Next Issue
Volume 9, January
Previous Issue
Volume 8, November
 
 

Processes, Volume 8, Issue 12 (December 2020) – 166 articles

Cover Story (view full-size image): Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance in slender packed-beds. However, because of local wall effects, the radial heat transport in the near-wall region is limited. In this original research article, we study with particle-resolved CFD simulations and experiments the impact of internal heat fins on the near-wall radial heat transport in slender packed beds filled with spherical particles. The simulation results show that internal heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to an overall increased thermal performance of the system. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Article
Prototype of the Runway Monitoring Process at Smaller Airports: Edvard Rusjan Airport Maribor
Processes 2020, 8(12), 1689; https://doi.org/10.3390/pr8121689 - 21 Dec 2020
Cited by 5 | Viewed by 1067
Abstract
The last 20-year announcement predicts a 3.5% increase in the number of yearly passengers which will result in the doubling of the number of passengers in air transport by 2037. Such anticipation indicates the need for efficient monitoring of airport infrastructure as the [...] Read more.
The last 20-year announcement predicts a 3.5% increase in the number of yearly passengers which will result in the doubling of the number of passengers in air transport by 2037. Such anticipation indicates the need for efficient monitoring of airport infrastructure as the support of opportune and efficient maintenance works. The novelties of this article are a process model of maintenance and monitoring, suitable for smaller and less burdened airports, and the methodology of monitoring of runways by implementation of the geodetic and geomechanics falling weight deflectometer (FWD) method. In addition, the results confirm the assumption that a specific environment such as an airport allows for sufficiently reliable determination of deformation areas or areas of vertical deviations of runways in a relative short time period available for measurements by using geodetic methods only or by combining other methods; our research model includes the FWD method. With the research, we have also shown there is an interaction between deformations or areas of vertical deviations on the surface and anomalies in the runway lower constructure which will, hereinafter, allow the development of the prediction, creating a vertical deviations or deformation model. Full article
Show Figures

Figure 1

Article
Mixing of Particles in a Rotating Drum with Inclined Axis of Rotation
Processes 2020, 8(12), 1688; https://doi.org/10.3390/pr8121688 - 21 Dec 2020
Cited by 5 | Viewed by 1264
Abstract
Various experimental and numerical studies have been carried out to study the mixing processes inside rotating drums with a horizontal axis of rotation in the past, but little effort has been made to investigate the rotating drums with an inclined axis of rotation, [...] Read more.
Various experimental and numerical studies have been carried out to study the mixing processes inside rotating drums with a horizontal axis of rotation in the past, but little effort has been made to investigate the rotating drums with an inclined axis of rotation, though such inclined drums exist in industrial waste management, food processing, power and pharmaceutical industries. To fill this gap, in this work, the discrete element method was used to study the mixing phenomena of a rotating drum for different angles of inclination from 0° to 15°. It was found that for inclined rotating drums, the whole bed Lacey mixing index is higher than that for the horizontal drum by 7.2% when the angle of inclination is 10°. The mixing index is related to the area ratio of the active region to the whole bed and volumetric fill. Increase in volumetric fill would lead to the decrease of the mixing index. The mixing index and area ratio exhibit similar patterns along the length of the drum for different angles of inclination. Full article
(This article belongs to the Special Issue DEM Simulations and Modelling of Granular Materials)
Show Figures

Figure 1

Article
Comparative Study on CFD Turbulence Models for the Flow Field in Air Cooled Radiator
Processes 2020, 8(12), 1687; https://doi.org/10.3390/pr8121687 - 21 Dec 2020
Cited by 3 | Viewed by 903
Abstract
This paper compares the performances of three Computational Fluid Dynamics (CFD) turbulence models, Reynolds Average Navier-Stokes (RANS), Detached Eddy Simulation (DES), and Large Eddy Simulation (LES), for simulating the flow field of a wheel loader engine compartment. The distributions of pressure fields, velocity [...] Read more.
This paper compares the performances of three Computational Fluid Dynamics (CFD) turbulence models, Reynolds Average Navier-Stokes (RANS), Detached Eddy Simulation (DES), and Large Eddy Simulation (LES), for simulating the flow field of a wheel loader engine compartment. The distributions of pressure fields, velocity fields, and vortex structures in a hybrid-grided engine compartment model are analyzed. The result reveals that the LES and DES can capture the detachment and breakage of the trailing edge more abundantly and meticulously than RANS. Additionally, by comparing the relevant calculation time, the feasibility of the DES model is proved to simulate the three-dimensional unsteady flow of engine compartment efficiently and accurately. This paper aims to provide a guiding idea for simulating the transient flow field in the engine compartment, which could serve as a theoretical basis for optimizing and improving the layout of the components of the engine compartment. Full article
(This article belongs to the Special Issue Advancement in Computational Fluid Mechanics and Optimization Methods)
Show Figures

Figure 1

Article
Subspace Based Model Identification for an Industrial Bioreactor: Handling Infrequent Sampling Using Missing Data Algorithms
Processes 2020, 8(12), 1686; https://doi.org/10.3390/pr8121686 - 21 Dec 2020
Cited by 2 | Viewed by 842
Abstract
This manuscript addresses the problem of modeling an industrial (Sartorius) bioreactor using process data. In the context of the Sartorius Bioreactor, it is important to appropriately address the problem of dealing with a large number of variables, which are not always measured or [...] Read more.
This manuscript addresses the problem of modeling an industrial (Sartorius) bioreactor using process data. In the context of the Sartorius Bioreactor, it is important to appropriately address the problem of dealing with a large number of variables, which are not always measured or are measured at different sampling rates, without taking recourse to simpler interpolation- or imputation-based approaches. To this end, a dynamic model for the Sartorius Bioreactor is developed via appropriately adapting a recently presented subspace model identification technique, which in turn uses nonlinear iterative partial least squares (NIPALS) algorithms to gracefully handle the missing data. The other key contribution is evaluating the ability of the identification approach to provide insight into the process by computing interpretable variables such as metabolite rates. The results demonstrate the ability of the proposed approach to model data from the Sartorius Bioreactor. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Batch and Batch-Like Processes)
Show Figures

