Tracking Carbon Dioxide with Lagrangian Transport Simulations: Case Study of Canadian Forest Fires in May 2021
Abstract
:1. Introduction
2. Data and Methods
2.1. The MPTRAC Lagrangian Transport Model
2.2. The OCO-2 GEOS Level 3 Data Product
3. CO2 Trajectory Modeling of Forest Fires in Canada
3.1. Problem Description and Selection of Case Study
3.2. Preparation of Data and Operating Environment
3.3. Baseline Experiment
3.4. Sensitivity Test on CO2 Release Height
3.5. Comparison of Simulation Results on Different HPC Systems
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kweku, D.W.; Bismark, O.; Maxwell, A.; Desmond, K.A.; Danso, K.B.; Oti-Mensah, E.A.; Quachie, A.T.; Adormaa, B.B. Greenhouse effect: Greenhouse gases and their impact on global warming. J. Sci. Res. Rep. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Barker, J.R.; Ross, M.H. An introduction to global warming. Am. J. Phys. 1999, 67, 1216–1226. [Google Scholar] [CrossRef]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef]
- Mallongi, A.; Indra, R.; Arief, M.; Kamil, M.; Satrianegara, M.F. Environmental Pollution and Health Problems Due to Forest Fires with CO2 Parameters. Med.-Leg. Update 2020, 20, 888–892. [Google Scholar]
- Lin, J.; Brunner, D.; Gerbig, C.; Stohl, A.; Luhar, A.; Webley, P. Lagrangian Modeling of the Atmosphere; American Geophysical Union: Washington, DC, USA, 2012; p. 200. [Google Scholar]
- Massot, M.; De Chaisemartin, S.; Fréret, L.; Kah, D.; Laurent, F. Eulerian multi-fluid models: Modeling and numerical methods. In Proceedings of the RTO-Lecture Series du von Karman Institute “MODELING AND COMPUTATIONS OF NANOPARTICLES IN FLUID FLOWS”, Sint-Genesius-Rode, Belgium, 9–12 February 2009; pp. 1–86. [Google Scholar]
- Hirche, D.; Birkholz, F.; Hinrichsen, O. A hybrid Eulerian-Eulerian-Lagrangian model for gas-solid simulations. Chem. Eng. J. 2019, 377, 119743. [Google Scholar] [CrossRef]
- Forster, C.; Wandinger, U.; Wotawa, G.; James, P.; Mattis, I.; Althausen, D.; Simmonds, P.; O’Doherty, S.; Jennings, S.G.; Kleefeld, C. Transport of boreal forest fire emissions from Canada to Europe. J. Geophys. Res. Atmos. 2001, 106, 22887–22906. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.W.; Brioude, J.; Cooper, O.; Frost, G.; Kim, C.H.; Park, R.; Trainer, M.; Woo, J.H. Transport of Nox in East Asia identified by satellite and in situ measurements and Lagrangian particle dispersion model simulations. J. Geophys. Res. Atmos. 2014, 119, 2574–2596. [Google Scholar] [CrossRef]
- D’Amours, R.; Malo, A.; Servranckx, R.; Bensimon, D.; Trudel, S.; Gauthier-Bilodeau, J.P. Application of the atmospheric Lagrangian particle dispersion model MLDP0 to the 2008 eruptions of Okmok and Kasatochi volcanoes. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Pillai, D.; Gerbig, C.; Kretschmer, R.; Beck, V.; Karstens, U.; Neininger, B.; Heimann, M. Comparing Lagrangian and Eulerian models for CO2 transport—A step towards Bayesian inverse modeling using WRF/STILT-VPRM. Atmos. Chem. Phys. 2012, 12, 8979–8991. [Google Scholar] [CrossRef]
- Wu, D.; Lin, J.C.; Fasoli, B.; Oda, T.; Ye, X.; Lauvaux, T.; Yang, E.G.; Kort, E.A. A Lagrangian approach towards extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”). Geosci. Model Dev. 2018, 11, 4843–4871. [Google Scholar] [CrossRef]
- Pisso, I.; Sollum, E.; Grythe, H.; Kristiansen, N.I.; Cassiani, M.; Eckhardt, S.; Arnold, D.; Morton, D.; Thompson, R.L.; Groot Zwaaftink, C.D. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev. 2019, 12, 4955–4997. [Google Scholar] [CrossRef]
- Halse, A.K.; Eckhardt, S.; Schlabach, M.; Stohl, A.; Breivik, K. Forecasting long-range atmospheric transport episodes of polychlorinated biphenyls using FLEXPART. Atmos. Environ. 2013, 71, 335–339. [Google Scholar] [CrossRef]
- Draxler, R.R. HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAAARL READY Website. 2003. Available online: https://www.arl.noaa.gov/ready/hysplit4.html (accessed on 3 September 2023).
