Seasonal Features of the Ionospheric Total Electron Content Response at Low Latitudes during Three Selected Geomagnetic Storms
Abstract
:1. Introduction
2. Data and Methods
2.1. Different Types of Data Used in the Present Study
2.1.1. Indices Describing the Manifestation of Selected Geomagnetic Storms
2.1.2. Types of Ionospheric Data in Ionospheric Response Analysis
- Global TEC maps
- Ionosonde data for selected point
2.2. Methods and Methodologies
- Modified dip (modip) latitude
- Relative deviations of the ionospheric quantities
- Method of stationary amplitudes and phases
3. Results
3.1. Geomagnetic Storm 23–24 April 2023
3.2. Geomagnetic Storm 22–24 June 2015
3.3. Geomagnetic Storm 14–16 December 2006
4. Discussion
5. Conclusions
- The positive responses have two maxima, which are either practically symmetrical to the magnetic equator (the geomagnetic storms in April 2023 and December 2006) or are shifted in the direction of the winter hemisphere (the geomagnetic storm in June 2015);
- The response in the winter hemisphere is more significant and strong. It was found that the responses at these latitudes noticeably lag compared to those over the auroral regions;
- An important feature observed in all three storms is the location of the maximum of the positive response;
- The three investigated geomagnetic storms show a common regularity. The longitudinal distribution of the response in low latitudes appears to be relatively stationary with respect to geographic coordinates, with a westward displacement observed with a phase velocity smaller than the Earth’s rotation velocity. This indicates that the low-latitude response is not directly related to local weather.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richmond, A.D.; Lu, G. Upper-atmospheric effects of magnetic storms: A brief tutorial. J. Atmos. Sol. Terr. Phys. 2000, 62, 1115–1127. [Google Scholar] [CrossRef]
- Danilov, A.D. Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 2013, 52, 343–366. [Google Scholar] [CrossRef]
- Nishida, A. The origin of fluctuation in the equatorial electrojet; a new type of geomagnetic variations. Ann. Geophys. 1966, 22, 478–484. [Google Scholar]
- Jaggi, R.K.; Wolf, R.A. Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res. 1973, 78, 2852–2866. [Google Scholar] [CrossRef]
- Spiro, R.W.; Wolf, R.A.; Fejer, B.G. Penetrating of high-latitude-electric-field effects to low latitudes during SUNDIAL 1984. Ann. Geophys. 1988, 6, 39–49. [Google Scholar]
- Lu, G.; Goncharenko, L.; Nicolls, M.J.; Maute, A.; Coster, A.; Paxton, L.J. Ionospheric and thermospheric variations associated with prompt penetration electric fields. J. Geophys. Res. Space Phys. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Basu, S.; Basu, S.; Valladares, C.E.; Yeh, H.C.; Su, S.Y.; MacKenzie, E.; Sultan, P.J.; Aarons, J.; Rich, F.J.; Doherty, P.; et al. Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes. J. Geophys. Res. Space Phys. 2001, 106, 30389–30413. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Saito, A.; Araki, T.; Yumoto, K.; Tsuda, T.; Abdu, M.A.; Sobral, J.H.A.; Gonzalez, W.D.; et al. Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J. Geophys. Res. Space Phys. 2008, 113, 1–10. [Google Scholar] [CrossRef]
- Abdu, M.A.; De Souza, J.R.; Sobral, J.H.A.; Batista, I.S. Magnetic storm associated disturbance dynamo effects in the low and equatorial latitude ionosphere. Recurr. Magn. Storms Corotating Sol. Wind. Streams 2006, 167, 283–304. [Google Scholar]
- Blanc, M.; Richmond, A.D. The ionospheric disturbance dynamo. J. Geophys. Res. Space Phys. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Richmond, A.D.; Roble, R.G. Electrodynamic coupling effects in the thermosphere/ionosphere system. Adv. Space Res. 1997, 20, 1115–1124. [Google Scholar] [CrossRef]
- Huang, C.M. Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times. J. Geophys. Res. Space Phys. 2013, 118, 496–501. [Google Scholar] [CrossRef]