Figure 1

Article
Characterization of a Wireless Vacuum Sensor Prototype Based on the SAW-Pirani Principle
Processes 2020, 8(12), 1685; https://doi.org/10.3390/pr8121685 - 21 Dec 2020
Cited by 2 | Viewed by 1034
Abstract
A prototype of a wireless vacuum microsensor combining the Pirani principle and surface acoustic waves (SAW) with extended range and sensitivity was designed, modelled, manufactured and characterised under different conditions. The main components of the prototype are a sensing SAW chip, a heating [...] Read more.
A prototype of a wireless vacuum microsensor combining the Pirani principle and surface acoustic waves (SAW) with extended range and sensitivity was designed, modelled, manufactured and characterised under different conditions. The main components of the prototype are a sensing SAW chip, a heating coil and an interrogation antenna. All the components were assembled on a 15 mm × 11 mm × 3 mm printed circuit board (PCB). The behaviour of the PCB was characterised under ambient conditions and in vacuum. The quality of the SAW interrogation signal, the frequency shift and the received current of the coil were measured for different configurations. Pressures between 0.9 and 100,000 Pa were detected with sensitivities between 2.8 GHz/Pa at 0.9 Pa and 1 Hz/Pa close to atmospheric pressure. This experiment allowed us to determine the optimal operating conditions of the sensor and the integration conditions inside a vacuum chamber in addition to obtaining a pressure-dependent signal. Full article
(This article belongs to the Special Issue Advances in Microfluidics Technology for Diagnostics and Detection)
Show Figures

Figure 1

Article
Flow and Diffusion Characteristics of Typical Halon Extinguishing Agent Substitute under Different Release Pressures
Processes 2020, 8(12), 1684; https://doi.org/10.3390/pr8121684 - 21 Dec 2020
Cited by 1 | Viewed by 753
Abstract
To provide guidance towards reducing the weight of the HFC-125 storage vessel by reducing the release pressure and to reveal the effects of release pressure on the extinguishing efficiency of HFC-125, we investigated the flow and diffusion characteristics of HFC-125 under six release [...] Read more.
To provide guidance towards reducing the weight of the HFC-125 storage vessel by reducing the release pressure and to reveal the effects of release pressure on the extinguishing efficiency of HFC-125, we investigated the flow and diffusion characteristics of HFC-125 under six release pressures in the present study. The influence of release pressure on the degree of superheat, injection duration, pressure loss, jet angle, and concentration distribution were analyzed. Results show that the degree of superheat and the injection duration both decreased with the release pressure. The bubble expansion in the HFC-125 could slow down the pressure decrease in the storage vessel. The flow process in the pipeline can be divided into three phases: pipeline filling, stable flow, and mixed gases release. Both of the maximum and mean values of the pipeline pressure loss increased with the release pressure. The maximum concentration value decreased with the increase of the distance from the nozzle. The maximum concentration value in the near field from the nozzle increased with the release pressure. The concentration and holding time (duration above 17.6% volume concentration) of HFC-125 in the near field from the nozzle met the requirements of minimum performance standards (MPS) for HFC-125. Full article
(This article belongs to the Special Issue Green Technologies for Production Processes)
Show Figures

Figure 1

Review
Iron-Based Catalytically Active Complexes in Preparation of Functional Materials
Processes 2020, 8(12), 1683; https://doi.org/10.3390/pr8121683 - 20 Dec 2020
Cited by 3 | Viewed by 1626
Abstract
Iron complexes are particularly interesting as catalyst systems over the other transition metals (including noble metals) due to iron’s high natural abundance and mediation in important biological processes, therefore making them non-toxic, cost-effective, and biocompatible. Both homogeneous and heterogeneous catalysis mediated by iron [...] Read more.
Iron complexes are particularly interesting as catalyst systems over the other transition metals (including noble metals) due to iron’s high natural abundance and mediation in important biological processes, therefore making them non-toxic, cost-effective, and biocompatible. Both homogeneous and heterogeneous catalysis mediated by iron as a transition metal have found applications in many industries, including oxidation, C-C bond formation, hydrocarboxylation and dehydration, hydrogenation and reduction reactions of low molecular weight molecules. These processes provided substrates for industrial-scale use, e.g., switchable materials, sustainable and scalable energy storage technologies, drugs for the treatment of cancer, and high molecular weight polymer materials with a predetermined structure through controlled radical polymerization techniques. This review provides a detailed statement of the utilization of homogeneous and heterogeneous iron-based catalysts for the synthesis of both low and high molecular weight molecules with versatile use, focusing on receiving functional materials with high potential for industrial application. Full article
Show Figures

Figure 1

Article
An Integrated Approach to the Design of Centralized and Decentralized Biorefineries with Environmental, Safety, and Economic Objectives
Processes 2020, 8(12), 1682; https://doi.org/10.3390/pr8121682 - 20 Dec 2020
Cited by 8 | Viewed by 1373
Abstract
Biorefineries provide economic, environmental, and social benefits towards sustainable development. Because of the relatively small size of typical biorefineries compared to oil and gas processes, it is necessary to evaluate the options of decentralized (or distributed) plants that are constructed near the biomass [...] Read more.
Biorefineries provide economic, environmental, and social benefits towards sustainable development. Because of the relatively small size of typical biorefineries compared to oil and gas processes, it is necessary to evaluate the options of decentralized (or distributed) plants that are constructed near the biomass resources and product markets versus centralized (or consolidated) facilities that collect biomass from different regions and distribute the products to the markets, benefiting from the economy of scale but suffering from the additional transportation costs. The problem is further compounded when, in addition to the economic factors, environmental and safety aspects are considered. This work presents an integrated approach to the design of biorefining facilities while considering the centralized and decentralized options and the economic, environmental, and safety objectives. A superstructure representation is constructed to embed the various options of interest. A mathematical programming formulation is developed to transform the problem into an optimization problem. A new correlation is developed to estimate the capital cost of biorefineries and to facilitate the inclusion of the economic functions in the optimization program without committing to the type of technology or the size of the plant. A new metric called Total Process Risk is also introduced to evaluate the relative risk of the process. Life cycle analysis is applied to evaluate environmental emissions. The environmental and safety objectives are used to establish tradeoffs with the economic objectives. A case study is solved to illustrate the value and applicability of the proposed approach. Full article
Show Figures

