Assessment of Water Resources under Climate Change in Western Hindukush Region: A Case Study of the Upper Kabul River Basin
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Spatial Data (Topographic, Land Use, Soil)
2.2. Weather Data (Current Scenario)
2.3. Regional Climate Models (RCMs)
2.4. Bias Correction Procedure
2.5. Hydrological Model
2.6. Calibration and Validation
3. Results
3.1. Bias-Corrected Temperature and Precipitation Changes
3.2. Hydrology Results of SWAT (2010–2019)
3.2.1. Model Performance and Sensitivity Analysis
3.2.2. Hydrological Water Balance (2010–2019)
3.3. Future Hydrological Variation under Predicted Climate Change
3.3.1. Monthly Variations in Streamflow
3.3.2. Seasonal Variations in Streamflow
3.3.3. Annual Variations in Streamflow
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Woring Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connor, S.L., Eds.; Cambridge University Press: Cambridge, UK, 2021; Volume 9781107025, pp. 3–32. ISBN 9781139177245. [Google Scholar]
- Sediqi, M.N.; Komori, D. Assessing Water Resource Sustainability in the Kabul River Basin: A Standardized Runoff Index and Reliability, Resilience, and Vulnerability Framework Approach. Sustainability 2023, 16, 246. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Shiru, S.; Chung, E.S.; Alias, N.; Ahmed, K.; Dioha, E.C.; Sa’adi, Z.; Salman, S.; Noor, M.; et al. Challenges in water resources of lagos mega city of nigeria in the context of climate change. J. Water Clim. Chang. 2020, 11, 1067–1083. [Google Scholar] [CrossRef]
- Arian, H.; Kayastha, R.B.; Bhattarai, B.C.; Shresta, A.; Rasouli, H.; Armstrong, R. Application of the Snowmelt Runoff Model in the Salang River Basin, Afghanistan Using MODIS Satellite Data. J. Hydrol. Meteorol. 2016, 9, 109–118. [Google Scholar] [CrossRef]
- Bokhari, S.A.A.; Ahmad, B.; Ali, J.; Ahmad, S.; Mushtaq, H.; Rasul, G. Future Climate Change Projections of the Kabul River Basin Using a Multi-model Ensemble of High-Resolution Statistically Downscaled Data. Earth Syst. Environ. 2018, 2, 477–497. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Dahri, Z.H.; Querner, E.P.; Khan, A.; Hofstra, N. Impact of climate change on flood frequency and intensity in the kabul river basin. Geosciences 2018, 8, 114. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using Mann-Kendall and spearman’s Rho tests in swat river basin, Pakistan. Adv. Meteorol. 2015, 2015, 431860. [Google Scholar] [CrossRef]
- Sediqi, M.N.; Shiru, M.S.; Nashwan, M.S.; Ali, R.; Abubaker, S.; Wang, X.; Ahmed, K.; Shahid, S.; Asaduzzaman, M.; Manawi, S.M.A. Spatio-temporal pattern in the changes in availability and sustainability ofwater resources in Afghanistan. Sustainability 2019, 11, 5836. [Google Scholar] [CrossRef]
- Goes, B.J.M.; Howarth, S.E.; Wardlaw, R.B.; Hancock, I.R.; Parajuli, U.N. Integrated water resources management in an insecure river basin: A case study of Helmand River Basin, Afghanistan. Int. J. Water Resour. Dev. 2016, 32, 3–25. [Google Scholar] [CrossRef]
- Mew, J. Project for Capacity Enhancement on Hydro-Meteorological Information Management in the Ministry of Energy and Water in the Islamic Republic of Afghanistan; Japan International Cooperation Agency: Tokyo, Japan, 2019. [Google Scholar]
- Akhtar, F.; Awan, U.K.; Borgemeister, C.; Tischbein, B. Coupling remote sensing and hydrological model for evaluating the impacts of climate change on streamflow in data-scarce environment. Sustainability 2021, 13, 14025. [Google Scholar] [CrossRef]
- Akhtar, F.; Awan, U.K.; Tischbein, B.; Liaqat, U.W. Assessment of irrigation performance in large river basins under data scarce environment-A case of Kabul River basin, Afghanistan. Remote Sens. 2018, 10, 972. [Google Scholar] [CrossRef]
