hook echo is performed on (1) the microphysical characteristics through a hydrometeor classification algorithm (HCA)—inter-compared between X- and S-band for performance evaluation—including a hail and debris class and (2) kinematic properties of the low-level mesocyclone (LLM) assessed through ΔVr analyses. Four transient intensifications in ΔVr prior to tornadogenesis are documented and found to be associated with two prevalent internal rear-flank downdraft (RFD) momentum surges, the latter surge coincident with tornadogenesis. The momentum surges are marked by a rapidly advancing reflectivity (ZH) gradient traversing around the LLM, descending reflectivity cores (DRCs), a drop in differential reflectivity (ZDR) due to the advection of smaller drops into the hook echo, a decrease in correlation coefficient (ρhv), and the detection of debris from the HCA. Additionally, volumetric analyses of ZDR and specific differential phase (KDP) signatures show general diffusivity of the ZDR arc even after tornadogenesis in contrast with explosive deepening of the KDP foot downshear of the updraft. Similarly, while the vertical extent of the ZDR and KDP columns decrease leading up to tornadogenesis, the phasing of these signatures are offset after tornadogenesis, with the ZDR column deepening the lagging of KDP. Full article
(This article belongs to the Special Issue Radar Applications for Severe Weather Understanding and Nowcasting)
Show Figures

Figure 1

19 pages, 10650 KiB  
Article
Assessment and Improvement of Two Low-Cost Particulate Matter Sensor Systems by Using Spatial Interpolation Data from Air Quality Monitoring Stations
by Chen-Jui Liang and Pei-Rong Yu
Atmosphere 2021, 12(3), 300; https://doi.org/10.3390/atmos12030300 - 25 Feb 2021
Cited by 5 | Viewed by 2566
Abstract
Two low-cost fine particulate matter (PM2.5) sensor systems have been established by the government and community in Taiwan. Each system combines hundreds of PM2.5 sensors through an Internet of Things architecture. Since these sensors have not been calibrated, their performance [...] Read more.
Two low-cost fine particulate matter (PM2.5) sensor systems have been established by the government and community in Taiwan. Each system combines hundreds of PM2.5 sensors through an Internet of Things architecture. Since these sensors have not been calibrated, their performance has been questioned. In this study, the spatial interpolation data from air quality monitoring stations (AQMSs) was used to quantify the performances of the two sensor systems. The linearity, sensitivity, offset, precision, accuracy, and bias of the two sensor systems were estimated. The results indicate that the linearity of the government’s sensor system was higher than that of the community sensor system. However, the sensitivity of the government’s system was lower than that of the community system. The relative standard deviation, relative error, offset, and bias of the community sensor system were higher than those of the government sensor system. However, the government sensor system exhibited superior spatial interpolation results for the AQMS data than the community sensor system did. The precision and accuracy of the two sensor systems were poor during a period of low PM2.5 concentrations. A working platform of improvements consisting of monitoring the operation loop and automatic correction loop is proposed. The monitoring operation loop comprises five modules, namely outlier detection, temporal anomaly analysis, spatial anomaly analysis, spatiotemporal anomaly analysis, and trajectory analysis modules. The automatic correction loop contains spatial interpolation module, a sensor performance detection module, and a correction module. The proposed working platform can enhance the performance of low-cost sensor systems, especially as alert systems for reportable events. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

13 pages, 1884 KiB  
Article
Source Apportionment and Toxic Potency of Polycyclic Aromatic Hydrocarbons (PAHs) in the Air of Harbin, a Cold City in Northern China
by Haitao Liu, Bo Li, Hong Qi, Lixin Ma, Jianzhong Xu, Minling Wang, Wenwen Ma and Chongguo Tian
Atmosphere 2021, 12(3), 297; https://doi.org/10.3390/atmos12030297 - 25 Feb 2021
Cited by 11 | Viewed by 2695
Abstract
A total of 68 PUF samples were collected seasonally from 17 sampling sites in Harbin, China from May 2016 to April 2017 for analyzing 15 congeners of gaseous polycyclic aromatic hydrocarbons (Σ15PAHs). An improved non-negative matrix (NMF) model and a positive [...] Read more.
A total of 68 PUF samples were collected seasonally from 17 sampling sites in Harbin, China from May 2016 to April 2017 for analyzing 15 congeners of gaseous polycyclic aromatic hydrocarbons (Σ15PAHs). An improved non-negative matrix (NMF) model and a positive matrix factorization (PMF) model were used to apportion the sources of PAHs. The carcinogenic risk due to exposure to PAHs was estimated by the toxicity equivalent of BaP (BaPeq). The results showed that the average concentration of Σ15PAHs was 68.3 ± 22.3 ng/m3, and the proportions of 3-ring, 4-ring, 5-ring, and 6-ring PAHs were 64.4%, 32.6%, 2.10%, and 0.89%, respectively. Among the six typical functional areas in Harbin, the Σ15PAHs concentrations were 98.1 ± 76.7 ng/m3, 91.2 ± 76.2 ng/m3, 71.4 ± 75.6 ng/m3, 67.9 ± 65.6 ng/m3, 42.6 ± 34.7 ng/m3, and 38.5 ± 38.0 ng/m3 in the wastewater treatment plant, industrial zone, business district, residential area, school, and suburb, respectively. During the sampling period, the highest concentration of Σ15PAHs was in winter. The improved NMF model and PMF model apportioned the PAHs into three sources including coal combustion, biomass burning, and vehicle exhaust. The contributions of coal combustion, biomass burning, and vehicle exhausts were 34.6 ± 3.22%, 48.6 ± 4.03%, and 16.8 ± 5.06%, respectively. Biomass burning was the largest contributor of Σ15PAHs concentrations in winter and coal combustion contributed significantly to the concentrations in summer. The average ΣBaPeq concentration was 0.54 ± 0.23 ng/m3 during the sampling period, high concentrations occurred in the cold season and low levels presented in the warm period. Vehicle exhaust was the largest contributor to the ΣBaPeq concentration of PAHs in Harbin. Full article
Show Figures

