Observational Evidence of the Vertical Exchange of Ozone within the Urban Planetary Boundary Layer in Shanghai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Surface and Tower-Based Measurements
2.2. The PBL Height Reanalysis Data
3. Results and Discussion
3.1. The Location of the SHT Site
3.2. Observed O3 Characteristics at the Surface and SHT
3.2.1. Monthly Variations in O3 at SHT and the Surface
3.2.2. Diurnal Variations in the O3 Differences between SHT and the Surface
3.2.3. Diurnal Variations in the O3 Changing Rate
3.3. The Observed O3-NOx Relationship
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unger, N.; Zheng, Y.; Yue, X.; Harper, K.L. Mitigation of Ozone Damage to the World’s Land Ecosystems by Source Sector. Nat. Clim. Chang. 2020, 10, 134–137. [Google Scholar] [CrossRef]
- Fuhrer, J.; Martin, M.V.; Mills, G.; Heald, C.L.; Harmens, H.; Hayes, F.; Sharps, K.; Bender, J.; Ashmore, M.R. Current and Future Ozone Risks to Global Terrestrial Biodiversity and Ecosystem Processes. Ecol. Evol. 2016, 6, 8785–8799. [Google Scholar] [CrossRef]
- Gu, Y.; Henze, D.K.; Nawaz, M.O.; Wagner, U.J. Response of the Ozone-Related Health Burden in Europe to Changes in Local Anthropogenic Emissions of Ozone Precursors. Environ. Res. Lett. 2023, 18, 114034. [Google Scholar] [CrossRef]
- Gu, Y.; Li, K.; Xu, J.; Liao, H.; Zhou, G. Observed Dependence of Surface Ozone on Increasing Temperature in Shanghai, China. Atmos. Environ. 2020, 221, 117108. [Google Scholar] [CrossRef]
- Action Plan on Air Pollution Prevention and Control. Available online: http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (accessed on 13 October 2022). (In Chinese)
- Lu, X.; Zhang, L.; Chen, Y.; Zhou, M.; Zheng, B.; Li, K.; Liu, Y.; Lin, J.; Fu, T.-M.; Zhang, Q. Exploring 2016–2017 Surface Ozone Pollution over China: Source Contributions and Meteorological Influences. Atmos. Chem. Phys. 2019, 19, 8339–8361. [Google Scholar] [CrossRef]
- Gu, Y.; Yan, F.; Xu, J.; Qu, Y.; Gao, W.; He, F.; Liao, H. A Measurement and Model Study on Ozone Characteristics in Marine Air at a Remote Island Station and Its Interaction with Urban Ozone Air Quality in Shanghai, China. Atmos. Chem. Phys. 2020, 20, 14361–14375. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic Drivers of 2013–2017 Trends in Summer Surface Ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, S.; Xue, B.; Lv, Z.; Meng, Z.; Yang, X.; Xue, T.; Yu, Q.; He, K. Ground-Level Ozone Pollution and Its Health Impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Zhu, B.; Kang, H.; Zhu, T.; Su, J.; Hou, X.; Gao, J. Impact of Shanghai Urban Land Surface Forcing on Downstream City Ozone Chemistry. J. Geophys. Res.-Atmos. 2015, 120, 4340–4351. [Google Scholar] [CrossRef]
- Xie, M.; Liao, J.; Wang, T.; Zhu, K.; Zhuang, B.; Han, Y.; Li, M.; Li, S. Modeling of the Anthropogenic Heat Flux and Its Effect on Regional Meteorology and Air Quality over the Yangtze River Delta Region, China. Atmos. Chem. Phys. 2016, 16, 6071–6089. [Google Scholar] [CrossRef]