- Ahmadzai, S.; McKinna, A. Afghanistan electrical energy and trans-boundary water systems analyses: Challenges and opportunities. Energy Rep. 2018, 4, 435–469. [Google Scholar] [CrossRef]
- Qureshi, A. Water Resources Management in Afghanistan: The Issues and Options; International Water Management Institute: Colombo, Sri Lanka, 2002. [Google Scholar]
- Hashmi, M.Z.U.R.; Masood, A.; Mushtaq, H.; Bukhari, S.A.A.; Ahmad, B.; Tahir, A.A. Exploring climate change impacts during first half of the 21st century on flow regime of the transboundary kabul river in the hindukush region. J. Water Clim. Chang. 2020, 11, 1521–1538. [Google Scholar] [CrossRef]
- Sidiqi, M.; Kasiviswanathan, K.S.; Scheytt, T.; Devaraj, S. Assessment of Meteorological Drought under the Climate Change in the Kabul River Basin, Afghanistan. Atmosphere 2023, 14, 570. [Google Scholar] [CrossRef]
- Akhtar, F.; Borgemeister, C.; Tischbein, B.; Awan, U.K. Metrics Assessment and Streamflow Modeling under Changing Climate in a Data-Scarce Heterogeneous Region: A Case Study of the Kabul River Basin. Water 2022, 14, 1697. [Google Scholar] [CrossRef]
- Sidiqi, M.; Shrestha, S.; Ninsawat, S. Projection of climate change scenarios in the Kabul River Basin, Afghanistan. Curr. Sci. 2018, 114, 1304–1310. [Google Scholar] [CrossRef]
- FAO-MAIL. Food and Agriculture Organization of the United Nations, Ministry of Agriculture, Irrigation and Livestock Landcover Atlas of the Islamic Rebulic of Afghanistan; FAO: Rome, Italy, 2010. [Google Scholar]
- Aich, V.; Akhundzadah, N.A.; Knuerr, A.; Khoshbeen, A.J.; Hattermann, F.; Paeth, H.; Scanlon, A.; Paton, E.N. Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)-South Asia simulations. Climate 2017, 5, 38. [Google Scholar] [CrossRef]
- Ghulami, M.; Babel, M.S.; Shrestha, M.S. Evaluation of gridded precipitation datasets for the Kabul Basin, Afghanistan. Int. J. Remote Sens. 2017, 38, 3317–3332. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Rathjens, H.; Bieger, K.; Srinivasan, R.; Chaubey, I.; Arnold, J.G. CMhyd User Manual Documentation for Preparing Simulated Climate Change Data for Hydrologic Impact Studies; SWAT: Garland, TX, USA, 2016. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Srinivasan, R.; Ramanarayanan, T.S.; Arnold, J.G.; Bednarz, S.T. Large area hydrologic modeling and assessment part II: Model application. J. Am. Water Resour. Assoc. 1998, 34, 91–101. [Google Scholar] [CrossRef]
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J.G. ArcSWAT User’s Guide; Blackland Research and Extension Center: Temple, TX, USA, 2013; p. 464. [Google Scholar]
- Ayoubi, T.; Dongshik, K. Panjshir watershed hydrologic model using integrated gis and panjshir watershed hydrologic model using. J. Earth Environ. Sci. 2016, 6, 145–161. [Google Scholar]
- Mengistu, A.G.; van Rensburg, L.D.; Woyessa, Y.E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol. Reg. Stud. 2019, 25, 100621. [Google Scholar] [CrossRef]
- Kouchi, D.H.; Esmaili, K.; Faridhosseini, A.; Sanaeinejad, S.H.; Khalili, D.; Abbaspour, K.C. Sensitivity of calibrated parameters and water resource estimates on different objective functions and optimization algorithms. Water 2017, 9, 384. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, J.; Pontius, R.; Hong, H. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Sci. Total Environ. 2016, 543, 591–600. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, H.; Xi, Y. SWAT-based runoff simulation and runoff responses to climate change in the headwaters of the Yellow River, China. Atmosphere 2019, 10, 509. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP SWATCalibration and Uncertainty Programs; Eawag: Dübendorf, Switzerland, 2015; pp. 2–100. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol. 1996, 181, 23–48. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Input/Output Documentation Soil & Water Assessment Tool; Texas Water Resources Institute: Thrall, TX, USA, 2012; pp. 1–650. [Google Scholar]