Figure 1

Article
The Effects of Biofertilizers on Growth, Soil Fertility, and Nutrients Uptake of Oil Palm (Elaeis Guineensis) under Greenhouse Conditions
Processes 2020, 8(12), 1681; https://doi.org/10.3390/pr8121681 - 19 Dec 2020
Cited by 17 | Viewed by 2748
Abstract
The full dependency on chemical fertilizers in oil palm plantation poses an enormous threat to the ecosystem through the degradation of soil and water quality through leaching to the groundwater and contaminating the river. A greenhouse study was conducted to test the effect [...] Read more.
The full dependency on chemical fertilizers in oil palm plantation poses an enormous threat to the ecosystem through the degradation of soil and water quality through leaching to the groundwater and contaminating the river. A greenhouse study was conducted to test the effect of combinations of biofertilizers with chemical fertilizer focusing on the soil fertility, nutrient uptake, and the growth performance of oil palms seedlings. Soils used were histosol, spodosol, oxisol, and ultisol. The three treatments were T1: 100% chemical fertilizer (NPK 12:12:17), T2: 70% chemical fertilizer + 30% biofertilizer A (CF + BFA), and T3: 70% + 30% biofertilizer B (CF + BFB). T2 and T3, respectively increased the growth of oil palm seedlings and soil nutrient status but seedlings in oxisol and ultisol under T3 had the highest in almost all parameters due to the abundance of more efficient PGPR. The height of seedlings in ultisol under T3 was 22% and 17% more than T2 and T1 respectively, with enhanced girth size, chlorophyll content, with improved nutrient uptake by the seedlings. Histosol across all treatments has a high macronutrient content suggesting that the rate of chemical fertilizer application should be revised when planting using the particular soil. With the reduction of chemical fertilizer by 25%, the combined treatment with biofertilizers could enhance the growth of the oil palm seedlings and soil nutrient properties regardless of the soil orders. Full article
(This article belongs to the Special Issue Biotechnology for Sustainability and Social Well Being)
Show Figures

Figure 1

Review
Ultrasonically Induced Polymerization and Polymer Grafting in the Presence of Carbonaceous Nanoparticles
Processes 2020, 8(12), 1680; https://doi.org/10.3390/pr8121680 - 19 Dec 2020
Cited by 2 | Viewed by 1239
Abstract
Nanotechnology refers to technologies using at least one nanometric dimension. Most advances have been in the field of nanomaterials used in research and industry. The vast potential of polymeric nanocomposites for advanced materials and applications such as hybrid nanocomposites with customized electrical conductivity, [...] Read more.
Nanotechnology refers to technologies using at least one nanometric dimension. Most advances have been in the field of nanomaterials used in research and industry. The vast potential of polymeric nanocomposites for advanced materials and applications such as hybrid nanocomposites with customized electrical conductivity, anti-bacterial, anti-viral, and anti-fog properties have attracted considerable attention. The number of studies on the preparation of nanocomposites in the presence of carbon materials, i.e., carbon nanotubes (CNTs) and graphene, has intensified over the last decade with the growing interest in their outstanding synergic properties. However, the functionality of such nanocomposites depends on overcoming three key challenges: (a) the breakdown of nanoparticle agglomerates; (b) the attachment of functional materials to the nanoparticle surfaces; and (c) the fine dispersion of functional nanoparticles within the polymeric matrices. Ultrasonic polymerization and grafting in the presence of nanoparticles is an innovative solution that can meet these three challenges simultaneously. These chemical reactions are less well known and only a few research groups have dealt with them to date. This review focuses on two main pathways to the design of ultrasonically induced carbon-based nanocomposites: the covalent approach which is based on the chemical interactions between the carbon fillers and the matrix, and the non-covalent approach which is based on the physical interactions. Full article
(This article belongs to the Special Issue Polymerization Technologies in the Presence of Nanoparticles)
Show Figures

Figure 1

Article
Experimental Study on Ramp Shock Wave Control in Ma3 Supersonic Flow Using Two-Electrode SparkJet Actuator
Processes 2020, 8(12), 1679; https://doi.org/10.3390/pr8121679 - 19 Dec 2020
Cited by 3 | Viewed by 780
Abstract
The control of a shock wave produced by a ramp (ramp shock) in Ma3 supersonic flow using a two-electrode SparkJet (SPJ) actuator in a single-pulse mode is studied experimentally. Except for schlieren images of the interaction process of SPJ with the flow field, [...] Read more.
The control of a shock wave produced by a ramp (ramp shock) in Ma3 supersonic flow using a two-electrode SparkJet (SPJ) actuator in a single-pulse mode is studied experimentally. Except for schlieren images of the interaction process of SPJ with the flow field, a dynamic pressure measurement method is also used in the analysis of shock wave control. In a typical experimental case, under the control of single-pulsed SPJ, the characteristic of ramp shock changes from “short-term local upstream motion” in the initial stage to “long-term whole downstream motion” in the later stage. The angle and position of the ramp shock changes significantly in the whole control process. In addition, the dynamic pressure measurement result shows that the ramp pressure is reduced by a maximum of 79% compared to that in the base flow field, which indicates that the ramp shock is significantly weakened by SPJ. The effects of some parameters on the control effect of SPJ on the ramp shock are investigated and analyzed in detail. The increase in discharge capacitance helps to improve the control effect of SPJ on the ramp shock. However, the control effect of the SPJ actuator with medium exit diameter is better than that with a too small or too large one. In addition, when the SPJ exit is located in the separation zone and outside, the change in the ramp shock shows significant differences, but the control effect in the case of medium ramp distance is better when the SPJ exit is located outside the separation zone. Full article
(This article belongs to the Special Issue Advances in Plasma Diagnostics and Applications)
Show Figures