- Huszár, P.; Karlický, J.; Belda, M.; Halenka, T.; Pišoft, P. The Impact of Urban Canopy Meteorological Forcing on Summer Photochemistry. Atmos. Environ. 2018, 176, 209–228. [Google Scholar] [CrossRef]
- Huszár, P.; Karlický, J.; Ďoubalová, J.; Šindelářová, K.; Nováková, T.; Belda, M.; Halenka, T.; Žák, M.; Pišoft, P. Urban Canopy Meteorological Forcing and Its Impact on Ozone and PM2.5: Role of Vertical Turbulent Transport. Atmos. Chem. Phys. 2020, 20, 1977–2016. [Google Scholar] [CrossRef]
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Stutz, J.; Alicke, B.; Ackermann, R.; Geyer, A.; White, A.; Williams, E. Vertical Profiles of NO3, N2O5, O3, and NOx in the Nocturnal Boundary Layer: 1. Observations during the Texas Air Quality Study 2000. J. Geophys. Res. 2004, 109, 2003JD004209. [Google Scholar] [CrossRef]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of Urban Heat Island on Regional Atmospheric Pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Ryu, Y.-H.; Baik, J.-J.; Kwak, K.-H.; Kim, S.; Moon, N. Impacts of Urban Land-Surface Forcing on Ozone Air Quality in the Seoul Metropolitan Area. Atmos. Chem. Phys. 2013, 13, 2177–2194. [Google Scholar] [CrossRef]
- Martilli, A. On the Impact of Urban Surface Exchange Parameterisations on Air Quality Simulations: The Athens Case. Atmos. Environ. 2003, 37, 4217–4231. [Google Scholar] [CrossRef]
- Wang, X.; Chen, F.; Wu, Z.; Zhang, M.; Tewari, M.; Guenther, A.; Wiedinmyer, C. Impacts of Weather Conditions Modified by Urban Expansion on Surface Ozone: Comparison between the Pearl River Delta and Yangtze River Delta Regions. Adv. Atmos. Sci. 2009, 26, 962–972. [Google Scholar] [CrossRef]
- Struzewska, J.; Kaminski, J.W. Impact of Urban Parameterization on High Resolution Air Quality Forecast with the GEM—AQ Model. Atmos. Chem. Phys. 2012, 12, 10387–10404. [Google Scholar] [CrossRef]
- Liao, J.; Wang, T.; Jiang, Z.; Zhuang, B.; Xie, M.; Yin, C.; Wang, X.; Zhu, J.; Fu, Y.; Zhang, Y. WRF/Chem Modeling of the Impacts of Urban Expansion on Regional Climate and Air Pollutants in Yangtze River Delta, China. Atmos. Environ. 2015, 106, 204–214. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, H.; Wu, B.; Huang, Y.; Cai, X.; Song, Y.; Li, J. Intermittent Turbulence Contributes to Vertical Dispersion of PM2.5 in the North China Plain: Cases from Tianjin. Atmos. Chem. Phys. 2018, 18, 12953–12967. [Google Scholar] [CrossRef]
- Zhang, J.; Rao, S.T. The Role of Vertical Mixing in the Temporal Evolution of Ground-Level Ozone Concentrations. J. Appl. Meteor. 1999, 38, 1674–1691. [Google Scholar] [CrossRef]
- Zhao, W.; Tang, G.; Yu, H.; Yang, Y.; Wang, Y.; Wang, L.; An, J.; Gao, W.; Hu, B.; Cheng, M.; et al. Evolution of Boundary Layer Ozone in Shijiazhuang, a Suburban Site on the North China Plain. J. Environ. Sci. 2019, 83, 152–160. [Google Scholar] [CrossRef]
- He, G.; Deng, T.; Wu, D.; Wu, C.; Huang, X.; Li, Z.; Yin, C.; Zou, Y.; Song, L.; Ouyang, S.; et al. Characteristics of Boundary Layer Ozone and Its Effect on Surface Ozone Concentration in Shenzhen, China: A Case Study. Sci. Total Environ. 2021, 791, 148044. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.S.; Dubé, W.P.; Tham, Y.J.; Zha, Q.; Xue, L.; Poon, S.; Wang, Z.; Blake, D.R.; Tsui, W.; Parrish, D.D.; et al. Nighttime Chemistry at a High Altitude Site above Hong Kong. J. Geophys. Res.-Atmos. 2016, 121, 2457–2475. [Google Scholar] [CrossRef]