- Li, K.; Wang, Y.; Li, X.; Yuan, Z.; Xu, J. Simulation effect evaluation of single-outlet and multi-outlet calibration of Soil and Water Assessment Tool model driven by Climate Forecast System Reanalysis data and ground-based meteorological station data—A case study in a Yellow River source. Water Sci. Technol. Water Supply 2021, 21, 1061–1071. [Google Scholar] [CrossRef]
- Baig, S.; ul Hasson, S. Flood Inundation and Streamflow Changes in the Kabul River Basin under Climate Change. Sustainability 2023, 16, 116. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Shi, X.; Zeng, C.; Wang, Y.; Wang, G.; Qiangba, C.; Yue, C.; Sun, Z.; Renzeng, O.; et al. Impact of Climate Change on the Hydrological Regimes of the Midstream Section of the Yarlung Tsangpo River Basin Based on SWAT Model. Water 2023, 15, 685. [Google Scholar] [CrossRef]
- Macpherson, G.L.; Johnson, W.C.; Liu, H. Viability of karezes (ancient water supply systems in Afghanistan) in a changing world. Appl. Water Sci. 2017, 7, 1689–1710. [Google Scholar] [CrossRef]
- Casale, F.; Bombelli, G.M.; Monti, R.; Bocchiola, D. Hydropower potential in the Kabul River under climate change scenarios in the XXI century. Theor. Appl. Climatol. 2020, 139, 1415–1434. [Google Scholar] [CrossRef]
- Waseem, M.; Ajmal, M.; Ahmad, I.; Khan, N.M.; Azam, M.; Sarwar, M.K. Projected drought pattern under climate change scenario using multivariate analysis. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Dewan, A.; Chung, E.S.; Alias, N.; Ahmed, K.; Hassan, Q.K. Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios. Sci. Rep. 2020, 10, 10107. [Google Scholar] [CrossRef]
- Bonacci, O.; Bonacci, D.; Roje-Bonacci, T.; Vrsalović, A. Proposal of a new method for drought analysis. J. Hydrol. Hydromech. 2023, 71, 100–110. [Google Scholar] [CrossRef]
- Giang, P.Q.; Toshiki, K.; Sakata, M.; Kunikane, S.; Vinh, T.Q. Modelling climate change impacts on the seasonality of water resources in the upper Ca river watershed in Southeast Asia. Sci. World J. 2014, 2014, 279135. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Lutz, A.F.; Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shrestha, A.B.; Bierkens, M.F.P. Climate change impacts on the upper indus hydrology: Sources, shifts and extremes. PLoS ONE 2016, 11, e0165630. [Google Scholar] [CrossRef] [PubMed]
- Wijngaard, R.R.; Lutz, A.F.; Nepal, S.; Khanal, S.; Pradhananga, S.; Shrestha, A.B.; Immerzeel, W.W. Immerzeel Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS ONE 2017, 12, e0190224. [Google Scholar] [CrossRef] [PubMed]
Domain | RCMs | Driving GCMs | Historical Data | RCPs | Institution | Resolution |
---|---|---|---|---|---|---|
WAS-44 | RCA4 | CanESM2-CCCma | 1951–2005 | 2006–2100 | SMHI 2 | 0.44° × 0.44° |
WAS-44 | RegCM4-4 | NOAA-GFDL-ESM2M | 1951–2005 | 2006–2099 | IITM 3 | 0.44° × 0.44° |
WAS-44i | REMO2009 | MPI-ESM-LR | 1961–2005 | 2006–2100 | MPI-CSC 4 | 0.44° × 0.44° |
WAS-44 | RCA4 | MIROC5 | 1961–2005 | 2006–2100 | SMHI 2 | 0.44° × 0.44° |
RCP Period | Variable | Spring (MAM) | Summer (JJA) | Autumn (SON) | Winter (DJF) | Annual |
---|---|---|---|---|---|---|
RCP4.5 (2040s) | Precipitation | −8% | 6% | 35% | 13% | 5% |