- Huang, C.S.; Wilson, G.R.; Hairston, M.R.; Zhang, Y.; Wang, W.; Liu, J. Equatorial ionospheric plasma drifts and O+ concentration enhancements associated with disturbance dynamo during the 2015 St. Patrick’s Day magnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 7961–7973. [Google Scholar] [CrossRef]
- Balan, N.; Liu, L.; Le, H. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys. 2018, 2, 257–275. [Google Scholar] [CrossRef]
- Abdu, M.A.; Sobral, J.H.A.; De Paula, E.R.; Batista, I.S. Magnetospheric disturbance effects on the equatorial ionization anomaly (EIA): An overview. J. Atmos. Sol. Terr. Phys. 1991, 53, 757–771. [Google Scholar] [CrossRef]
- Balan, N.; Shiokawa, K.; Otsuka, Y.; Watanabe, S.; Bailey, G.J. Super plasma fountain and equatorial ionization anomaly during penetration electric field. J. Geophys. Res. Space Phys. 2009, 114, 1–10. [Google Scholar] [CrossRef]
- Danilov, A.D.; Lastovicka, J. Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomagn. Aeron. 2001, 2, 209–224. [Google Scholar]
- López-Urias, C.; Vazquez-Becerra, G.E.; Nayak, K.; López-Montes, R. Analysis of Ionospheric Disturbances during X-Class Solar Flares (2021–2022) Using GNSS Data and Wavelet Analysis. Remote Sens. 2023, 15, 4626. [Google Scholar] [CrossRef]
- Pazos, M.; Mendoza, B.; Sierra, P.; Andrade, E.; Rodríguez, D.; Mendoza, V.; Garduño, R. Analysis of the effects of geomagnetic storms in the Schumann Resonance station data in Mexico. J. Atmos. Sol. Terr. Phys. 2019, 193, 105091. [Google Scholar] [CrossRef]
- Wang, W.; Lei, J.; Burns, A.G.; Solomon, S.C.; Wiltberger, M.; Xu, J.; Zhang, Y.; Paxton, L.; Coster, A. Ionospheric response to the initial phase of geomagnetic storms: Common features. J. Geophys. Res. Space Phys. 2010, 115, 1–18. [Google Scholar] [CrossRef]
- Rawer, K. Encyclopedia of Physics. In Geophysics III, 1st ed.; Rawer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; Part VII; pp. 389–391. [Google Scholar]
- Rawer, K.; Kouris, S.S.; Fotiadis, D.N. Variability of F2 parameters depending on modip. Adv. Space Res. 2003, 31, 537–541. [Google Scholar] [CrossRef]
- Azpilicueta, F.; Brunini, C.; Radicella, S.M. Global ionospheric maps from GPS observations using modip latitude. Adv. Space Res. 2006, 38, 2324–2331. [Google Scholar] [CrossRef]
- Mukhtarov, P.; Pancheva, D.; Andonov, B.; Pashova, L. Global TEC maps based on GNSS data: 1. Empirical background TEC model. J. Geophys. Res. Space Phys. 2013, 118, 4594–4608. [Google Scholar] [CrossRef]
- Fu, W.; Ma, G.; Lu, W.; Maruyama, T.; Li, J.; Wan, Q.; Fan, J.; Wang, X. Improvement of Global Ionospheric TEC Derivation with Multi-Source Data in Modip Latitude. Atmosphere 2021, 12, 434. [Google Scholar] [CrossRef]
- Kutiev, I.; Tsagouri, I.; Perrone, L.; Pancheva, D.; Mukhtarov, P.; Mikhailov, A.; Lastovicka, J.; Jakowski, N.; Buresova, D.; Blanch, E.; et al. Solar activity impact on the Earth’s upper atmosphere. J. Space Weather Space Clim. 2013, 3, A06. [Google Scholar] [CrossRef]
- Bremer, J.; Lastovicka, J.; Mikhailov, A.V.; Altadill, D.; Bencze, P.; Buresova, D.; De Franceschi, G.; Jacobi, C.; Kouris, S.; Perrone, L.; et al. Climate of the upper atmosphere. Ann. Geophys. 2009, 52, 273–299. [Google Scholar]
- Bojilova, R.; Mukhtarov, P. Analysis of the Ionospheric Response to Sudden Stratospheric Warming and Geomagnetic Forcing over Europe during February and March 2023. Universe 2023, 9, 351. [Google Scholar] [CrossRef]
- Bojilova, R.; Mukhtarov, P. Comparative Analysis of Global and Regional Ionospheric Responses during Two Geomagnetic Storms on 3 and 4 February 2022. Remote Sens. 2023, 15, 1739. [Google Scholar] [CrossRef]
- Description of the Geomagnetic Storm Class According to the Kp-Index Defined by NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA)-Space Weather Prediction Center. Available online: https://www.spaceweather.gov/noaa-scales-explanation (accessed on 27 January 2024).