- Prabhakar, G.; Parworth, C.L.; Zhang, X.; Kim, H.; Young, D.E.; Beyersdorf, A.J.; Ziemba, L.D.; Nowak, J.B.; Bertram, T.H.; Faloona, I.C.; et al. Observational Assessment of the Role of Nocturnal Residual-Layer Chemistry in Determining Daytime Surface Particulate Nitrate Concentrations. Atmos. Chem. Phys. 2017, 17, 14747–14770. [Google Scholar] [CrossRef]
- Yang, S.; Yuan, B.; Peng, Y.; Huang, S.; Chen, W.; Hu, W.; Pei, C.; Zhou, J.; Parrish, D.D.; Wang, W.; et al. The Formation and Mitigation of Nitrate Pollution: Comparison between Urban and Suburban Environments. Atmos. Chem. Phys. 2022, 22, 4539–4556. [Google Scholar] [CrossRef]
- He, C.; Lu, X.; Wang, H.; Wang, H.; Li, Y.; He, G.; He, Y.; Wang, Y.; Zhang, Y.; Liu, Y.; et al. The Unexpected High Frequency of Nocturnal Surface Ozone Enhancement Events over China: Characteristics and Mechanisms. Atmos. Chem. Phys. 2022, 22, 15243–15261. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W.; You, Y.; Xie, Q.; Jia, S.; Wang, X. Quantitative Impacts of Vertical Transport on the Long-Term Trend of Nocturnal Ozone Increase over the Pearl River Delta Region during 2006–2019. Atmos. Chem. Phys. 2023, 23, 453–469. [Google Scholar] [CrossRef]
- Wang, X.M.; Lin, W.S.; Yang, L.M.; Deng, R.R.; Lin, H. A Numerical Study of Influences of Urban Land-Use Change on Ozone Distribution over the Pearl River Delta Region, China. Tellus B 2007, 59, 633. [Google Scholar] [CrossRef]
- Morris, G.A.; Ford, B.; Rappenglück, B.; Thompson, A.M.; Mefferd, A.; Ngan, F.; Lefer, B. An Evaluation of the Interaction of Morning Residual Layer and Afternoon Mixed Layer Ozone in Houston Using Ozonesonde Data. Atmos. Environ. 2010, 44, 4024–4034. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, H.; Meng, W.; Zhang, X.; Xu, J.; Liu, Q.; Wang, Y. Vertical Ozone Characteristics in Urban Boundary Layer in Beijing. Environ. Monit. Assess 2013, 185, 5449–5460. [Google Scholar] [CrossRef]
- Klein, P.M.; Hu, X.-M.; Xue, M. Impacts of Mixing Processes in Nocturnal Atmospheric Boundary Layer on Urban Ozone Concentrations. Bound.-Lay. Meteorol. 2014, 150, 107–130. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Sailor, D.J.; Ban-Weiss, G.A. Effects of Urbanization on Regional Meteorology and Air Quality in Southern California. Atmos. Chem. Phys. 2019, 19, 4439–4457. [Google Scholar] [CrossRef]
- He, G.; He, C.; Wang, H.; Lu, X.; Pei, C.; Qiu, X.; Liu, C.; Wang, Y.; Liu, N.; Zhang, J.; et al. Nighttime Ozone in the Lower Boundary Layer: Insights from 3-Year Tower-Based Measurements in South China and Regional Air Quality Modeling. Atmos. Chem. Phys. 2023, 23, 13107–13124. [Google Scholar] [CrossRef]
- Zhu, X.; Ma, Z.; Qiu, Y.; Liu, H.; Liu, Q.; Yin, X. An Evaluation of the Interaction of Morning Residual Layer Ozone and Mixing Layer Ozone in Rural Areas of the North China Plain. Atmos. Res. 2020, 236, 104788. [Google Scholar] [CrossRef]