Graphical abstract

Review
A Review of Process Systems Engineering (PSE) Tools for the Design of Ionic Liquids and Integrated Biorefineries
Processes 2020, 8(12), 1678; https://doi.org/10.3390/pr8121678 - 18 Dec 2020
Cited by 10 | Viewed by 1814
Abstract
In this review paper, a brief overview of the increasing applicability of Process Systems Engineering (PSE) tools in two research areas, which are the design of ionic liquids and the design of integrated biorefineries, is presented. The development and advances of novel computational [...] Read more.
In this review paper, a brief overview of the increasing applicability of Process Systems Engineering (PSE) tools in two research areas, which are the design of ionic liquids and the design of integrated biorefineries, is presented. The development and advances of novel computational tools and optimization approaches in recent years have enabled these applications with practical results. A general introduction to ionic liquids and their various applications is presented followed by the major challenges in the design of optimal ionic liquids. Significant improvements in computational efficiency have made it possible to provide more reliable data for optimal system design, minimize the production cost of ionic liquids, and reduce the environmental impact caused by such solvents. Hence, the development of novel computational tools and optimization tools that contribute to the design of ionic liquids have been reviewed in detail. A detailed review of the recent developments in PSE applications in the field of integrated biorefineries is then presented. Various value-added products could be processed by the integrated biorefinery aided with applications of PSE tools with the aim of enhancing the sustainability performance in terms of economic, environmental, and social impacts. The application of molecular design tools in the design of integrated biorefineries is also highlighted. Major developments in the application of ionic liquids in integrated biorefineries have been emphasized. This paper is concluded by highlighting the major opportunities for further research in these two research areas and the areas for possible integration of these research fields. Full article
Show Figures

Figure 1

Article
VectorDisk: A Microfluidic Platform Integrating Diagnostic Markers for Evidence-Based Mosquito Control
Processes 2020, 8(12), 1677; https://doi.org/10.3390/pr8121677 - 18 Dec 2020
Cited by 5 | Viewed by 1269
Abstract
Effective mosquito monitoring relies on the accurate identification and characterization of the target population. Since this process requires specialist knowledge and equipment that is not widely available, automated field-deployable systems are highly desirable. We present a centrifugal microfluidic cartridge, the VectorDisk, which integrates [...] Read more.
Effective mosquito monitoring relies on the accurate identification and characterization of the target population. Since this process requires specialist knowledge and equipment that is not widely available, automated field-deployable systems are highly desirable. We present a centrifugal microfluidic cartridge, the VectorDisk, which integrates TaqMan PCR assays in two feasibility studies, aiming to assess multiplexing capability, specificity, and reproducibility in detecting disk-integrated vector-related assays. In the first study, pools of 10 mosquitoes were used as samples. We tested 18 disks with 27 DNA and RNA assays each, using a combination of multiple microfluidic chambers and detection wavelengths (geometric and color multiplexing) to identify mosquito and malaria parasite species as well as insecticide resistance mechanisms. In the second study, purified nucleic acids served as samples to test arboviral and malaria infective mosquito assays. Nine disks were tested with 14 assays each. No false positive results were detected on any of the disks. The coefficient of variation in reproducibility tests was <10%. The modular nature of the platform, the easy adaptation of the primer/probe panels, the cold chain independence, the rapid (2–3 h) analysis, and the assay multiplexing capacity are key features, rendering the VectorDisk a potential candidate for automated vector analysis. Full article
(This article belongs to the Special Issue Advances in Microfluidics Technology for Diagnostics and Detection)
Show Figures

Figure 1

Article
Pharmacoeconomic Analysis of Hemophilia Care in Romania
Processes 2020, 8(12), 1676; https://doi.org/10.3390/pr8121676 - 18 Dec 2020
Viewed by 919
Abstract
Hemophilia, a congenital X linked disease, has the serious burden of bleeding, requiring life-long replacement with coagulation factors (CF). In the present day, there is a continuously improving treatment for this condition. Objective: Our observational, cross-sectional study aims at finding out whether a [...] Read more.
Hemophilia, a congenital X linked disease, has the serious burden of bleeding, requiring life-long replacement with coagulation factors (CF). In the present day, there is a continuously improving treatment for this condition. Objective: Our observational, cross-sectional study aims at finding out whether a prophylactic replacement with CF is affordable from the point of view of its cost-effectiveness in our country. Material and methods: A cohort of 122 persons with hemophilia were included in this patient-reported outcome survey, and they answered a questionnaire consisting of 56 items, focused on 4 domains—socio-demographic, medical, quality of health/life and cost/cost-effectiveness. Results and discussion: The markers for quality of health/life were correlated with the direct and indirect costs of care, comparing subgroup 1 of patients with prophylactic vs. subgroup 2 with on-demand replacement. Based on the incremental quality adjusted life years and the incremental costs, we calculated the incremental cost-effectiveness ratio (ICER) proving that prophylaxis is more cost-effective than on-demand replacement on a long time basis. Conclusions: The ICER is a threshold recommending the reimbursement of costs for a life-long prophylactic replacement in our country. Full article
(This article belongs to the Special Issue Pharmaceutical Development and Bioavailability Analysis)
Article
Experimental Study on the Flow and Heat Transfer of Graphene-Based Lubricants in a Horizontal Tube
Processes 2020, 8(12), 1675; https://doi.org/10.3390/pr8121675 - 18 Dec 2020
Cited by 1 | Viewed by 719
Abstract
To improve the heat transfer characteristics of lubricant, graphene-based lubricants were prepared by adding graphene particles, due to its advantages of excellent thermal conductivity and two-dimensional sheet structure. In the present study, its physical properties were measured. A flow heat transfer experiment platform [...] Read more.
To improve the heat transfer characteristics of lubricant, graphene-based lubricants were prepared by adding graphene particles, due to its advantages of excellent thermal conductivity and two-dimensional sheet structure. In the present study, its physical properties were measured. A flow heat transfer experiment platform was built to study the flow and heat transfer characteristics of the graphene lubricating oil in a horizontal circular tube. The results show that the graphene lubricant prepared using a two-step approach had good stability, and the dispersibility was good without the agglomeration phenomenon, according to measurements undertaken using an electron microscope and centrifuge. The thermal conductivity and viscosity of graphene lubricant increased with the increase of the graphene concentration, and the thermal conductivity of graphene lubricant with the same concentration decreased with the increase of temperature. When the concentration was equal, the convective heat transfer Nusselt number (Nu) of graphene lubricant increased with the increase of Reynolds number (Re). When Re was equal, the convective heat transfer Nu increased with the increase of graphene particle concentration, and the maximum Nu increased by 40%. Full article
Show Figures

