Overview of the Trajectory-Ensemble Potential Source Apportionment Web (TraPSA-Web) Toolkit for Atmospheric Pollutant Source Identification
Abstract
:1. Introduction
2. Toolkit Description
2.1. Models Integrated in TraPSA-Web
2.1.1. CFA and CWT
2.1.2. SQTBA
2.1.3. PSCF
2.1.4. Wind-Based Models
2.2. TraPSA-Web Interface and Workflows
2.3. Future Updates
3. Example of Toolkit Application
3.1. Data and Project Management
3.2. Configure Back Trajectory Automation
3.3. Analytical Scenarios
3.4. Configure Grid Sizes and Weights for TERMs
3.5. Comparisons and Visualizations
4. Software and Data Availability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopke, P.K. Review of Receptor Modeling Methods for Source Apportionment. J. Air Waste Manag. Assoc. 2016, 6, 237–259. [Google Scholar] [CrossRef] [PubMed]
- Cheng, I.; Xu, X.; Zhang, L. Overview of Receptor-Based Source Apportionment Studies for Speciated Atmospheric Mercury. Atmos. Chem. Phys. 2015, 15, 7877–7895. [Google Scholar] [CrossRef]
- Gao, Y.; Lyu, T.; Zhang, W.; Zhou, X.; Zhang, R.; Tang, Y.; Jiang, Y.; Cao, H. Control Priority Based on Source-Specific DALYs of PM2.5-Bound Heavy Metals by PMF-PSCF-IsoSource Model in Urban and Suburban Beijing. J. Environ. Manag. 2024, 352, 120016. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Liu, A.; Sheng, Y.; Xian, Y.; Wang, H.; Wang, C. Analysis of PM2.5 Characteristics in Yancheng from 2017 to 2021 Based on Kolmogorov–Zurbenko Filter and PSCF Model. Atmosphere 2023, 14, 317. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, C.; Lynam, M.M.; Dvonch, J.T.; Barres, J.A.; Hopke, P.K.; Cohen, M.; Holsen, T.M. Atmospheric Mercury Temporal Trends in the Northeastern United States from 1992 to 2014: Are Measured Concentrations Responding to Decreasing Regional Emissions? Environ. Sci. Technol. Lett. 2017, 4, 91–97. [Google Scholar] [CrossRef]
- Ren, B.; Xie, P.; Xu, J.; Li, A.; Tian, X.; Hu, Z.; Huang, Y.; Li, X.; Zhang, Q.; Ren, H.; et al. Use of the PSCF Method to Analyze the Variations of Potential Sources and Transports of NO2, SO2, and HCHO Observed by MAX-DOAS in Nanjing, China during 2019. Sci. Total Environ. 2021, 782, 146865. [Google Scholar] [CrossRef]
- Salmabadi, H.; Saeedi, M. Determination of the Transport Routes of and the Areas Potentially Affected by SO2 Emanating from Khatoonabad Copper Smelter (KCS), Kerman Province, Iran Using HYSPLIT. Atmos. Pollut. Res. 2019, 10, 321–333. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, H.; Holsen, T.M.; Hopke, P.K.; Edgerton, E.S.; Schwab, J.J. Ambient Ammonia Concentrations Across New York State. J. Geophys. Res. D Atmos. 2019, 124, 8287–8302. [Google Scholar] [CrossRef]
- Shen, L.; Wang, H.; Kong, X.; Zhang, C.; Shi, S.; Zhu, B. Characterization of Black Carbon Aerosol in the Yangtze River Delta, China: Seasonal Variation and Source Apportionment. Atmos. Pollut. Res. 2021, 12, 195–209. [Google Scholar] [CrossRef]
- Dehshiri, S.S.H.; Firoozabadi, B.; Afshin, H. A New Application of Multi-Criteria Decision Making in Identifying Critical Dust Sources and Comparing Three Common Receptor-Based Models. Sci. Total Environ. 2022, 808, 152109. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Stohl, A. The FLEXTRA Trajectory Model Version 3.0 User Guide. Available online: https://www.flexpart.eu/wiki (accessed on 14 November 2023).