Figure 1

21 pages, 3827 KiB  
Article
Effects of PM10 and Weather on Respiratory and Cardiovascular Diseases in the Ciuc Basin (Romanian Carpathians)
by Katalin Bodor, Miruna Mihaela Micheu, Ágnes Keresztesi, Marius-Victor Birsan, Ion-Andrei Nita, Zsolt Bodor, Sándor Petres, Attila Korodi and Róbert Szép
Atmosphere 2021, 12(2), 289; https://doi.org/10.3390/atmos12020289 - 23 Feb 2021
Cited by 13 | Viewed by 3135
Abstract
This study presents the PM10 concentration, respiratory and cardiovascular disease hospital admissions evolution in the Ciuc basin for a period of 9 years (2008–2016), taking into consideration different meteorological conditions: boundary layer, lifting condensation level, temperature-humidity index, and wind chill equivalent chart [...] Read more.
This study presents the PM10 concentration, respiratory and cardiovascular disease hospital admissions evolution in the Ciuc basin for a period of 9 years (2008–2016), taking into consideration different meteorological conditions: boundary layer, lifting condensation level, temperature-humidity index, and wind chill equivalent chart index. The PM10 and hospital admissions evolution showed a very fluctuated hourly, weekly, monthly, yearly tendency. The PM10 concentration in winter (34.72 μg/m3) was 82% higher than the multiannual average (19.00 μg/m3), and almost three times higher than in summer (11.71 μg/m3). During the winter, PM10 concentration increased by an average of 9.36 μg/m3 due to the increased household heating. Climatological parameters have a demonstrable effect on the PM10 concentration variation. Children, the elderly and men are more sensitive to air pollution, the calculated relative risk for men was (RR = 1.45), and for women (RR = 1.37), respectively. A moderate correlation (0.51) was found between PM10 and pneumonia (P), while a relatively weak correlation (0.39) was demonstrated in the case of PM10 and upper respiratory tract infections (URTI). Furthermore, except thermal humidity index (THI), strong negative correlations were observed between the multiannual monthly mean PM10 and the meteorological data. The PM10 followed a moderate negative correlation with the boundary layer (−0.61). In the case of URTI and P, the highest number of hospital admissions occurred with a 5 to 7-day lag, while the 10 μg/m3 PM10 increase resulted in a 2.04% and 8.28% morbidity increase. For lung cancer (LC) and cardiovascular diseases (AMI, IHD, CCP), a maximum delay of 5–6 months was found. Three-month delay and an average growth of 1.51% was observed in the case of chronic obstructive pulmonary disease (COPD). Overall, these findings revealed that PM10 was and it is responsible for one-third of the diseases. Full article
(This article belongs to the Section Air Quality and Human Health)
Show Figures