- Lin, C.-H.; Wu, Y.-L.; Lai, C.-H. Ozone Reservoir Layers in a Coastal Environment—A Case Study in Southern Taiwan. Atmos. Chem. Phys. 2010, 10, 4439–4452. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Zhang, C. Vertical Observations and Analysis of PM2.5, O3, and NO x at Beijing and Tianjin from Towers during Summer and Autumn 2006. Adv. Atmos. Sci. 2010, 27, 123–136. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, G.; Liu, B.; Zhang, X.; Li, Q.; Hu, Q.; Wang, Y.; Yu, M.; Sun, Y.; Ji, D.; et al. Decadal Changes in Ozone in the Lower Boundary Layer over Beijing, China. Atmos. Environ. 2022, 275, 119018. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, J.; Zhu, X.; Song, T.; Münkel, C.; Hu, B.; Schäfer, K.; Liu, Z.; Zhang, J.; Wang, L.; et al. Mixing Layer Height and Its Implications for Air Pollution over Beijing, China. Atmos. Chem. Phys. 2016, 16, 2459–2475. [Google Scholar] [CrossRef]
- Han, S.; Liu, J.; Hao, T.; Zhang, Y.; Li, P.; Yang, J.; Wang, Q.; Cai, Z.; Yao, Q.; Zhang, M.; et al. Boundary Layer Structure and Scavenging Effect during a Typical Winter Haze-Fog Episode in a Core City of BTH Region, China. Atmos. Environ. 2018, 179, 187–200. [Google Scholar] [CrossRef]
- Li, L.; Lu, C.; Chan, P.-W.; Zhang, X.; Yang, H.-L.; Lan, Z.-J.; Zhang, W.-H.; Liu, Y.-W.; Pan, L.; Zhang, L. Tower Observed Vertical Distribution of PM2.5, O3 and NOx in the Pearl River Delta. Atmos. Environ. 2020, 220, 117083. [Google Scholar] [CrossRef]
- Li, X.-B.; Yuan, B.; Wang, S.; Wang, C.; Lan, J.; Liu, Z.; Song, Y.; He, X.; Huangfu, Y.; Pei, C.; et al. Variations and Sources of Volatile Organic Compounds (VOCs) in Urban Region: Insights from Measurements on a Tall Tower. Atmos. Chem. Phys. 2022, 22, 10567–10587. [Google Scholar] [CrossRef]
- Deng, X.; Li, F.; Li, Y.; Li, J.; Huang, H.; Liu, X. Vertical Distribution Characteristics of PM in the Surface Layer of Guangzhou. Particuology 2015, 20, 3–9. [Google Scholar] [CrossRef]
- Harrison, R.M.; Dall’Osto, M.; Beddows, D.C.S.; Thorpe, A.J.; Bloss, W.J.; Allan, J.D.; Coe, H.; Dorsey, J.R.; Gallagher, M.; Martin, C.; et al. Atmospheric Chemistry and Physics in the Atmosphere of a Developed Megacity (London): An Overview of the REPARTEE Experiment and Its Conclusions. Atmos. Chem. Phys. 2012, 12, 3065–3114. [Google Scholar] [CrossRef]
- Pan, L.; Xu, J.; Tie, X.; Mao, X.; Gao, W.; Chang, L. Long-Term Measurements of Planetary Boundary Layer Height and Interactions with PM2.5 in Shanghai, China. Atmos. Pollut. Res. 2019, 10, 989–996. [Google Scholar] [CrossRef]
- Li, X.-B.; Fan, G.; Lou, S.; Yuan, B.; Wang, X.; Shao, M. Transport and Boundary Layer Interaction Contribution to Extremely High Surface Ozone Levels in Eastern China. Environ. Pollut. 2021, 268, 115804. [Google Scholar] [CrossRef]
- Yin, C.; Xu, J.; Gao, W.; Pan, L.; Gu, Y.; Fu, Q.; Yang, F. Characteristics of Fine Particle Matters at the Top of Shanghai Tower. Atmos. Chem. Phys. 2023, 23, 1329–1343. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present. 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form (accessed on 14 January 2024).