- Zeng, J.; Matsunaga, T.; Mukai, H. METEX—A Flexible Tool for Air Trajectory Calculation. Environ. Model. Softw. 2010, 25, 607–608. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Zhang, Y.; Luo, J.; Chen, F.; Cao, B.; Xie, M. Analysis of Air Pollutants and Their Potential Sources in Eastern Xinjiang, Northwestern Inland China, from 2018 to 2022. Atmosphere 2023, 14, 1670. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-Based Software That Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-Term Air Pollution Measurement Data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair—An R Package for Air Quality Data Analysis. Environ. Model. Softw. 2012, 27, 52–61. [Google Scholar] [CrossRef]
- Weber, S. pyPSCF. Available online: https://pypi.org/project/pyPSCF/ (accessed on 14 November 2023).
- Zhou, H.; Hopke, P.K.; Zhou, C.; Holsen, T.M. Ambient Mercury Source Identification at a New York State Urban Site: Rochester, NY. Sci. Total Environ. 2019, 650, 1327–1337. [Google Scholar] [CrossRef]
- Shanavas, A.K.; Zhou, C.; Menon, R.; Hopke, P.K. PM10 Source Identification Using the Trajectory Based Potential Source Apportionment (TraPSA) Toolkit at Kochi, India. Atmos. Pollut. Res. 2020, 11, 1535–1542. [Google Scholar] [CrossRef]
- Vue.js—The Progressive JavaScript Framework. Available online: https://vuejs.org/ (accessed on 17 November 2023).
- Liu, J.; Li, J.; Yao, F. Source-Receptor Relationship of Transboundary Particulate Matter Pollution between China, South Korea and Japan: Approaches, Current Understanding and Limitations. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3896–3920. [Google Scholar] [CrossRef]
- Kabashnikov, V.P.; Chaikovsky, A.P.; Kucsera, T.L.; Metelskaya, N.S. Estimated Accuracy of Three Common Trajectory Statistical Methods. Atmos. Environ. 2011, 45, 5425–5430. [Google Scholar] [CrossRef]
- And, Y.-J.H.; Holsen, T.M.; Hopke, P.K.; Yi, S.-M. Comparison between Back-Trajectory Based Modeling and Lagrangian Backward Dispersion Modeling for Locating Sources of Reactive Gaseous Mercury. Environ. Sci. Technol. 2005, 39, 1715–1723. [Google Scholar] [CrossRef]
- Cheng, I.; Zhang, L.; Blanchard, P.; Dalziel, J.; Tordon, R. Concentration-Weighted Trajectory Approach to Identifying Potential Sources of Speciated Atmospheric Mercury at an Urban Coastal Site in Nova Scotia, Canada. Atmos. Chem. Phys. 2013, 13, 6031–6048. [Google Scholar] [CrossRef]
- Squizzato, S.; Masiol, M. Application of Meteorology-Based Methods to Determine Local and External Contributions to Particulate Matter Pollution: A Case Study in Venice (Italy). Atmos. Environ. 2015, 119, 69–81. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, G.; Li, G.; Lang, J.; Zhang, H. Air Pollution Episodes during the COVID-19 Outbreak in the Beijing–Tianjin–Hebei Region of China: An Insight into the Transport Pathways and Source Distribution. Environ. Pollut. 2020, 267, 115617. [Google Scholar] [CrossRef]
- Abdo, S.; Koroleva, Y. Seasonal Characteristics of Long-Range Transport and Potential Associated Sources of Particulate Matter (PM10) Pollution at the Station Elk, Poland, on 2021–2022 Data. Geogr. Environ. Sustain. 2023, 16, 92–101. [Google Scholar] [CrossRef]
- Nguyen, T.N.T.; Vuong, Q.T.; Lee, S.-J.; Xiao, H.; Choi, S.-D. Identification of Source Areas of Polycyclic Aromatic Hydrocarbons in Ulsan, South Korea, Using Hybrid Receptor Models and the Conditional Bivariate Probability Function. Environ. Sci. Process. Impacts 2022, 24, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Rutter, A.P.; Snyder, D.C.; Stone, E.A.; Schauer, J.J.; Gonzalez-Abraham, R.; Molina, L.T.; Márquez, C.; Cárdenas, B.; de Foy, B. In Situ Measurements of Speciated Atmospheric Mercury and the Identification of Source Regions in the Mexico City Metropolitan Area. Atmos. Chem. Phys. 2009, 9, 207–220. [Google Scholar] [CrossRef]