Figure 1

9 pages, 603 KiB  
Article
Association between Long-Term Exposure to PM2.5 and Lung Imaging Phenotype in CODA Cohort
by Youlim Kim, So Hyeon Bak, Sung Ok Kwon, Ho Kim, Woo Jin Kim and Chang Youl Lee
Atmosphere 2021, 12(2), 282; https://doi.org/10.3390/atmos12020282 - 22 Feb 2021
Cited by 2 | Viewed by 2089
Abstract
Background and Aims: Ambient particulate matter (PM) is causing respiratory symptoms of individuals at all ages and reducing their lung functions. These individuals could develop chronic pulmonary disease. Recent studies have shown that short-term exposure to PM affects acute exacerbation of respiratory disease. [...] Read more.
Background and Aims: Ambient particulate matter (PM) is causing respiratory symptoms of individuals at all ages and reducing their lung functions. These individuals could develop chronic pulmonary disease. Recent studies have shown that short-term exposure to PM affects acute exacerbation of respiratory disease. However, evidence about the association between long-term exposure and progression of respiratory diseases remains insufficient. The purpose of this study was to examine the association between long-term exposure of air pollution (PM2.5) and the effect on lung imaging phenotype in dust-exposed Korean adults living near cement factories. Methods: We conducted a cross-sectional analysis on the Chronic Obstructive Pulmonary Disease (COPD) in Dusty Areas (CODA) cohort, which was recruited from 2012 to 2014. Emphysema index and mean wall area were measured using an in-house software program developed by the Korean obstructive lung disease study group based on chest CT scan. A satellite-based model was used to estimate the long-term PM2.5 concentration at each participant’s address. Results: Of 504 eligible participants, 400 participants were analyzed. Their mean age was 71.7 years. Most participants were men (N = 301, 75.3%). The emphysema index of the whole group was 6.63 ± 0.70, and the mean wall area was 68.8 ± 5.2. Image measurement and PM2.5 concentration showed no significant difference in the whole group; however, in the group of subjects with normal lung function, there were significant associations between long-term PM2.5 exposure and emphysema index measurement: 1-year (ß = 0.758, p = 0.021), 3-year (ß = 0.629, p = 0.038), and 5-year (ß = 0.544, p = 0.045). There was no significant association between long-term PM2.5 exposure and mean wall area measurement: 1-year (ß = −0.389, p = 0.832), 3-year (ß = −3.677, p = 0.170), and 5-year (ß = −3.769, p = 0.124). Conclusions: This study suggests that long-term exposure of PM2.5 may affect the emphysematous change in patients with normal lung functions. Full article
(This article belongs to the Special Issue Impacts of Indoor Air Pollution on Cardiopulmonary System)
Show Figures

Figure 1

22 pages, 3646 KiB  
Article
Correction of Eddy Covariance Based Crop ET Considering the Heat Flux Source Area
by Stuart L. Joy and José L. Chávez
Atmosphere 2021, 12(2), 281; https://doi.org/10.3390/atmos12020281 - 21 Feb 2021
Cited by 2 | Viewed by 2594
Abstract
Eddy covariance (EC) systems are being used to measure sensible heat (H) and latent heat (LE) fluxes in order to determine crop water use or evapotranspiration (ET). The reliability of EC measurements depends on meeting certain meteorological assumptions; the most important of such [...] Read more.
Eddy covariance (EC) systems are being used to measure sensible heat (H) and latent heat (LE) fluxes in order to determine crop water use or evapotranspiration (ET). The reliability of EC measurements depends on meeting certain meteorological assumptions; the most important of such are horizontal homogeneity, stationarity, and non-advective conditions. Over heterogeneous surfaces, the spatial context of the measurement must be known in order to properly interpret the magnitude of the heat flux measurement results. Over the past decades, there has been a proliferation of ‘heat flux source area’ (i.e., footprint) modeling studies, but only a few have explored the accuracy of the models over heterogeneous agricultural land. A composite ET estimate was created by using the estimated footprint weights for an EC system in the upwind corner of four fields and separate ET estimates from each of these fields. Three analytical footprint models were evaluated by comparing the composite ET to the measured ET. All three models performed consistently well, with an average mean bias error (MBE) of about −0.03 mm h−1 (−4.4%) and root mean square error (RMSE) of 0.09 mm h−1 (10.9%). The same three footprint models were then used to adjust the EC-measured ET to account for the fraction of the footprint that extended beyond the field of interest. The effectiveness of the footprint adjustment was determined by comparing the adjusted ET estimates with the lysimetric ET measurements from within the same field. This correction decreased the absolute hourly ET MBE by 8%, and the RMSE by 1%. Full article
(This article belongs to the Special Issue Agricultural Microclimate and Irrigation Water Management)
Show Figures