- Seidel, D.J.; Zhang, Y.; Beljaars, A.; Golaz, J.; Jacobson, A.R.; Medeiros, B. Climatology of the Planetary Boundary Layer over the Continental United States and Europe. J. Geophys. Res. 2012, 117, 2012JD018143. [Google Scholar] [CrossRef]
- Kim, S.-W.; Yoon, S.-C.; Won, J.-G.; Choi, S.-C. Ground-Based Remote Sensing Measurements of Aerosol and Ozone in an Urban Area: A Case Study of Mixing Height Evolution and Its Effect on Ground-Level Ozone Concentrations. Atmos. Environ. 2007, 41, 7069–7081. [Google Scholar] [CrossRef]
- Haman, C.L.; Lefer, B.; Morris, G.A. Seasonal Variability in the Diurnal Evolution of the Boundary Layer in a Near-Coastal Urban Environment. J. Atmos. Ocean. Technol. 2012, 29, 697–710. [Google Scholar] [CrossRef]
- Peng, J.; Grimmond, C.S.B.; Fu, X.; Chang, Y.; Zhang, G.; Guo, J.; Tang, C.; Gao, J.; Xu, X.; Tan, J. Ceilometer-Based Analysis of Shanghai’s Boundary Layer Height (under Rain- and Fog-Free Conditions). J. Atmos. Ocean. Technol. 2017, 34, 749–764. [Google Scholar] [CrossRef]
- Kim, K.-Y. Diurnal and Seasonal Variation of Planetary Boundary Layer Height over East Asia and Its Climatic Change as Seen in the ERA-5 Reanalysis Data. SN Appl. Sci. 2022, 4, 39. [Google Scholar] [CrossRef]
- Dias-Júnior, C.Q.; Carneiro, R.G.; Fisch, G.; D’Oliveira, F.A.F.; Sörgel, M.; Botía, S.; Machado, L.A.T.; Wolff, S.; Santos, R.M.N.D.; Pöhlker, C. Intercomparison of Planetary Boundary Layer Heights Using Remote Sensing Retrievals and ERA5 Reanalysis over Central Amazonia. Remote Sens. 2022, 14, 4561. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, S.; Liu, C.; Guo, J. Synoptic Circulation Pattern and Boundary Layer Structure Associated with PM2.5 during Wintertime Haze Pollution Episodes in Shanghai. Atmos. Res. 2019, 228, 186–195. [Google Scholar] [CrossRef]
- Geng, F.; Tie, X.; Xu, J.; Zhou, G.; Peng, L.; Gao, W.; Tang, X.; Zhao, C. Characterizations of Ozone, NOx, and VOCs Measured in Shanghai, China. Atmos. Environ. 2008, 42, 6873–6883. [Google Scholar] [CrossRef]
- Zhang, R.; Lei, W.; Tie, X.; Hess, P. Industrial Emissions Cause Extreme Urban Ozone Diurnal Variability. Proc. Natl. Acad. Sci. USA 2004, 101, 6346–6350. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Q.; Kurokawa, J.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A Mosaic Asian Anthropogenic Emission Inventory under the International Collaboration Framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef]
- Yin, Q.; Ma, Q.; Lin, W.; Xu, X.; Yao, J. Measurement Report: Long-Term Variations in Surface NOx and SO2; Mixing Ratios from 2006 to 2016 at a Background Site in the Yangtze River Delta Region, China. Atmos. Chem. Phys. 2022, 22, 1015–1033. [Google Scholar] [CrossRef]
- Geng, F.; Tie, X.; Guenther, A.; Li, G.; Cao, J.; Harley, P. Effect of Isoprene Emissions from Major Forests on Ozone Formation in the City of Shanghai, China. Atmos. Chem. Phys. 2011, 11, 10449–10459. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Yan, F.; Xu, J.; Pan, L.; Yin, C.; Gao, W.; Liao, H. Observational Evidence of the Vertical Exchange of Ozone within the Urban Planetary Boundary Layer in Shanghai, China. Atmosphere 2024, 15, 248. https://doi.org/10.3390/atmos15030248
Gu Y, Yan F, Xu J, Pan L, Yin C, Gao W, Liao H. Observational Evidence of the Vertical Exchange of Ozone within the Urban Planetary Boundary Layer in Shanghai, China. Atmosphere. 2024; 15(3):248. https://doi.org/10.3390/atmos15030248
Chicago/Turabian StyleGu, Yixuan, Fengxia Yan, Jianming Xu, Liang Pan, Changqin Yin, Wei Gao, and Hong Liao. 2024. "Observational Evidence of the Vertical Exchange of Ozone within the Urban Planetary Boundary Layer in Shanghai, China" Atmosphere 15, no. 3: 248. https://doi.org/10.3390/atmos15030248
APA StyleGu, Y., Yan, F., Xu, J., Pan, L., Yin, C., Gao, W., & Liao, H. (2024). Observational Evidence of the Vertical Exchange of Ozone within the Urban Planetary Boundary Layer in Shanghai, China. Atmosphere, 15(3), 248. https://doi.org/10.3390/atmos15030248