Figure 1

Article
Antifungal Effect of Volatile Organic Compounds from Bacillus velezensis CT32 against Verticillium dahliae and Fusarium oxysporum
Processes 2020, 8(12), 1674; https://doi.org/10.3390/pr8121674 - 18 Dec 2020
Cited by 16 | Viewed by 1327
Abstract
The present study focuses on the inhibitory effect of volatile metabolites released by Bacillus velezensis CT32 on Verticillium dahliae and Fusarium oxysporum, the causal agents of strawberry vascular wilt. The CT32 strain was isolated from maize straw compost tea and identified as [...] Read more.
The present study focuses on the inhibitory effect of volatile metabolites released by Bacillus velezensis CT32 on Verticillium dahliae and Fusarium oxysporum, the causal agents of strawberry vascular wilt. The CT32 strain was isolated from maize straw compost tea and identified as B. velezensis based on 16S rRNA gene sequence analysis. Bioassays conducted in sealed plates revealed that the volatile organic compounds (VOCs) produced by the strain CT32 possessed broad-spectrum antifungal activity against eight phytopathogenic fungi. The volatile profile of strain CT32 was obtained by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). A total of 30 volatile compounds were identified, six of which have not previously been detected in bacteria or fungi: (Z)-5-undecene, decyl formate, 2,4-dimethyl-6-tert-butylphenol, dodecanenitrile, 2-methylpentadecane and 2,2’,5,5’-tetramethyl-1,1’-biphenyl. Pure compounds were tested in vitro for their inhibitory effect on the mycelial growth of V. dahliae and F. oxysporum. Decanal, benzothiazole, 3-undecanone, 2-undecanone, 2-undecanol, undecanal and 2,4-dimethyl-6-tert-butylphenol showed high antifungal activity, with benzothiazole and 2,4-dimethyl-6-tert-butylphenol being the most potent compounds. These results indicate that the VOCs produced by B. velezensis CT32 have the potential to be used as a biofumigant for management of vascular wilt pathogens. Full article
(This article belongs to the Special Issue Advances in Microbial Fermentation Processes)
Show Figures

Figure 1

Article
Methanol Synthesis with Steel-Mill Gases: Simulation and Practical Testing of Selected Gas Utilization Scenarios
Processes 2020, 8(12), 1673; https://doi.org/10.3390/pr8121673 - 17 Dec 2020
Cited by 2 | Viewed by 1107
Abstract
The utilization of CO2-containing steel-mill gases for synthesis of methanol was investigated. Four different scenarios with syngas derived from steel-mill gases were considered. A process model for an industrial methanol production including gas recirculation was applied to provide realistic conditions for [...] Read more.
The utilization of CO2-containing steel-mill gases for synthesis of methanol was investigated. Four different scenarios with syngas derived from steel-mill gases were considered. A process model for an industrial methanol production including gas recirculation was applied to provide realistic conditions for catalyst performance tests. A long-term test series was performed in a close-to-practice setup to demonstrate the stability of the catalyst. In addition, the experimental results were used to discuss the quality of the simulation results. Kinetic parameters of the reactor model were fitted. A comparison of two different kinetic approaches and the experimental results revealed which approach better fits CO-rich or CO2-rich steel-mill gases. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts for CO2 Valorisation)
Show Figures

Figure 1

Article
Permeate Flux Control in SMBR System by Using Neural Network Internal Model Control
Processes 2020, 8(12), 1672; https://doi.org/10.3390/pr8121672 - 17 Dec 2020
Viewed by 863
Abstract
This paper presents a design of a data-driven-based neural network internal model control for a submerged membrane bioreactor (SMBR) with hollow fiber for microfiltration. The experiment design is performed for measurement of physical parameters from an actuator input (permeate pump voltage), which gives [...] Read more.
This paper presents a design of a data-driven-based neural network internal model control for a submerged membrane bioreactor (SMBR) with hollow fiber for microfiltration. The experiment design is performed for measurement of physical parameters from an actuator input (permeate pump voltage), which gives the information (outputs) of permeate flux and trans-membrane pressure (TMP). The palm oil mill effluent is used as an influent preparation to depict fouling phenomenon in the membrane filtration process. From the experiment, membrane fouling potential is observed from flux decline pattern, with a rapid increment of TMP (above 200 mbar). Membrane fouling is a complex process and the available models in literature are not designed for control system (filtration performance). Therefore, this work proposes an aeration fouling control strategy to measure the filtration performance. The artificial neural networks (Feed-Forward Neural Network—FFNN, Radial Basis Function Neural Network—RBFNN and Nonlinear Autoregressive Exogenous Neural Network—NARXNN) are used to model dynamic behaviour of flux and TMP. In this case, only flux is used in closed loop control application, whereby the TMP effect is used for monitoring. The simulation results show that reliable prediction of membrane fouling potential is obtained. It can be observed that almost all the artificial neural network (ANN) models have similar shape with the actual data set, with the highest accuracy of more than 90% for both RBFNN and NARXN. The RBFNN is preferable due to simple structure of the network. In the control system, the RBFNN IMC depicts the highest closed loop performance with only 3.75 s (settling time) for setpoint changes when compared with other controllers. In addition, it showed fast performance in disturbance rejection with less overshoot. In conclusion, among the different neural network tested configurations the one based on radial basis function provides the best performance with respect to prediction as well as control performance. Full article
(This article belongs to the Special Issue Optimization and Control of Integrated Water Systems)
Show Figures

Figure 1

Article
New Design of the Reversible Jet Fan
Processes 2020, 8(12), 1671; https://doi.org/10.3390/pr8121671 - 17 Dec 2020
Cited by 2 | Viewed by 899
Abstract
This paper presents two designs of the axial reversible jet fan, with the special focus on the impeller. The intention was to develop a reversible axial jet fan which operates in the same way in both rotating directions while generating thrust as high [...] Read more.
This paper presents two designs of the axial reversible jet fan, with the special focus on the impeller. The intention was to develop a reversible axial jet fan which operates in the same way in both rotating directions while generating thrust as high as possible. The jet fan model with the outer diameter 499.2 ± 0.1 mm and ten adjustable blades is the same, while it is in-built in two different casings. The first construction is a cylindrical casing, while the second one is profiled as a nozzle. Thrust, volume flow rate, consumed power and ambient conditions were measured after the international standard ISO 13350. Results for both constructions are presented for three impeller blade angles: 28°, 31° and 35°, and rotation speed in the interval n = 400 to 2600 rpm. The smallest differences in thrust, depending on the fan rotation direction, as well as the highest thrust are achieved for the first design with the cylindrical casing and blade angle at the outer diameter of 35°. Therefore, it was shown that fan casing significantly influences jet fan characteristics. In addition, the maximum thrust value and its independence of the flow direction is experimentally obtained for the angle of 39° in the cylindrical casing. Full article
Show Figures