Figure 1

21 pages, 4799 KiB  
Article
Environmental Partitioning, Spatial Distribution, and Transport of Atmospheric Mercury (Hg) Originating from a Site of Former Chlor-Alkali Plant
by Mert Guney, Aiganym Kumisbek, Zhanel Akimzhanova, Symbat Kismelyeva, Kamila Beisova, Almagul Zhakiyenova, Vassilis Inglezakis and Ferhat Karaca
Atmosphere 2021, 12(2), 275; https://doi.org/10.3390/atmos12020275 - 18 Feb 2021
Cited by 7 | Viewed by 2577
Abstract
Mercury (Hg) is one of the trace toxic and bioaccumulative global pollutants, and due to its long atmospheric lifetime, it presents a significant global challenge. The present study (1) utilizes total gaseous mercury (TGM) measurements made around a former Hg-cell chlor-alkali plant (CAP) [...] Read more.
Mercury (Hg) is one of the trace toxic and bioaccumulative global pollutants, and due to its long atmospheric lifetime, it presents a significant global challenge. The present study (1) utilizes total gaseous mercury (TGM) measurements made around a former Hg-cell chlor-alkali plant (CAP) located in Pavlodar, Kazakhstan, and predicts the spatial distribution of Hg over its premises and the nearby city. It then (2) estimates the environmental repartition of Hg deposited by the CAP using three fugacity models of varying complexity: Level I, QWASI, and HERMES. Finally, it (3) predicts long-range Hg transport via forward trajectory-based cluster analysis. The atmospheric Hg levels measured in Pavlodar and around Lake Balkyldak were elevated: in the range of 1–37 ng/m3 with an urban background level at 4.9 ng/m3. Specifically, concentrations up to 37 ng/m3 close to Lake Balkyldak and up to 22 ng/m3 nearby the city’s industrial zone (where the CAP was located) had been observed. Interpolation maps created using kriging also suggest these locations as the primary sources of atmospheric Hg in the city. The Level I fugacity model indicated that almost all of Hg is expected to end up in the atmosphere. The modeling results obtained using more complex QWASI and HERMES models showed that some significant quantity of Hg would still be associated with the sediments of Lake Balkyldak (a large wastewater discharge pond nearby the CAP). The forward trajectory-based cluster analysis method revealed the long-range atmospheric transportation routes and local, regional, and global impact zones. Furthermore, a source-receptor relationship using air transportation pathways to identify “areas of impact” was addressed. During both heating and non-heating seasons, the frequency-based analysis identified the distribution of Hg reaching the territories of Mongolia, northwest China, southwest Kazakhstan. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT-4) model forward trajectory analysis has confirmed similar patterns during heating and non-heating seasons, except with shorter impact distances during the non-heating period. Even though the CAP was closed more than 30 years ago and those past remediation efforts cleaned up the site, the residual Hg pollution seems significant and should be further investigated in different environmental media. Full article
Show Figures

Figure 1

23 pages, 42884 KiB  
Article
Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data
by Fieke Rader, Rita Traversi, Mirko Severi, Silvia Becagli, Kim-Janka Müller, Konstantina Nakoudi and Christoph Ritter
Atmosphere 2021, 12(2), 271; https://doi.org/10.3390/atmos12020271 - 17 Feb 2021
Cited by 9 | Viewed by 2899
Abstract
In this work, we analysed aerosol measurements from lidar and PM10 samples around the European Arctic site of Ny-Ålesund during late winter–early spring 2019. Lidar observations above 700 m revealed time-independent values for the aerosol backscatter coefficient (ββ), colour [...] Read more.
In this work, we analysed aerosol measurements from lidar and PM10 samples around the European Arctic site of Ny-Ålesund during late winter–early spring 2019. Lidar observations above 700 m revealed time-independent values for the aerosol backscatter coefficient (ββ), colour ratio (CR), linear particle depolarisation ratio (δδ) and lidar ratio (LR) from January to April. In contrast to previous years, in 2019 the early springtime backscatter increase in the troposphere, linked to Arctic haze, was not observed. In situ nss-sulphate (nss-SO42) concentration was measured both at a coastal (Gruvebadet) and a mountain (Zeppelin) station, a few kilometres apart. As we employed different measurement techniques at sites embedded in complex orography, we investigated their agreement. From the lidar perspective, the aerosol load (indicated by ββ) above 700 m changed by less than a factor of 3.5. On the contrary, the daily nss-SO42 concentration erratically changed by a factor of 25 (from 0.1 to 2.5 ng m3) both at Gruvebadet and Zeppelin station, with the latter mostly lying above the boundary layer. Moreover, daily nss-SO42 concentration was remarkably variable (correlation about 0.7 between the sites), despite its long-range origin. However, on a seasonal average basis the in situ sites agreed very well. Therefore, it can be argued that nss-SO42 advection mainly takes place in the lowest free troposphere, while under complex orography it is mixed downwards by local boundary layer processes. Our study suggests that at Arctic sites with complex orography ground-based aerosol properties show higher temporal variability compared to the free troposphere. This implies that the comparison between remote sensing and in situ observations might be more reasonable on longer time scales, i.e., monthly and seasonal basis even for nearby sites. Full article
Show Figures

Figure 1

20 pages, 4929 KiB  
Article
Regional Scale Impact of the COVID-19 Lockdown on Air Quality: Gaseous Pollutants in the Po Valley, Northern Italy
by Giovanni Lonati and Federico Riva
Atmosphere 2021, 12(2), 264; https://doi.org/10.3390/atmos12020264 - 17 Feb 2021
Cited by 26 | Viewed by 4272
Abstract
The impact of the reduced atmospheric emissions due to the COVID-19 lockdown on ambient air quality in the Po Valley of Northern Italy was assessed for gaseous pollutants (NO2, benzene, ammonia) based on data collected at the monitoring stations distributed all [...] Read more.
The impact of the reduced atmospheric emissions due to the COVID-19 lockdown on ambient air quality in the Po Valley of Northern Italy was assessed for gaseous pollutants (NO2, benzene, ammonia) based on data collected at the monitoring stations distributed all over the area. Concentration data for each month of the first semester of 2020 were compared with those of the previous six years, on monthly, daily, and hourly bases, so that pre, during, and post-lockdown conditions of air quality could be separately analyzed. The results show that, as in many other areas worldwide, the Po Valley experienced better air quality during 2020 spring months for NO2 and benzene. In agreement with the reductions of nitrogen oxides and benzene emissions from road traffic, estimated to be −35% compared to the regional average, the monthly mean concentration levels for 2020 showed reductions in the −40% to −35% range compared with the previous years, but with higher reductions, close to −50%, at high-volume-traffic sites in urban areas. Conversely, NH3 ambient concentration levels, almost entirely due the emissions of the agricultural sector, did not show any relevant change, even at high-volume-traffic sites in urban areas. These results point out the important role of traffic emissions in NO2 and benzene ambient levels in the Po Valley, and confirm that this region is a rather homogeneous air basin with urban area hot-spots, the contributions of which add up to a relatively high regional background concentration level. Additionally, the relatively slow response of the air quality levels to the sudden decrease of the emissions due to the lockdown shows that this region is characterized by a weak exchange of the air masses that favors both the build-up of atmospheric pollutants and the development of secondary formation processes. Thus, air quality control strategies should aim for structural interventions intended to reduce traffic emissions at the regional scale and not only in the largest urban areas. Full article
(This article belongs to the Special Issue Coronavirus Pandemic Shutdown Effects on Urban Air Quality)
Show Figures

Figure 1

12 pages, 2856 KiB  
Article
Concentrations and Sources of Atmospheric PM, Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Kanazawa, Japan
by Kazuichi Hayakawa, Ning Tang, Wanli Xing, Pham Kim Oanh, Akinori Hara and Hiroyuki Nakamura
Atmosphere 2021, 12(2), 256; https://doi.org/10.3390/atmos12020256 - 15 Feb 2021
Cited by 12 | Viewed by 2959
Abstract
PM2.5 (fine particles with diameters 2.5 micrometers and smaller) and PM>2.5 were separately collected in Kanazawa, Japan in every season, from the spring of 2017 to the winter of 2018, and nine polycyclic aromatic hydrocarbons (PAHs) and six nitropolycyclic aromatic hydrocarbons [...] Read more.
PM2.5 (fine particles with diameters 2.5 micrometers and smaller) and PM>2.5 were separately collected in Kanazawa, Japan in every season, from the spring of 2017 to the winter of 2018, and nine polycyclic aromatic hydrocarbons (PAHs) and six nitropolycyclic aromatic hydrocarbons (NPAHs) were respectively determined using high-performance liquid chromatography (HPLC) with fluorescence and chemiluminescence detections. The atmospheric concentrations of both the PAHs and NPAHs showed seasonal changes (highest in the winter and lowest in the summer), which differed from the variations in the total suspended particulate matter (TSP) and PM2.5 amounts (which were highest in the spring). The contributions of major sources to the combustion-derived particulate (Pc) in the PM2.5 were calculated using the 1-nitropyrene-pyrene (NP) method, using pyrene and 1-nitropyrene as the representative markers of PAHs and NPAHs, respectively. The annual average concentration of Pc accounted for only 2.1% of PM2.5, but showed the same seasonal variation as PAHs. The sources of Pc were vehicles (31%) and coal heating facilities/industries (69%). A backward trajectory analysis showed that the vehicle-derived Pc was mainly from Kanazawa and its surroundings, and that coal heating facilities/industry-derived Pc was transported from city areas in central and northern China in the winter, and during the Asian dust event in the spring. These results show that large amounts of PAHs were transported over a long range from China during the winter. Even in the spring, after the coal heating season was over in China, PAHs were still transported to Japan after Asian dust storms passed through Chinese city areas. By contrast, the main contributors of NPAHs were vehicles in Kanazawa and its surroundings. The recent Pc concentrations were much lower than those in 1999. This decrease was mostly attributed to the decrease in the contribution of vehicle emissions. Thus, the changes in the atmospheric concentrations of Pc, PAHs and NPAHs in Kanazawa were strongly affected not only by the local emissions but also by long-range transport from China. Full article
(This article belongs to the Special Issue Air Pollution in Japan)
Show Figures

Figure 1

13 pages, 7848 KiB  
Article
Impact of COVID-19-Related Traffic Slowdown on Urban Heat Characteristics
by Bernardo Teufel, Laxmi Sushama, Vincent Poitras, Tarek Dukhan, Stéphane Bélair, Luis Miranda-Moreno, Lijun Sun, Agus P. Sasmito and Girma Bitsuamlak
Atmosphere 2021, 12(2), 243; https://doi.org/10.3390/atmos12020243 - 11 Feb 2021
Cited by 28 | Viewed by 5384
Abstract
Governments around the world have implemented measures to slow down the spread of COVID-19, resulting in a substantial decrease in the usage of motorized transportation. The ensuing decrease in the emission of traffic-related heat and pollutants is expected to impact the environment through [...] Read more.
Governments around the world have implemented measures to slow down the spread of COVID-19, resulting in a substantial decrease in the usage of motorized transportation. The ensuing decrease in the emission of traffic-related heat and pollutants is expected to impact the environment through various pathways, especially near urban areas, where there is a higher concentration of traffic. In this study, we perform high-resolution urban climate simulations to assess the direct impact of the decrease in traffic-related heat emissions due to COVID-19 on urban temperature characteristics. One simulation spans the January–May 2020 period; two additional simulations spanning the April 2019–May 2020 period, with normal and reduced traffic, are used to assess the impacts throughout the year. These simulations are performed for the city of Montreal, the second largest urban centre in Canada. The mechanisms and main findings of this study are likely to be applicable to most large urban centres around the globe. The results show that an 80% reduction in traffic results in a decrease of up to 1 °C in the near-surface temperature for regions with heavy traffic. The magnitude of the temperature decrease varies substantially with the diurnal traffic cycle and also from day to day, being greatest when the near-surface wind speeds are low and there is a temperature inversion in the surface layer. This reduction in near-surface temperature is reflected by an up to 20% reduction in hot hours (when temperature exceeds 30 °C) during the warm season, thus reducing heat stress for vulnerable populations. No substantial changes occur outside of traffic corridors, indicating that potential reductions in traffic would need to be supplemented by additional measures to reduce urban temperatures and associated heat stress, especially in a warming climate, to ensure human health and well-being. Full article
(This article belongs to the Section Biometeorology)
Show Figures

Figure 1

27 pages, 11425 KiB  
Article
Characterization of Aerosol Sources and Optical Properties in Siberia Using Airborne and Spaceborne Observations
by Antonin Zabukovec, Gerard Ancellet, Iwan E. Penner, Mikhail Arshinov, Valery Kozlov, Jacques Pelon, Jean-Daniel Paris, Grigory Kokhanenko, Yuri S. Balin, Dimitry Chernov and Boris D. Belan
Atmosphere 2021, 12(2), 244; https://doi.org/10.3390/atmos12020244 - 11 Feb 2021
Cited by 5 | Viewed by 2250
Abstract
Airborne backscatter lidar at 532 nm and in-situ measurements of black carbon (BC), carbon monoxide excess above background (ΔCO), and aerosol size distribution were carried out over Siberia in July 2013 and June 2017 in order to sample several kinds of aerosol sources. [...] Read more.
Airborne backscatter lidar at 532 nm and in-situ measurements of black carbon (BC), carbon monoxide excess above background (ΔCO), and aerosol size distribution were carried out over Siberia in July 2013 and June 2017 in order to sample several kinds of aerosol sources. Aerosol types are derived using the Lagrangian FLEXible PARTicle dispersion model (FLEXPART) simulations and satellite observations. Six aerosol types could be identified in this work: (i) dusty aerosol mixture, (ii) Ob valley gas flaring emission, (iii) fresh forest fire, (iv) aged forest fire, (v) urban emissions over the Tomsk/Novosibirsk region (vi) long range transport of Northern China urban emission. The altitude range of aerosol layers is discussed for each aerosol type, showing transport above the boundary layer for long range transport of Northern China emissions or fresh forest fire. Comparisons of aerosol optical properties, BC and ΔCO are made between aged and fresh plumes for both the urban and forest fire emissions. An increase of aerosol optical depth at 532 nm (AOD532), aerosol particle size and ΔCO is found for aged forest fire plumes. Similar results are obtained when comparing the aged urban plume from Northern China with fresh urban emissions from Siberian cities. A flight above gas flaring emissions corresponds to the largest AOD532 and provides a possible range of 50–60 sr for the lidar ratio of these aerosol plumes often encountered in Siberia. Black carbon concentrations are relatively higher for the flaring plume (0.4–0.5 μμg.m3) than for the urban plume (0.2 μμg.m3). The largest BC concentrations are found for the fresh forest fire plume. The aerosol type identification and AOD532 provided by CALIOP Version 4.2 data products in air masses with similar origin generally agree with the results obtained from our detailed analysis of the aerosol plume origins. Full article
(This article belongs to the Special Issue Tropospheric Aerosols: Observation, Modeling, and Assimilation)
Show Figures

Figure 1

17 pages, 28804 KiB  
Article
Nocturnal Boundary Layer Erosion Analysis in the Amazon Using Large-Eddy Simulation during GoAmazon Project 2014/5
by Rayonil Carneiro, Gilberto Fisch, Theomar Neves, Rosa Santos, Carlos Santos and Camilla Borges
Atmosphere 2021, 12(2), 240; https://doi.org/10.3390/atmos12020240 - 10 Feb 2021
Cited by 6 | Viewed by 2975
Abstract
This study investigated the erosion of the nocturnal boundary layer (NBL) over the central Amazon using a high-resolution model of large-eddy simulation (LES) named PArallel Les Model (PALM) and observational data from Green Ocean Amazon (GoAmazon) project 2014/5. This data set was collected [...] Read more.
This study investigated the erosion of the nocturnal boundary layer (NBL) over the central Amazon using a high-resolution model of large-eddy simulation (LES) named PArallel Les Model (PALM) and observational data from Green Ocean Amazon (GoAmazon) project 2014/5. This data set was collected during four intense observation periods (IOPs) in the dry and rainy seasons in the years 2014 (considered a typical year) and 2015, during which an El Niño–Southern Oscillation (ENSO) event predominated and provoked an intense dry season. The outputs from the PALM simulations represented reasonably well the NBL erosion, and the results showed that it has different characteristics between the seasons. During the rainy season, the IOPs exhibited slow surface heating and less intense convection, which resulted in a longer erosion period, typically about 3 h after sunrise (that occurs at 06:00 local time). In contrast, dry IOPs showed more intensive surface warming with stronger convection, resulting in faster NBL erosion, about 2 h after sunrise. A conceptual model was derived to investigate the complete erosion during sunrise hours when there is a very shallow mixed layer formed close to the surface and a stable layer above. The kinematic heat flux for heating this layer during the erosion period showed that for the rainy season, the energy emitted from the surface and the entrainment was not enough to fully heat the NBL layer and erode it. Approximately 30% of additional energy was used in the system, which could come from the release of energy from biomass. The dry period of 2014 showed stronger heating, but it was also not enough, requiring approximately 6% of additional energy. However, for the 2015 dry period, which was under the influence of the ENSO event, it was shown that the released surface fluxes were sufficient to fully heat the layer. The erosion time of the NBL probably influenced the development of the convective boundary layer (CBL), wherein greater vertical development was observed in the dry season IOPs (~1500 m), while the rainy season IOPs had a shallower layer (~1200 m). Full article
(This article belongs to the Special Issue The Stable Boundary Layer: Observations and Modeling)
Show Figures

Figure 1

14 pages, 6267 KiB  
Article
Analyzing the Probability of Acquiring Cloud-Free Imagery in China with AVHRR Cloud Mask Data
by Yingjie Wu, Shibo Fang, Yi Xu, Lei Wang, Xuan Li, Zhifang Pei and Dong Wu
Atmosphere 2021, 12(2), 214; https://doi.org/10.3390/atmos12020214 - 4 Feb 2021
Cited by 3 | Viewed by 1915
Abstract
Optical remote sensing data are used widely in many fields (such as agriculture, resource management and the environment), especially for the vast territory of China; however, the application of these data is usually limited by clouds. Although it is valuable to analyze the [...] Read more.
Optical remote sensing data are used widely in many fields (such as agriculture, resource management and the environment), especially for the vast territory of China; however, the application of these data is usually limited by clouds. Although it is valuable to analyze the probability of acquiring cloud-free imagery (PACI), PACI using different sensors at the pixel level across China has not been reported. In this study, the PACI of China was calculated with daily Advanced Very High Resolution Radiometer (AVHRR) cloud mask data from 1990 to 2019. The results showed that (1) PACI varies dramatically in different regions and months in China. The value was larger in autumn and winter, and the largest figure reached 49.55% in October in Inner Mongolia (NM). In contrast, relatively small values occurred in summer, and the minimum value (5.26%) occurred in June in South China (SC). (2) As the climate changes, the PACI has increased significantly throughout the country and most regions, especially in North China (NC), with a growth rate of 1.9% per decade. The results can be used as a reference for selecting appropriate optical sensors and observation times in areas of interest. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

16 pages, 27007 KiB  
Article
The ESTE Decision Support System for Nuclear and Radiological Emergencies: Atmospheric Dispersion Models
by Ľudovít Lipták, Eva Fojcíková, Monika Krpelanová, Viera Fabová and Peter Čarný
Atmosphere 2021, 12(2), 204; https://doi.org/10.3390/atmos12020204 - 3 Feb 2021
Cited by 3 | Viewed by 2246
Abstract
The ESTE system is running in nuclear crisis centers at various levels of emergency preparedness and response in Slovakia, the Czech Republic, Austria, Bulgaria, and Iran (at the Bushehr Nuclear Power Plant, monitored by the International Atomic Energy Agency (IAEA)). ESTE is a [...] Read more.
The ESTE system is running in nuclear crisis centers at various levels of emergency preparedness and response in Slovakia, the Czech Republic, Austria, Bulgaria, and Iran (at the Bushehr Nuclear Power Plant, monitored by the International Atomic Energy Agency (IAEA)). ESTE is a decision-support system that runs 24/7 and serves the crisis staff to propose actions to protect inhabitants against radiation in case of a nuclear accident. ESTE is also applicable as a decision-support system in case of a malicious act with a radioactive dispersal device in an urban or industrial environment. The dispersion models implemented in ESTE are the Lagrangian particle model (LPM) and the Puff trajectory model (PTM). We describe model approaches as implemented in ESTE. The PTM is applied in ESTE for the dispersion calculation near the point of release, up to 100 km from the point of a nuclear accident. The LPM for general atmospheric transport is applied for short-range, meso-scale and large-scale dispersion, up to dispersion on the global scale. Additionally, a specific micro-scale implementation of the LPM is applied for urban scale dispersion modeling. The dispersion models of ESTE are joined with radiological-consequences models to calculate a complete spectrum of radiological parameters—effective doses, committed doses, and dose rates by various irradiation pathways and by various radionuclides. Finally, radiation protective measures, like sheltering, iodine prophylaxis, or evacuation, evaluated on the base of predicted radiological impacts, are proposed. The dispersion and radiological models of the state-of-the-art ESTE systems are described. The results of specific analyses, like the number of particles applied, the initial spatial distribution of the source, and the height of the bottom reference layer, are presented and discussed. Full article
Show Figures

Graphical abstract

19 pages, 2729 KiB  
Article
Quantification of Non-Exhaust Particulate Matter Traffic Emissions and the Impact of COVID-19 Lockdown at London Marylebone Road
by William Hicks, Sean Beevers, Anja H. Tremper, Gregor Stewart, Max Priestman, Frank J. Kelly, Mathias Lanoisellé, Dave Lowry and David C. Green
Atmosphere 2021, 12(2), 190; https://doi.org/10.3390/atmos12020190 - 31 Jan 2021
Cited by 41 | Viewed by 7663
Abstract
This research quantifies current sources of non-exhaust particulate matter traffic emissions in London using simultaneous, highly time-resolved, atmospheric particulate matter mass and chemical composition measurements. The measurement campaign ran at Marylebone Road (roadside) and Honor Oak Park (background) urban monitoring sites over a [...] Read more.
This research quantifies current sources of non-exhaust particulate matter traffic emissions in London using simultaneous, highly time-resolved, atmospheric particulate matter mass and chemical composition measurements. The measurement campaign ran at Marylebone Road (roadside) and Honor Oak Park (background) urban monitoring sites over a 12-month period between 1 September 2019 and 31 August 2020. The measurement data were used to determine the traffic increment (roadside–background) and covered a range of meteorological conditions, seasons, and driving styles, as well as the influence of the COVID-19 “lockdown” on non-exhaust concentrations. Non-exhaust particulate matter (PM)10 concentrations were calculated using chemical tracer scaling factors for brake wear (barium), tyre wear (zinc), and resuspension (silicon) and as average vehicle fleet non-exhaust emission factors, using a CO2 “dilution approach”. The effect of lockdown, which saw a 32% reduction in traffic volume and a 15% increase in average speed on Marylebone Road, resulted in lower PM10 and PM2.5 traffic increments and brake wear concentrations but similar tyre and resuspension concentrations, confirming that factors that determine non-exhaust emissions are complex. Brake wear was found to be the highest average non-exhaust emission source. In addition, results indicate that non-exhaust emission factors were dependent upon speed and road surface wetness conditions. Further statistical analysis incorporating a wider variability in vehicle mix, speeds, and meteorological conditions, as well as advanced source apportionment of the PM measurement data, were undertaken to enhance our understanding of these important vehicle sources. Full article
Show Figures

Figure 1

10 pages, 1686 KiB  
Article
Distinct Regimes of O3 Response to COVID-19 Lockdown in China
by Shanshan Liu, Cheng Liu, Qihou Hu, Wenjing Su, Xian Yang, Jinan Lin, Chengxin Zhang, Chengzhi Xing, Xiangguang Ji, Wei Tan, Haoran Liu and Meng Gao
Atmosphere 2021, 12(2), 184; https://doi.org/10.3390/atmos12020184 - 30 Jan 2021
Cited by 10 | Viewed by 3786
Abstract
Restrictions on human activities remarkably reduced emissions of air pollutants in China during the COVID-19 lockdown periods. However, distinct responses of O3 concentrations were observed across China. In the Beijing–Tianjin–Hebei (BTH) and Yangtze River Delta (YRD) regions, O3 concentrations were enhanced [...] Read more.
Restrictions on human activities remarkably reduced emissions of air pollutants in China during the COVID-19 lockdown periods. However, distinct responses of O3 concentrations were observed across China. In the Beijing–Tianjin–Hebei (BTH) and Yangtze River Delta (YRD) regions, O3 concentrations were enhanced by 90.21 and 71.79% from pre-lockdown to lockdown periods in 2020, significantly greater than the equivalent concentrations for the same periods over 2015–2019 (69.99 and 43.62%, p < 0.001). In contrast, a decline was detected (−1.1%) in the Pearl River Delta (PRD) region. To better understand the underlying causes for these inconsistent responses across China, we adopted the least absolute shrinkage and selection operator (Lasso) and ordinary linear squares (OLS) methods in this study. Statistical analysis indicated that a sharp decline in nitrogen dioxide (NO2) was the major driver of enhanced O3 in the BTH region as it is a NOx-saturated region. In the YRD region, season-shift induced changes in the temperature/shortwave radiative flux, while lockdown induced declines in NO2, attributable to the rise in O3. In the PRD region, the slight drop in O3 is attributed to the decreased intensity of radiation. The distinct regimes of the O3 response to the COVID-19 lockdown in China offer important insights into different O3 control strategies across China. Full article
Show Figures

Figure 1

Back to TopTop