- McGowan, H.; Clark, A. Identification of dust transport pathways from Lake Eyre, Australia using Hysplit. Atmos. Environ. 2008, 42, 6915–6925. [Google Scholar] [CrossRef]
- Zhou, Y.; Levy, J.I.; Hammitt, J.K.; Evans, J.S. Estimating population exposure to power plant emissions using CALPUFF: A case study in Beijing, China. Atmos. Environ. 2003, 37, 815–826. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.; Sappurd, A.; Al-Damkhi, A. Application of California Puff (CALPUFF) model: A case study for Oman. Clean Technol. Environ. Policy 2011, 13, 177–189. [Google Scholar] [CrossRef]
- Hoffmann, L.; Baumeister, P.F.; Cai, Z.; Clemens, J.; Griessbach, S.; Günther, G.; Heng, Y.; Liu, M.; Haghighi Mood, K.; Stein, O. Massive-Parallel Trajectory Calculations version 2.2 (MPTRAC-2.2): Lagrangian transport simulations on graphics processing units (GPUs). Geosci. Model Dev. 2022, 15, 2731–2762. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.; Liu, S.; Bai, Z.; Xia, X.; Chen, B.; Zong, X.; Bian, J. In situ measurements and backward-trajectory analysis of high-concentration, fine-mode aerosols in the UTLS over the Tibetan Plateau. Environ. Res. Lett. 2019, 14, 124068. [Google Scholar] [CrossRef]
- Cai, Z.; Griessbach, S.; Hoffmann, L. Improved estimation of volcanic SO2 injections from satellite retrievals and Lagrangian transport simulations: The 2019 Raikoke eruption. Atmos. Chem. Phys. 2022, 22, 6787–6809. [Google Scholar] [CrossRef]
- Rößler, T.; Stein, O.; Heng, Y.; Baumeister, P.; Hoffmann, L. Trajectory errors of different numerical integration schemes di-agnosed with the MPTRAC advection module driven by ECMWF operational analyses. Geosci. Model Dev. 2018, 11, 575–592. [Google Scholar] [CrossRef]
- Bowers, K.J.; Dror, R.O.; Shaw, D.E. The midpoint method for parallelization of particle simulations. J. Chem. Phys. 2006, 124, 18. [Google Scholar] [CrossRef]
- Weir, B.; Ott, L.; OCO-2 Science Team. OCO-2 GEOS Level 3 daily, 0.5 × 0.625 assimilated CO2 V10r. 2022. Available online: https://earth.gov/ghgcenter/data-catalog/oco2geos-co2-daygrid-v10r (accessed on 30 January 2024).
- Hakkarainen, J.; Ialongo, I.; Maksyutov, S.; Crisp, D. Analysis of Four Years of Global XCO2 Anomalies as Seen by Orbiting Carbon Observatory-2. Remote Sens. 2019, 11, 850. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Zou, Z.; Chen, X.; Wu, H.; Wang, W.; Su, H.; Li, F.; Xu, W.; Liu, Z. Severe Global Environmental Issues Caused by Canada’s Record-Breaking Wildfires in 2023. Adv. Atmos. Sci. 2023, 41, 565–571. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Center, N.L.R.; CALIPSO Lidar Browse Images 2021. Standard Lidar Browse Images For Production Release [v4.11]. Available online: https://www-calipso.larc.nasa.gov/data/BROWSE/production/V4-11/2021-05-19/2021-05-19_09-26-04_V4.11_1_6.png (accessed on 19 May 2021).
- Aumann, H.H.; Chahine, M.T.; Gautier, C.; Goldberg, M.D.; Kalnay, E.; McMillin, L.M.; Revercomb, H.; Rosenkranz, P.W.; Smith, W.L.; Staelin, D.H. AIRS/AMSU/HSB on the Aqua mission: Design, sciee objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 253–264. [Google Scholar] [CrossRef]
- Krause, D. JUWELS: Modular Tier-0/1 supercomputer at the Jülich supercomputing centre. J. Large-Scale Res. Facil. JLSRF 2019, 5, A135. [Google Scholar] [CrossRef]
Property | Description |
---|---|
Shortname | OCO2_GEOS_L3CO2_DAY |
Longname | OCO-2 GEOS Level 3 daily, 0.5° × 0.625° assimilated CO2 V10r |
DOI | 10.5067/Y9M4NM9MPCGH |
Version | 10r |
Format | netCDF |
Spatial Coverage | −180.0, −90.0, 180.0, 90.0 |
Temporal Coverage | 1 January 2015 to 1 March 2022 |
File Size | 57 MB per file |
Spatial Resolution | 0.5° × 0.625° |
Temporal Resolution | 1 day |
Data Dimensions | longitude = 576, latitude = 361, time = 1 |
Parameter | Value |
---|---|
Simulation area | 120°∼0° W, 10°∼70° N |
Particle source location | Gaussian centered at (105°67′ W, 53°24′ N) |
Particle total mass | kg |
Total number of particles | |
Initial height of particles | 10 km |
Simulation time range | 17 May 2021, 00:00 UTC to 25 May 2021, 00:00 UTC |
Meteorological data | ECMWF ERA5 reanalysis |
Output type | gridded output |
Output time resolution | 6 h |
Output grid spacing | 240 × 120 grid boxes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Deng, X.; Huang, M.; Liu, M.; Yi, J.; Hoffmann, L. Tracking Carbon Dioxide with Lagrangian Transport Simulations: Case Study of Canadian Forest Fires in May 2021. Atmosphere 2024, 15, 429. https://doi.org/10.3390/atmos15040429
Liao Y, Deng X, Huang M, Liu M, Yi J, Hoffmann L. Tracking Carbon Dioxide with Lagrangian Transport Simulations: Case Study of Canadian Forest Fires in May 2021. Atmosphere. 2024; 15(4):429. https://doi.org/10.3390/atmos15040429
Chicago/Turabian StyleLiao, Ye, Xuying Deng, Mingming Huang, Mingzhao Liu, Jia Yi, and Lars Hoffmann. 2024. "Tracking Carbon Dioxide with Lagrangian Transport Simulations: Case Study of Canadian Forest Fires in May 2021" Atmosphere 15, no. 4: 429. https://doi.org/10.3390/atmos15040429
APA StyleLiao, Y., Deng, X., Huang, M., Liu, M., Yi, J., & Hoffmann, L. (2024). Tracking Carbon Dioxide with Lagrangian Transport Simulations: Case Study of Canadian Forest Fires in May 2021. Atmosphere, 15(4), 429. https://doi.org/10.3390/atmos15040429