Figure 1

Article
Evaluation of Oxidative Stress Parameters in Healthy Saddle Horses in Relation to Housing Conditions, Presence of Stereotypies, Age, Sex and Breed
Processes 2020, 8(12), 1670; https://doi.org/10.3390/pr8121670 - 17 Dec 2020
Cited by 1 | Viewed by 1055
Abstract
Oxidative stress plays an important role in the development of many horse diseases and it has been shown that housing has important implications for the psychophysical well-being of horses. The aim of this study is to determine if there are any differences between [...] Read more.
Oxidative stress plays an important role in the development of many horse diseases and it has been shown that housing has important implications for the psychophysical well-being of horses. The aim of this study is to determine if there are any differences between the redox status in horses in relation to housing conditions. The four housing conditions analyzed were: single box, without external access and without contact (Cat A), single box with external access and possibility of partial contact (Cat B), group housing with box and large paddock (Cat C), pasture with more than 7 horses and the possibility of green forage for the whole year (Cat D). A group of 117 healthy horses were selected in several private stables in Northern Italy. All subjects treated with any type of drug were excluded. At the end of the enrollment, the 117 selected horses were divided into the four housing categories. Stereotypies were highest in the group of horses in single box, without external access and without contact (Cat A). Oxidative stress was evaluated by testing plasma or serum samples for the following parameters: superoxide anion (WST), nitric oxide (NO), reactive oxygen species (d-ROMs), ferric reducing ability of plasma (FRAP), and the activity of superoxide dismutase (SOD). Simultaneously with the blood sampling, the owners completed a questionnaire with all the management aspects of the horse (signaling, feeding, equestrian activity, vaccinations, foot management etc.). The statistical evaluation was carried out based on the categories previously described, on the presence and absence of stereotypies and on some signaling data obtained from the questionnaire. There were no significant differences in the parameters analyzed between the categories. No significant redox status differences were detected based on the presence or absence of stereotypies. Interestingly, when the age was introduced as selection (<14 and >14 years old) parameter inside the categories, statistical significance was observed for some of the stress markers considered. Finally, independently of the housing conditions, the horses of the most two represented breeds exhibited different values of FRAP. All these aspects are commented in the discussion. Full article
(This article belongs to the Special Issue Advances of Redox Status in Disease)
Show Figures

Figure 1

Article
The Supervision of Dough Fermentation Using Image Analysis Complemented by a Continuous Discrete Extended Kalman Filter
Processes 2020, 8(12), 1669; https://doi.org/10.3390/pr8121669 - 17 Dec 2020
Cited by 3 | Viewed by 791
Abstract
Dough fermentation is an important step during the preparation of fermented baking goods. For the supervision of dough fermentation, a continuous-discrete extended Kalman filter was applied, which uses an image analysis system as the measurement. By estimation a fixed number of gas bubbles [...] Read more.
Dough fermentation is an important step during the preparation of fermented baking goods. For the supervision of dough fermentation, a continuous-discrete extended Kalman filter was applied, which uses an image analysis system as the measurement. By estimation a fixed number of gas bubbles inside the dough, the radius of an average bubble was determined. A mathematical dough model was used by the extended Kalman filter to estimate the radius of the average bubble, the CO2 concentration of the non-gas dough phase and the number of CO2 molecules in the average bubble. During a fermentation of 50 min, the extended Kalman filter estimated that the average radius increased from 50 µm to 127 µm, the CO2 concentration in the non-gas dough increased to 23 mol/m³, and the CO2 amount in the bubble increased from 0.1 × 10−10 to 4 × 10−10 mol. Also, the specific CO2 production rate was estimated to be in the range from 1.5 × 10−3 to more than 4 × 10−3 mol·m³/kg/s. The advantages of an extended Kalman filter for the supervision of the dough fermentation process are discussed. Full article
(This article belongs to the Special Issue Redesign Processes in the Age of the Fourth Industrial Revolution)
Show Figures

Figure 1

Article
Inventory of MSWI Fly Ash in Switzerland: Heavy Metal Recovery Potential and Their Properties for Acid Leaching
Processes 2020, 8(12), 1668; https://doi.org/10.3390/pr8121668 - 17 Dec 2020
Cited by 6 | Viewed by 1155
Abstract
From the year 2021 on, heavy metals from Swiss municipal solid waste incineration (MSWI) fly ash (FA) must be recovered before landfilling. This is predominantly performed by acid leaching. As a basis for the development of defined recovery rates and for the implementation [...] Read more.
From the year 2021 on, heavy metals from Swiss municipal solid waste incineration (MSWI) fly ash (FA) must be recovered before landfilling. This is predominantly performed by acid leaching. As a basis for the development of defined recovery rates and for the implementation of the recovery process, the authorities and plant operators need information on the geochemical properties of FA. This study provides extended chemical and mineralogical characterization of all FA produced in 29 MSWI plants in Switzerland. Acid neutralizing capacity (ANC) and metallic aluminum (Al0) were additionally analyzed to estimate the effort for acid leaching. Results show that all FA samples are composed of similar constituents, but their content varies due to differences in waste input and incineration conditions. Based on their geochemical properties, the ashes could be divided into four types describing the leachability: very good (6 FA), good (10 FA), moderate (5 FA), and poor leaching potential (8 FA). Due to the large differences it is suggested that the required recovery rates are adjusted to the leaching potential. The quantity of heavy metals recoverable by acid leaching was estimated to be 2420 t/y Zn, 530 t/y Pb, 66 t/y Cu and 22 t/y Cd. Full article
(This article belongs to the Special Issue Advanced Technology of Waste Treatment)
Show Figures