- Weiss-Penzias, P.S.; Gustin, M.S.; Lyman, S.N. Sources of Gaseous Oxidized Mercury and Mercury Dry Deposition at Two Southeastern U.S. Sites. Atmos. Environ. 2011, 45, 4569–4579. [Google Scholar] [CrossRef]
- Pérez, I.A.; Artuso, F.; Mahmud, M.; Kulshrestha, U.; Sánchez, M.L.; García, M.Á. Applications of Air Mass Trajectories. Adv. Meteorol. 2015, 2015, 284213. [Google Scholar] [CrossRef]
- Berriban, I.; Azahra, M.; Chham, E.; Ferro-García, M.A.; Milena-Pérez, A.; Nouayti, A.; Orza, J.A.G.; Brattich, E.; Tositti, L.; Piñero-García, F.; et al. PSCF and CWT Methods as a Tool to Identify Potential Sources of 7Be and 210Pb Aerosols in Granada, Spain. J. Environ. Radioact. 2022, 251–252, 106977. [Google Scholar] [CrossRef] [PubMed]
- Uria-Tellaetxe, I.; Carslaw, D.C. Conditional Bivariate Probability Function for Source Identification. Environ. Model. Softw. 2014, 59, 1–9. [Google Scholar] [CrossRef]
- Dimitriou, K.; Grivas, G.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Assessing the Contribution of Regional Sources to Urban Air Pollution by Applying 3D-PSCF Modeling. Atmos. Res. 2021, 248, 105187. [Google Scholar] [CrossRef]
- Kim, I.S.; Kim, Y.P.; Wee, D. Potential Source Density Function: A New Tool for Identifying Air Pollution Sources. Aerosol Air Qual. Res. 2022, 22, 210236. [Google Scholar] [CrossRef]
- NOAA Air Resources Laboratory. EDAS 40 km Data Archive. Available online: https://www.ready.noaa.gov/edas40.php (accessed on 22 January 2024).
- NOAA National Centers for Environmental Information. North American Regional Reanalysis. Available online: https://www.ncei.noaa.gov/products/weather-climate-models/north-american-regional (accessed on 22 January 2024).
- NOAA National Centers for Environmental Information. Global Data Assimilation System (GDAS). Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00379 (accessed on 22 January 2024).
- NOAA Air Resources Laboratory. NCEP/NCAR Global Reanalysis Data Archive. Available online: https://www.ready.noaa.gov/gbl_reanalysis.php (accessed on 22 January 2024).
- Fu, X.W.; Feng, X.; Liang, P.; Deliger; Zhang, H.; Ji, J.; Liu, P. Temporal Trend and Sources of Speciated Atmospheric Mercury at Waliguan GAW Station, Northwestern China. Atmos. Chem. Phys. 2012, 12, 1951–1964. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I. ERA5 Hourly Data on Single Levels from 1979 to Present, Copernicus Climate Change Service (c3s) Climate Data Store (cds). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 22 January 2024). [CrossRef]
- Tang, Y.S.; Braban, C.F.; Dragosits, U.; Dore, A.J.; Simmons, I.; van Dijk, N.; Poskitt, J.; Dos Santos Pereira, G.; Keenan, P.O.; Conolly, C.; et al. Drivers for Spatial, Temporal and Long-Term Trends in Atmospheric Ammonia and Ammonium in the UK. Atmos. Chem. Phys. 2018, 18, 705–733. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Zhou, H.; Hopke, P.K.; Holsen, T.M. Overview of the Trajectory-Ensemble Potential Source Apportionment Web (TraPSA-Web) Toolkit for Atmospheric Pollutant Source Identification. Atmosphere 2024, 15, 176. https://doi.org/10.3390/atmos15020176
Zhou C, Zhou H, Hopke PK, Holsen TM. Overview of the Trajectory-Ensemble Potential Source Apportionment Web (TraPSA-Web) Toolkit for Atmospheric Pollutant Source Identification. Atmosphere. 2024; 15(2):176. https://doi.org/10.3390/atmos15020176
Chicago/Turabian StyleZhou, Chuanlong, Hao Zhou, Philip K. Hopke, and Thomas M. Holsen. 2024. "Overview of the Trajectory-Ensemble Potential Source Apportionment Web (TraPSA-Web) Toolkit for Atmospheric Pollutant Source Identification" Atmosphere 15, no. 2: 176. https://doi.org/10.3390/atmos15020176
APA StyleZhou, C., Zhou, H., Hopke, P. K., & Holsen, T. M. (2024). Overview of the Trajectory-Ensemble Potential Source Apportionment Web (TraPSA-Web) Toolkit for Atmospheric Pollutant Source Identification. Atmosphere, 15(2), 176. https://doi.org/10.3390/atmos15020176