This study quantified nitrogen (N) inputs by water, feed, animals, and atmospheric gas and outputs by water, harvested animals, sediments, and gas emissions in earthen ponds used for the monoculture and integrated cultures of yellow-tail lambari (
Astyanax lacustris), Amazon River prawn
[...] Read more.
This study quantified nitrogen (N) inputs by water, feed, animals, and atmospheric gas and outputs by water, harvested animals, sediments, and gas emissions in earthen ponds used for the monoculture and integrated cultures of yellow-tail lambari (
Astyanax lacustris), Amazon River prawn (
Macrobrachium amazonicum), and curimbata (
Prochilodus lineatus), and evaluated whether epibenthic species improve N retention in harvested biomass. Three systems with four replicates were tested, lambari monoculture (L), lambari–prawn (LP), and lambari–prawn–curimbata (LPC), stocked at 50, 25, and 13 individuals m
−2, respectively. Feed N was the major input (67–75%), followed by inlet water (19–30%). Harvested biomass represented 20–23% of total outputs, sediments 25–33%, and gaseous emissions 7–29%, while outlet water contributed <3%. N lost through seepage was highest in L (70.5 ± 22.9 kg N ha
−1). N
2 ebullition increased with benthic species, from 10.4 ± 10.6 kg N ha
−1 (L) to 72.1 ± 32.4 kg N ha
−1 (LPC). N recovered in lambari was 43.2 ± 7.4 kg N ha
−1 in LPC, 36 ± 8.6 in L, and 33 ± 5.6 in LP. Considering all species, recovery of dietary N increased from 20.0 ± 4.3% (L) to 35.0 ± 5.9% (LPC), and recovery from all inputs rose from 13.0 ± 2.2% to 18.0 ± 3.4%. Integrated systems, particularly LPC, enhanced N retention in biomass and reduced environmental losses.
Full article