Figure 1

Article
The Dynamics of Globally Unstable Air-Helium Jets and Its Impact on Jet Mixing Intensity
Processes 2020, 8(12), 1667; https://doi.org/10.3390/pr8121667 - 17 Dec 2020
Cited by 2 | Viewed by 733
Abstract
The paper presents experimental investigations of the low-density air-helium jets. The paper is aimed at the analysis of the flow conditions promoting the local absolute instability leading to global flow oscillations. A number of the test cases are analysed with a wide range [...] Read more.
The paper presents experimental investigations of the low-density air-helium jets. The paper is aimed at the analysis of the flow conditions promoting the local absolute instability leading to global flow oscillations. A number of the test cases are analysed with a wide range of the shear layer thickness showing conditions favorable for the global modes and also mixing intensity triggered by such a regime. It is shown that high mixing intensity is determined not only by the global regime but also by the vortex pairing process. The results are compared with a recently proposed universal scaling law for an onset into the global mode. The results turn out to be far from this scaling law and the reasons for such discrepancies are discussed. The measurements show also that if the shear layer at the nozzle exit is thin enough the global modes are suppressed. The mechanism leading to the global mode suppression under such conditions is carefully analysed. Full article
(This article belongs to the Special Issue Advances in the Chemical Mixing Process)
Show Figures

Figure 1

Article
Electrochemical Mineralization of Ibuprofen on BDD Electrodes in an Electrochemical Flow Reactor: Numerical Optimization Approach
Processes 2020, 8(12), 1666; https://doi.org/10.3390/pr8121666 - 17 Dec 2020
Cited by 3 | Viewed by 1356
Abstract
Statistical analysis was applied to optimize the electrochemical mineralization of ibuprofen with two boron-doped diamond (BDD) electrodes in a continuous electrochemical flow reactor under recirculation batch mode. A central composite rotatable (CCR) experimental design was used to analyze the effect of initial pH [...] Read more.
Statistical analysis was applied to optimize the electrochemical mineralization of ibuprofen with two boron-doped diamond (BDD) electrodes in a continuous electrochemical flow reactor under recirculation batch mode. A central composite rotatable (CCR) experimental design was used to analyze the effect of initial pH (2.95–13.04), current intensity (2.66–4.34 A), and volumetric flow rate (0.16–1.84 L/min) and further optimized by response surface methodology (RSM) to obtain the maximum mineralization efficiency and the minimum specific energy consumption. A 91.6% mineralization efficiency (EM) of ibuprofen with a specific energy consumption (EC) of 4.36 KW h/g TOC within 7 h of treatment was achieved using the optimized operating parameters (pH0 = 12.29, I = 3.26 A, and Q of 1 L/min). Experimental results of RSM were fitted via a third-degree polynomial regression equation having the performance index determination coefficients (R2) of 0.8658 and 0.8468 for the EM and EC, respectively. The reduced root-mean-square error (RMSE) was 0.1038 and 0.1918 for EM and EC, respectively. This indicates an efficient predictive performance to optimize the operating parameters of the electrochemical flow reactor with desirability of 0.9999993. Besides, it was concluded that the optimized conditions allow to achieve a high percentage of ibuprofen mineralization (91.6%) and a cost of 0.002 USD $/L. Therefore, the assessed process is efficient for wastewater remediation.” Full article
(This article belongs to the Special Issue Control and Optimization of Wastewater Treatment Technology)
Show Figures

Graphical abstract

Article
Evaluation of Direct Ultrasound-Assisted Extraction of Phenolic Compounds from Potato Peels
Processes 2020, 8(12), 1665; https://doi.org/10.3390/pr8121665 - 17 Dec 2020
Cited by 9 | Viewed by 1280
Abstract
Potato peels (PPs) are generally considered as agriculture waste. The United States alone generates over one million tons of PPs a year. However, PPs contain valuable phenolic compounds with antioxidant activities. In this study, we evaluated the efficiency of ultrasound-assisted extraction techniques in [...] Read more.
Potato peels (PPs) are generally considered as agriculture waste. The United States alone generates over one million tons of PPs a year. However, PPs contain valuable phenolic compounds with antioxidant activities. In this study, we evaluated the efficiency of ultrasound-assisted extraction techniques in recovering antioxidants from PPs. These techniques included a direct ultrasound-assisted extraction (DUAE), an indirect ultrasound-assisted extraction (IUAE), and a conventional shaking extraction (CSE). Results of this study showed that DUAE was more effective in extracting phenolic compounds than IUAE and CSE. We also evaluated the factors affecting the yield of total phenolic compounds (TPC) in DUAE, including the temperature, time, acoustic power, ratio of solvent to solids, and size of PPs particles. TPC yield of DUAE was higher, and the extraction rate was faster than IUAE and CSE. Furthermore, TPC yield was strongly correlated to the temperature of the mixture of PPs suspension. SEM images revealed that the irradiation of ultrasound energy from DUAE caused micro-fractures and the opening of PPs cells. The extract obtained from DUAE was found to have antioxidant activity comparable to commercial synthetic antioxidants. Results of this preliminary study suggest that DUAE has the potential to transform PPs from agricultural waste to a valuable ingredient. A future systematic research study is proposed to advance the knowledge of the impact of processing parameters in the kinetics of phenolic compounds extraction from potato peels using various extraction methods. Full article
Show Figures

Graphical abstract

Article
Flow Ripple Reduction of Axial-Piston Pump by Structure Optimizing of Outlet Triangular Damping Groove
Processes 2020, 8(12), 1664; https://doi.org/10.3390/pr8121664 - 17 Dec 2020
Cited by 4 | Viewed by 916
Abstract
The triangular damping groove on the valve plate can effectively reduce the discharge flow ripple of an axial piston pump, which structural parameters will directly affect the pump’s dynamic characteristics. Herein, a multi-parameter data-based structure optimizing method of the triangular damping groove is [...] Read more.
The triangular damping groove on the valve plate can effectively reduce the discharge flow ripple of an axial piston pump, which structural parameters will directly affect the pump’s dynamic characteristics. Herein, a multi-parameter data-based structure optimizing method of the triangular damping groove is investigated using numerical models and simulation results. The mathematical models of a nine-piston pump are proposed and developed by MATLAB/Simulink, and the simulation results are verified by experimental results. Then, the effects of width angle and depth angle on discharge flow are analyzed. Based on the analysis of groove parameters, an optimizing index, which considering the time domain characteristics of discharge flow, is proposed. As results show, comparing with the initial specific groove structure, the amplitude of flow ripple is reduced from 14.6% to 9.8% with the optimized structure. The results demonstrate that the outlet flow ripple can be significantly reduced by the optimized structure, and the proposed multi-parameter optimizing method can play a guiding significance in the design of low-ripple axial piston pumps. Full article
Show Figures