- Basu, S.; Basu, S.; Groves, K.M.; Yeh, H.C.; Su, S.Y.; Rich, F.J.; Sultan, P.J.; Keskinen, M.J. Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of 15 July 2000. Geophys. Res. Lett. 2001, 28, 3577–3580. [Google Scholar] [CrossRef]
- Scherliess, L.; Fejer, B.G. Storm time dependence of equatorial disturbance dynamo zonal electric fields. J. Geophys. Res. Space Phys. 1997, 102, 24037–24046. [Google Scholar] [CrossRef]
- Lin, C.H.; Richmond, A.D.; Heelis, R.A.; Bailey, G.J.; Lu, G.; Liu, J.Y.; Yeh, H.C.; Su, S.Y. Theoretical study of the low-and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. J. Geophys. Res. Space Phys. 2005, 110, 1–14. [Google Scholar] [CrossRef]
- Adushkin, V.V.; Spivak, A.A.; Rybnov, Y.S.; Riabova, S.A.; Soloviev, S.P.; Tikhonova, A.V. Disturbance of Geophysical Fields and the Ionosphere during a Strong Geomagnetic Storm on April 23, 2023. Dokl. Earth Sci. 2023, 512, 1039–1043. [Google Scholar] [CrossRef]
- Balan, N.; Bailey, G.J. Equatorial plasma fountain and its effects: Possibility of an additional layer. J. Geophys. Res. Space Phys. 1995, 100, 21421–21432. [Google Scholar] [CrossRef]
- Loewe, C.A.; Prölss, G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. Space Phys. 1997, 102, 14209–14213. [Google Scholar] [CrossRef]
- Temerin, M.; Li, X. The Dst index underestimates the solar cycle variation of geomagnetic activity. J. Geophys. Res. Space Phys. 2015, 120, 5603–5607. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; Coïsson, P.; Hairston, M.R.; Coley, W.R. Study of the equatorial and low-latitude electrodynamic and ionospheric disturbances during the 22–23 June 2015 geomagnetic storm using ground-based and spaceborne techniques. J. Geophys. Res. Space Phys. 2018, 123, 2424–2440. [Google Scholar] [CrossRef]
- Mansilla, G.A. Ionospheric response to the magnetic storm of 22 June 2015. Pure Appl. Geophys. 2018, 175, 1139–1153. [Google Scholar] [CrossRef]
- Macho, E.P.; Correia, E.; Paulo, C.M.; Angulo, L.; Vieira, J.A.G. Ionospheric response to the June 2015 geomagnetic storm in the South American region. Adv. Space Res. 2020, 65, 2172–2183. [Google Scholar] [CrossRef]
- Lei, J.; Wang, W.; Burns, A.G.; Solomon, S.C.; Richmond, A.D.; Wiltberger, M.; Goncharenko, L.P.; Coster, A.; Reinisch, B.W. Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase. J. Geophys. Res. Space Phys. 2008, 113, 1–15. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Lei, J.; Larson, K.M.; Forbes, J.M. Observations of the ionospheric response to the 15 December 2006 geomagnetic storm: Long-duration positive storm effect. J. Geophys. Res. Space Phys. 2009, 114, 1–10. [Google Scholar] [CrossRef]
- De Jesus, R.; Sahai, Y.; Guarnieri, F.L.; Fagundes, P.R.; de Abreu, A.J.; Becker-Guedes, F.; Brunini, C.; Gende, M.; Cintra, T.M.F.; de Souza, V.A.; et al. Effects observed in the ionospheric F-region in the South American sector during the intense geomagnetic storm of 14 December 2006. Adv. Space Res. 2010, 46, 909–920. [Google Scholar] [CrossRef]
- Bojilova, R.; Mukhtarov, P. Response of the electron density profiles to geomagnetic disturbances in January 2005. Stud. Geophys. Geod. 2019, 63, 436–454. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojilova, R.; Mukhtarov, P. Seasonal Features of the Ionospheric Total Electron Content Response at Low Latitudes during Three Selected Geomagnetic Storms. Atmosphere 2024, 15, 278. https://doi.org/10.3390/atmos15030278
Bojilova R, Mukhtarov P. Seasonal Features of the Ionospheric Total Electron Content Response at Low Latitudes during Three Selected Geomagnetic Storms. Atmosphere. 2024; 15(3):278. https://doi.org/10.3390/atmos15030278
Chicago/Turabian StyleBojilova, Rumiana, and Plamen Mukhtarov. 2024. "Seasonal Features of the Ionospheric Total Electron Content Response at Low Latitudes during Three Selected Geomagnetic Storms" Atmosphere 15, no. 3: 278. https://doi.org/10.3390/atmos15030278
APA StyleBojilova, R., & Mukhtarov, P. (2024). Seasonal Features of the Ionospheric Total Electron Content Response at Low Latitudes during Three Selected Geomagnetic Storms. Atmosphere, 15(3), 278. https://doi.org/10.3390/atmos15030278