RCP4.5 (2090s) | Precipitation | −2% | 9% | 17% | 21% | 1% |
RCP8.5 (2040s) | Precipitation | −12% | 18% | 0% | 12% | 9% |
RCP8.5 (2090s) | Precipitation | −12% | 18% | 13% | 12% | 2% |
RCP4.5 (2040s) | Temperature | 3.2 °C | 1.7 °C | 0.2 °C | 2.5 °C | +1.9 °C |
RCP4.5 (2090s) | Temperature | 5.5 °C | 2.0 °C | 0.1 °C | 4.6 °C | +3.1 °C |
RCP8.5 (2040s) | Temperature | 4.5 °C | 3.0 °C | 1.4 °C | 4.3 °C | +2.4 °C |
RCP8.5 (2090s) | Temperature | 8.5 °C | 4.2 °C | 2.4 °C | 7.0 °C | +6.1 °C |
Parameter | Rank | Details of Abbreviations (Unit) | T-Stat | p-Value | Min Value | Max Value | Fitted Value |
---|---|---|---|---|---|---|---|
v__SOL_AWC.sol | 1 | Available water capacity of soil (mm·mm−1) | 40.99 | 0.000 | 0.0 | 0.2 | 0.1438 |
v__GWQMN.gw | 2 | Threshold depth of water in the shallow aquifer required for return flow to occur (mm·H2O) | 7.697 | 0.000 | 700.0 | 900.0 | 888.33 |
v__PLAPS.sub | 3 | Precipitation lapse rate (mm H2O/km) | −7.39 | 0.000 | 33.0 | 100.0 | 75.321 |
v__SUB_SMFMX.sno | 4 | Maximum melt rate for snow during the year (mm H2O °C−1day−1) | −6.88 | 0.000 | 0.0 | 5.0 | 1.5583 |
v__ESCO.hru | 5 | Soil evaporation compensation factor | −2.68 | 0.008 | 0.9 | 1.0 | 0.9424 |
v__SUB_TIMP.sno | 6 | Snowpack temperature lag factor | −2.58 | 0.014 | 0.0 | 1.0 | 0.8550 |
v__SMFMN.bsn | 8 | Minimum melt rate for snow during the year (mm H2O °C−1day−1) | 2.53 | 0.012 | 0.0 | 5.0 | 1.8583 |
r__CN2.mgt | 9 | SCS runoff curve number | −2.44 | 0.015 | 0.0 | 0.1 | 0.0454 |
v__SUB_SMTMP.sno | 10 | Snowmelt base temperature (°C) | 1.69 | 0.091 | −5.0 | 5.0 | −1.116 |
v__SUB_SFTMP.sno | 11 | Snowfall temperature (°C) | 1.57 | 0.115 | 2.0 | 4.0 | 3.9567 |
Stations | Process | p-Factor | r-Factor | NS | R2 | KGE | PBIAS | Conditions |
---|---|---|---|---|---|---|---|---|
Tang-i-Gulbahar | Calibration | 0.87 | 1.02 | 0.91 | 0.92 | 0.9 | 4.2 | Very good |
Validation | 0.57 | 0.03 | 0.93 | 0.95 | 0.89 | −4.8 | ||
Pul-i-Ashawa | Calibration | 0.79 | 0.44 | 0.66 | 0.67 | 0.8 | 2.6 | Good |
Validation | 0.35 | 0.2 | 0.16 | 0.82 | 0.27 | −36.3 | ||
Shukhi | Calibration | 0.78 | 0.3 | 0.79 | 0.79 | 0.82 | −3.7 | Very good |
Validation | 0.39 | 0 | 0.74 | 0.8 | 0.79 | −16.2 | ||
Tang-i-Gharu | Calibration | 0.52 | 1.17 | 0.85 | 0.89 | 0.85 | 1.1 | Good |
Validation | 0.31 | 0.1 | 0.79 | 0.83 | 0.71 | 10.5 | ||
Tang-i-Saidan | Calibration | 0.58 | 1.2 | 0.75 | 0.78 | 0.69 | 22.5 | Good |
Validation | 0.49 | 0.3 | 0.68 | 0.78 | 0.77 | −13.9 | ||
Sang-i-Nawishta | Calibration | 0.74 | 0.22 | 0.54 | 0.79 | 0.35 | 58.1 | Satisfactory |
Validation | 0.25 | 0.01 | 0.21 | 0.73 | 0.02 | 69.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayoubi, T.; Reinhardt-Imjela, C.; Schulte, A. Assessment of Water Resources under Climate Change in Western Hindukush Region: A Case Study of the Upper Kabul River Basin. Atmosphere 2024, 15, 361. https://doi.org/10.3390/atmos15030361
Ayoubi T, Reinhardt-Imjela C, Schulte A. Assessment of Water Resources under Climate Change in Western Hindukush Region: A Case Study of the Upper Kabul River Basin. Atmosphere. 2024; 15(3):361. https://doi.org/10.3390/atmos15030361
Chicago/Turabian StyleAyoubi, Tooryalay, Christian Reinhardt-Imjela, and Achim Schulte. 2024. "Assessment of Water Resources under Climate Change in Western Hindukush Region: A Case Study of the Upper Kabul River Basin" Atmosphere 15, no. 3: 361. https://doi.org/10.3390/atmos15030361
APA StyleAyoubi, T., Reinhardt-Imjela, C., & Schulte, A. (2024). Assessment of Water Resources under Climate Change in Western Hindukush Region: A Case Study of the Upper Kabul River Basin. Atmosphere, 15(3), 361. https://doi.org/10.3390/atmos15030361