Figure 1

Article
Influence of the Gas Bubble Size Distribution on the Ladle Stirring Process
Processes 2020, 8(12), 1663; https://doi.org/10.3390/pr8121663 - 16 Dec 2020
Cited by 2 | Viewed by 1112
Abstract
This work aims at figuring out the influence of gas bubble size distribution on the ladle stirring process. The work is conducted through three-dimensional (3D) numerical simulation based on the finite volume method. Mesh sensitivity test and the cross-validation are performed to ensure [...] Read more.
This work aims at figuring out the influence of gas bubble size distribution on the ladle stirring process. The work is conducted through three-dimensional (3D) numerical simulation based on the finite volume method. Mesh sensitivity test and the cross-validation are performed to ensure the results are mesh independent and the numerical set-up is correct. Two distributions, uniform and Log-normal function, are investigated under different gas flow rates and number of porous plugs. The results indicate that the results, e.g., the axial velocity and the area of the slag eye, have little difference for low flow rate. The difference becomes dominant whilst the flow rate is increasing, such as 600 NL/min. The Log-normal function bubble size distribution gives a larger axial velocity and a smaller slag eye area compared to the uniform bubble size distribution. This work indicated that, at a higher flow rate, the Log-normal function is a better choice to predict the melt behavior and the slag open eye in the ladle refining process if the bubble interaction is not considered. Full article
Show Figures

Figure 1

Article
Municipal Solid Waste as Secondary Resource: Selectively Separating Cu(II) from Highly Saline Fly Ash Extracts by Polymer-Assisted Ultrafiltration
Processes 2020, 8(12), 1662; https://doi.org/10.3390/pr8121662 - 16 Dec 2020
Cited by 1 | Viewed by 727
Abstract
Urban mining from fly ash resulting from municipal solid waste incineration (MSWI) is becoming more and more important due to the increasing scarcity of supply-critical metals. Metal extraction from acid fly ash leaching has already been established. In this context selective Cu recovery [...] Read more.
Urban mining from fly ash resulting from municipal solid waste incineration (MSWI) is becoming more and more important due to the increasing scarcity of supply-critical metals. Metal extraction from acid fly ash leaching has already been established. In this context selective Cu recovery is still a challenge. Therefore, our purpose was the separation of Cu(II) from MSWI fly ash extracts by polymer-assisted ultrafiltration (PAUF). We investigated three polyethyleneimines (PEIs) with regard to metal retention, Cu(II) selectivity, Cu(II) loading capacity, and the viscosity of the PEI containing solutions. A demanding challenge was the highly complex matrix of the fly ash extracts, which contain up to 16 interfering metal ions in high concentrations and a chloride content of 60 g L−1. Overcoming that, Cu(II) was selectively enriched and separated from real fly ash extract at pH 3.0. At pH 1.0, a PEI-free Cu(II) concentrate was obtained and PEIs could be regenerated for reuse in further separation cycles. The PAUF conditions developed at laboratory scale were successfully transferred to pilot scale, and hyperbranched PEI (HB-PEI) was found to be the most suitable reagent for PAUF in a technical scale. Moreover, HB-PEI enables photometric control of the Cu(II) enrichment. Full article
(This article belongs to the Special Issue Advanced Technology of Waste Treatment)
Show Figures

Graphical abstract

Review
Recent Trends in Pretreatment of Food before Freeze-Drying
Processes 2020, 8(12), 1661; https://doi.org/10.3390/pr8121661 - 16 Dec 2020
Cited by 9 | Viewed by 2053
Abstract
Drying is among the most important processes and the most energy-consuming techniques in the food industry. Dried food has many applications and extended shelf life. Unlike the majority of conventional drying methods, lyophilization, also known as freeze-drying (FD), involves freezing the food, usually [...] Read more.
Drying is among the most important processes and the most energy-consuming techniques in the food industry. Dried food has many applications and extended shelf life. Unlike the majority of conventional drying methods, lyophilization, also known as freeze-drying (FD), involves freezing the food, usually under low pressure, and removing water by ice sublimation. Freeze-dried materials are especially recommended for the production of spices, coffee, dried snacks from fruits and vegetables and food for military or space shuttles, as well as for the preparation of food powders and microencapsulation of food ingredients. Although the FD process allows obtaining dried products of the highest quality, it is very energy- and time consuming. Thus, different methods of pretreatment are used for not only accelerating the drying process but also retaining the physical properties and bioactive compounds in the lyophilized food. This article reviews the influence of various pretreatment methods such as size reduction, blanching, osmotic dehydration and application of pulsed electric field, high hydrostatic pressure or ultrasound on the physicochemical properties of freeze-dried food and drying rate. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Food Processes")
Show Figures

Figure 1

Article
Switching Monopolar Mode for RF-Assisted Resection and Superficial Ablation of Biological Tissue: Computational Modeling and Ex Vivo Experiments
Processes 2020, 8(12), 1660; https://doi.org/10.3390/pr8121660 - 16 Dec 2020
Viewed by 1161
Abstract
Radiofrequency (RF)-based monopolar (MM) and bipolar mode (BM) applicators are used to thermally create coagulation zones (CZs) in biological tissues with the aim of destroying surface tumors and minimizing blood losses in surgical resection. Both modes have disadvantages as regards safely and in [...] Read more.
Radiofrequency (RF)-based monopolar (MM) and bipolar mode (BM) applicators are used to thermally create coagulation zones (CZs) in biological tissues with the aim of destroying surface tumors and minimizing blood losses in surgical resection. Both modes have disadvantages as regards safely and in obtaining a sufficiently deep coagulation zone (CZ). In this study, we compared both modes versus a switching monopolar mode (SMM) in which the role of the active electrode changes intermittently between the two electrodes of the applicator. In terms of clinical impact, the three modes can easily be selected by the surgeon according to the surgical maneuver. We used computational and experimental models to study the feasibility of working in MM, BM, and SMM and to compare their CZ characteristics. We focused exclusively on BM and SMM, since MM only creates small coagulation zones in the area between the electrodes. The results showed that SMM produces the deepest CZ between both electrodes (33% more than BM) and SMM did not stop the generator when an electrode lost contact with the tissue, as occurred in BM. Our findings suggest that the selective use of SMM and BM with a bipolar applicator offers greater advantages than using each type alone. Full article
(This article belongs to the Special Issue Heat Transfer in Biomedical Applications)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop