Next Issue
Volume 9, October
Previous Issue
Volume 9, August

Plants, Volume 9, Issue 9 (September 2020) – 197 articles

Cover Story (view full-size image): Arbuscular mycorrhizal fungi are receiving increased attention for their potential use in a sustainable and climate-smart agricultural context. Although several positive effects have been reported on photosynthetic traits in host plants, showing improved performances under abiotic stresses such as drought, salinity, and extreme temperatures, the involved mechanisms are yet to be fully discovered. A strong correlation between nitrogen (N) and photosynthetic performance has already been reported and, in recent years, the impact of AM symbioses in mediating N uptake to the host has become increasingly relevant. Here, all these aspects have been correlated to disentangling the interplay among arbuscular mycorrhizal fungi, nitrogen, and photosynthesis. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Article
Phenolic Compounds Content and Genetic Diversity at Population Level across the Natural Distribution Range of Bearberry (Arctostaphylos uva-ursi, Ericaceae) in the Iberian Peninsula
Plants 2020, 9(9), 1250; https://doi.org/10.3390/plants9091250 - 22 Sep 2020
Viewed by 1169
Abstract
Bearberry (Arctostaphylos uva-ursi) is a medicinal plant traditionally employed for the treatment of urinary tract infections due to high contents of arbutin (hydroquinone β-D-glucoside), which is now mainly used as a natural skin-whitening agent in cosmetics. Bearberry has also been proposed [...] Read more.
Bearberry (Arctostaphylos uva-ursi) is a medicinal plant traditionally employed for the treatment of urinary tract infections due to high contents of arbutin (hydroquinone β-D-glucoside), which is now mainly used as a natural skin-whitening agent in cosmetics. Bearberry has also been proposed as a natural antioxidant additive due to the high contents of phenolic compounds in leaves. We studied the variation on phenolic compounds in 42 wild populations of bearberry, aiming to elucidate if intrinsic biological, climatic, and/or geographic factors affect phenolic contents across its natural distribution in the Iberian Peninsula. Bearberry leaves were collected during autumn over a three-year period (2014–2016) in populations across a latitude and altitude gradient. Methanolic extracts showed a wide range of variation in total phenols content, and different phenolic profiles regarding arbutin (levels of this major constituent varied from 87 to 232 mg/g dr wt), but also catechin and myricetin contents, which were affected by geographic and climatic factors. Moderate levels of variation on genome size—assessed by flow cytometry—and on two plastid DNA regions were also detected among populations. Genetic and cytogenetic differentiation of populations was weakly but significantly associated to phytochemical diversity. Elite bearberry genotypes with higher antioxidant capacity were subsequently identified. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

Article
Cytotoxicity, Phytochemical, Antiparasitic Screening, and Antioxidant Activities of Mucuna pruriens (Fabaceae)
Plants 2020, 9(9), 1249; https://doi.org/10.3390/plants9091249 - 22 Sep 2020
Cited by 4 | Viewed by 995
Abstract
This study aimed at assessing the biological activities of Mucuna pruriens seeds using cytotoxicity, phytochemical, antiparasitic screening, and antioxidant assays. Mature fruits of M. pruriens were harvested from Fort Hare University’s Research Farm located in Alice, South Africa. The collected seeds were [...] Read more.
This study aimed at assessing the biological activities of Mucuna pruriens seeds using cytotoxicity, phytochemical, antiparasitic screening, and antioxidant assays. Mature fruits of M. pruriens were harvested from Fort Hare University’s Research Farm located in Alice, South Africa. The collected seeds were pulverized in a standard process and taken to the laboratory for crude extraction and further treatments. Cytotoxic, antimalarial, and trypanocidal effects of crude extracts obtained from ethanol and water were tested, while the total phenolic, proanthocyanidin, and flavonoid contents of the aqueous extracts as well as their pharmacological activities were determined in vitro using 2,2-diphenyl-1-picrylhydrazyl ethanol (DPPH), ferric reducing antioxidant power (FRAP), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Although the extracts showed mild antiparasitic (antiplasmodial and trypanocidal) effects, results from the cytotoxic experiment revealed that M. pruriens is not toxic to human cervix adenocarcinoma (HeLa) cells when tested using 50 µg/mL of extracts. It was observed that the seeds were remarkably rich in phenol (3730.1 ± 15.52 mg gallic acid equivalent (GAE)/g) compared to flavonoids (63.03 ± 1.95 mg quercetin equivalent (QE)/g) and proanthocyanidin (18.92 ± 1.09 mg catechin equivalent (CE)/g). Also, the antioxidant activities of the extracts were comparable to those of the standard antioxidant drugs (rutin and gallic acid) used, in a concentration-dependent manner. There was a direct relationship between phenolic acid content and antioxidant effects. It is therefore suggested that M. pruriens seeds be incorporated into human diets as a supplement to promote healthy living. Pharmaceutical industries with a particular interest in natural phenolic acids should consider using seeds of M. pruriens as pharmaceutical precursors. Full article
Show Figures

Graphical abstract

Article
Global Trends in Phytohormone Research: Google Trends Analysis Revealed African Countries Have Higher Demand for Phytohormone Information
Plants 2020, 9(9), 1248; https://doi.org/10.3390/plants9091248 - 22 Sep 2020
Viewed by 1015
Abstract
The lines of research conducted within a country often reflect its focus on current and future economic needs. Analyzing “search” trends on the internet can provide important insight into predicting the direction of a country in regards to agriculture, health, economy, and other [...] Read more.
The lines of research conducted within a country often reflect its focus on current and future economic needs. Analyzing “search” trends on the internet can provide important insight into predicting the direction of a country in regards to agriculture, health, economy, and other areas. ‘Google Trends’ collects data on search terms from different countries, and this information can be used to better understand sentiments in different countries and regions. Agricultural output is responsible for feeding the world and there is a continuous quest to find ways to make agriculture more productive, safe, and reliable. The application of phytohormones has been used in agriculture world-wide for many years to improve crop production and continues to be an active area of research for the application in plants. Therefore, in the current study, we searched ‘Google Trends’ using the phytohormone search terms, abscisic acid, auxins, brassinosteroids, cytokinin, ethylene, gibberellins, jasmonic acid, salicylic acid, and strigolactones. The results indicated that the African country Zambia had the greatest number of queries on auxin research, and Kenya had the most queries in cytokinin and gibberellin research world-wide. For other phytohormones, India had the greatest number of queries for abscisic acid and South Korea had the greatest number of ethylene and jasmonic acid search world-wide. Queries on salicylic acid have been continuously increasing while the least number of queries were related to strigolactones. Only India and United States of America had significant numbers of queries on all nine phytohormones while queries on one or more phytohormones were absent in other countries. India is one of the top five crop-producing countries in the world for apples, millet, orange, potato, pulses, rice, sugarcane, tea, and wheat. Similarly, the United States of America is one of the top five crop-producing countries of the world for apples, grapes, maze, orange, potato, sorghum, sugarcane, and wheat. These might be the most possible factors for the search queries found for all the nine phytohormones in India and the United States of America. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

Article
The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast
Plants 2020, 9(9), 1247; https://doi.org/10.3390/plants9091247 - 21 Sep 2020
Viewed by 922
Abstract
Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the [...] Read more.
Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the photosynthetic pathway (e.g., rbcL, ndhF, and atpF) and RNA polymerase genes (e.g., rpoC2) from the comparison of the chloroplast genome of V. mungo, temperate legume species, and tropical legume species. Our transcriptome data from PacBio isoform sequencing showed that the 51-kb DNA inversion could affect the transcriptional regulation of accD polycistronic. Using Illumina deep RNA sequencing, we found RNA editing of clpP in the leaf, shoot, flower, fruit, and root tissues of V. mungo. We also found three G-to-A RNA editing events that change guanine to adenine in the transcripts transcribed from the adenine-rich regions of the ycf4 gene. The edited guanine bases were found particularly in the chloroplast genome of the Vigna species. These G-to-A RNA editing events were likely to provide a mechanism for correcting DNA base mutations. The V. mungo chloroplast genome sequence and the analysis results obtained in this study can apply to phylogenetic studies and chloroplast genome engineering. Full article
Show Figures

Graphical abstract

Article
The PIFs Redundantly Control Plant Defense Response against Botrytis cinerea in Arabidopsis
Plants 2020, 9(9), 1246; https://doi.org/10.3390/plants9091246 - 21 Sep 2020
Cited by 3 | Viewed by 867
Abstract
Endogenous and exogenous signals are perceived and integrated by plants to precisely control defense responses. As a crucial environmental cue, light reportedly plays vital roles in plant defenses against necrotrophic pathogens. Phytochrome-interacting factor (PIF) is one of the important transcription factors which plays [...] Read more.
Endogenous and exogenous signals are perceived and integrated by plants to precisely control defense responses. As a crucial environmental cue, light reportedly plays vital roles in plant defenses against necrotrophic pathogens. Phytochrome-interacting factor (PIF) is one of the important transcription factors which plays essential roles in photoreceptor-mediated light response. In this study, we revealed that PIFs negatively regulate plant defenses against Botrytis cinerea. Gene expression analyses showed that the expression level of a subset of defense-response genes was higher in pifq (pif1/3/4/5) mutants than in the wild-type control, but was lower in PIF-overexpressing plants. Chromatin immunoprecipitation assays proved that PIF4/5 binds directly to the ETHYLENE RESPONSE FACTOR1 (ERF1) promoter. Moreover, genetic analyses indicated that the overexpression of ERF1 dramatically rescues the susceptibility of PIF4-HA and PIF5-GFP transgenic plants, and that PIF controls the resistance to B. cinerea in a COI1- and EIN2-dependent manner. Our results provide compelling evidence that PIF, together with the jasmonate/ethylene pathway, is important for plant resistance to B. cinerea. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

Article
Increasing Air Temperatures and Its Effects on Growth and Productivity of Tomato in South Florida
Plants 2020, 9(9), 1245; https://doi.org/10.3390/plants9091245 - 21 Sep 2020
Cited by 1 | Viewed by 797
Abstract
Florida ranks first among US states in fresh-market tomato production with annual production exceeding one-third of the total annual production in the country. Although tomato is a signature crop in Florida, current and future ambient temperatures could impose a major production challenge, especially [...] Read more.
Florida ranks first among US states in fresh-market tomato production with annual production exceeding one-third of the total annual production in the country. Although tomato is a signature crop in Florida, current and future ambient temperatures could impose a major production challenge, especially during the fall growing season. This problem is increasingly becoming an important concern among tomato growers in south Florida, but studies addressing these concerns have not been conducted until now. Therefore, this study was conducted to determine the impacts of the present ambient temperature conditions and planting dates on tomato productivity in south Florida. The study was conducted using crop simulation model CROPGRO-Tomato of DSSAT (Decision Support System for Agricultural Transfer) version 4.7. Five treatments were evaluated, and included AT (simulated treatment using 14 years of actual daily weather conditions at the study location) while other treatments were conducted based on a percentage (−20%, −10%, +10%, +20%) of AT to simulate cooler and warmer temperature regimes. The results suggested that under the current temperature conditions during the fall growing season in south Florida, average tomato yield was up to 29% lower compared to the cooler temperature regimes. Tomato yield further decreased by 52% to 85% at air temperatures above the current condition. Yield reduction under high temperature was primarily due to lower fruit production. Contrary to yield, both tomato biomass accumulation and leaf area index increased with increase in temperature. Results also indicated that due to changes in air temperature pattern, tomato yield increased as planting date increased from July to December. Therefore, planting date modification during the fall season from the current July–September to dates between November and December will reduce the impacts of heat stress and increase tomato productivity in south Florida. Full article
(This article belongs to the Special Issue Effects of Abiotic Stress on Plants 2020–2021)
Show Figures

Figure 1

Review
Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses
Plants 2020, 9(9), 1244; https://doi.org/10.3390/plants9091244 - 21 Sep 2020
Cited by 16 | Viewed by 2533
Abstract
SARS-CoV-2 infection (COVID-19) is in focus over all known human diseases, because it is destroying the world economy and social life, with increased mortality rate each day. To date, there is no specific medicine or vaccine available against this pandemic disease. However, the [...] Read more.
SARS-CoV-2 infection (COVID-19) is in focus over all known human diseases, because it is destroying the world economy and social life, with increased mortality rate each day. To date, there is no specific medicine or vaccine available against this pandemic disease. However, the presence of medicinal plants and their bioactive molecules with antiviral properties might also be a successful strategy in order to develop therapeutic agents against SARS-CoV-2 infection. Thus, this review will summarize the available literature and other information/data sources related to antiviral medicinal plants, with possible ethnobotanical evidence in correlation with coronaviruses. The identification of novel antiviral compounds is of critical significance, and medicinal plant based natural compounds are a good source for such discoveries. In depth search and analysis revealed several medicinal plants with excellent efficacy against SARS-CoV-1 and MERS-CoV, which are well-known to act on ACE-2 receptor, 3CLpro and other viral protein targets. In this review, we have consolidated the data of several medicinal plants and their natural bioactive metabolites, which have promising antiviral activities against coronaviruses with detailed modes of action/mechanism. It is concluded that this review will be useful for researchers worldwide and highly recommended for the development of naturally safe and effective therapeutic drugs/agents against SARS-CoV-2 infection, which might be used in therapeutic protocols alone or in combination with chemically synthetized drugs. Full article
Show Figures

Graphical abstract

Article
Challenges for Ex Situ Conservation of Wild Bananas: Seeds Collected in Papua New Guinea Have Variable Levels of Desiccation Tolerance
Plants 2020, 9(9), 1243; https://doi.org/10.3390/plants9091243 - 21 Sep 2020
Cited by 4 | Viewed by 2235
Abstract
Ex situ seed conservation of banana crop wild relatives (Musa spp. L.), is constrained by critical knowledge gaps in their storage and germination behaviour. Additionally, challenges in collecting seeds from wild populations impact the quality of seed collections. It is, therefore, crucial [...] Read more.
Ex situ seed conservation of banana crop wild relatives (Musa spp. L.), is constrained by critical knowledge gaps in their storage and germination behaviour. Additionally, challenges in collecting seeds from wild populations impact the quality of seed collections. It is, therefore, crucial to evaluate the viability of seeds from such collecting missions in order to improve the value of future seed collections. We evaluate the seed viability of 37 accessions of seven Musa species, collected from wild populations in Papua New Guinea, during two collecting missions. Seeds from one mission had already been stored in conventional storage (dried for four months at 15% relative humidity, 20 °C and stored for two months at 15% relative humdity, −20 °C), so a post-storage test was carried out. Seeds from the second mission were assessed freshly extracted and following desiccation. We used embryo rescue techniques to overcome the barrier of germinating in vivo Musa seeds. Seeds from the first mission had low viability (19 ± 27% mean and standard deviation) after storage for two months at 15% relative humidity and −20 °C. Musa balbisiana Colla seeds had significantly higher post-storage germination than other species (p < 0.01). Desiccation reduced germination of the seeds from the second collecting mission, from 84 ± 22% (at 16.7 ± 2.4% moisture content) to 36 ± 30% (at 2.4 ± 0.8% moisture content). There was considerable variation between and (to a lesser extent) within accessions, a proportion of individual seeds of all but one species (Musa ingens N.W.Simmonds) survived desiccation and sub-zero temperature storage. We identified that seeds from the basal end of the infructescence were less likely to be viable after storage (p < 0.001); and made morphological observations that identify seeds and infructescences with higher viability in relation to their developmental maturity. We highlight the need for research into seed eco-physiology of crop wild relatives in order to improve future collecting missions. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
Show Figures

Figure 1

Article
Bio-Guided Fractionation Driven by In Vitro α-Amylase Inhibition Assays of Essential Oils Bearing Specialized Metabolites with Potential Hypoglycemic Activity
Plants 2020, 9(9), 1242; https://doi.org/10.3390/plants9091242 - 21 Sep 2020
Cited by 2 | Viewed by 874
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by unpaired blood glycaemia maintenance. T2DM can be treated by inhibiting carbohydrate hydrolyzing enzymes (α-amylases and α-glucosidases) to decrease postprandial hyperglycemia. Acarbose and voglibose are inhibitors used in clinical practice. However, these drugs [...] Read more.
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by unpaired blood glycaemia maintenance. T2DM can be treated by inhibiting carbohydrate hydrolyzing enzymes (α-amylases and α-glucosidases) to decrease postprandial hyperglycemia. Acarbose and voglibose are inhibitors used in clinical practice. However, these drugs are associated with unpleasant gastrointestinal side effects. This study explores new α-amylase inhibitors deriving from plant volatile specialized metabolites. Sixty-two essential oils (EOs) from different plant species and botanical families were subjected to α-amylase in vitro enzymatic assay and chemically characterized using gas chromatography coupled to mass spectrometry. Several EOs were found to be potential α-amylase inhibitors, and Eucalyptus radiata, Laurus nobilis, and Myristicafragrans EOs displayed inhibitory capacities comparable to that of the positive control (i.e., acarbose). A bio-guided fractionation approach was adopted to isolate and identify the active fractions/compounds of Eucalyptus radiata and Myristica fragrans EOs. The bio-guided fractionation revealed that EOs α-amylase inhibitory activity is often the result of antagonist, additive, or synergistic interactions among their bioactive constituents and led to the identification of 1,8-cineole, 4-terpineol, α-terpineol, α-pinene, and β-pinene as bioactive compounds, also confirmed when they were tested singularly. These results demonstrate that EO oils are a promising source of potential α-amylase inhibitors. Full article
(This article belongs to the Special Issue Plant Volatiles: A Goldmine Not Fully Explored)
Show Figures

Graphical abstract

Article
Molecular Cloning of Novel-Type Phosphoenolpyruvate Carboxylase Isoforms in Pitaya (Hylocereus undatus)
Plants 2020, 9(9), 1241; https://doi.org/10.3390/plants9091241 - 21 Sep 2020
Viewed by 666
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is an important enzyme involved in the initial CO2 fixation of crassulacean acid metabolism (CAM) photosynthesis. To understand the cultivation characteristics of a CAM plant pitaya, it is necessary to clarify the characteristics of PEPC in this [...] Read more.
Phosphoenolpyruvate carboxylase (PEPC) is an important enzyme involved in the initial CO2 fixation of crassulacean acid metabolism (CAM) photosynthesis. To understand the cultivation characteristics of a CAM plant pitaya, it is necessary to clarify the characteristics of PEPC in this species. Here, we cloned three PEPC cDNAs in pitaya, HuPPC1, HuPPC2, and HuPPC3, which encode 942, 934, and 966 amino acid residues, respectively. Phylogenetic analysis indicated that these PEPC belonged to plant-type PEPC (PTPC), although HuPPC1 and HuPPC2 have no Ser-phosphorylation motif in N-terminal region, which is a crucial regulation site in PTPC and contributes to CAM periodicity. HuPPC1 and HuPPC2 phylogenetically unique to the Cactaceae family, whereas HuPPC3 was included in a CAM clade. Two isoforms were partially purified at the protein level and were assigned as HuPPC2 and HuPPC3 using MASCOT analysis. The most distinct difference in enzymatic properties between the two was sensitivity to malate and aspartate, both of which are allosteric inhibitors of PEPC. With 2 mM malate, HuPPC3 was inhibited to 10% of the initial activity, whereas HuPPC2 activity was maintained at 70%. Aspartate inhibited HuPPC3 activity by approximately 50% at 5 mM; however, such inhibition was not observed for HuPPC2 at 10 mM. These results suggest that HuPPC3 corresponds to a general CAM-related PEPC, whereas HuPPC1 and HuPPC2 are related to carbon and/or nitrogen metabolism, with a characteristic regulation mechanism similar to those of Cactaceae plants. Full article
(This article belongs to the Special Issue Functions of Plant Phosphoenolpyruvate Carboxylase)
Show Figures

Figure 1

Article
Bioactive Compounds from Polygala tenuifolia and Their Inhibitory Effects on Lipopolysaccharide-Stimulated Pro-inflammatory Cytokine Production in Bone Marrow-Derived Dendritic Cells
Plants 2020, 9(9), 1240; https://doi.org/10.3390/plants9091240 - 20 Sep 2020
Cited by 1 | Viewed by 998
Abstract
The roots of Polygala tenuifolia Wild (Polygalaceae), which is among the most important components of traditional Chinese herbal medicine, have been widely used for over 1000 years to treat a variety of diseases. In the current investigation of secondary metabolites with anti-inflammatory properties [...] Read more.
The roots of Polygala tenuifolia Wild (Polygalaceae), which is among the most important components of traditional Chinese herbal medicine, have been widely used for over 1000 years to treat a variety of diseases. In the current investigation of secondary metabolites with anti-inflammatory properties from Korean medicinal plants, a phytochemical constituent study led to the isolation of 15 compounds (115) from the roots of P. tenuifolia via a combination of chromatographic methods. Their structures were determined by means of spectroscopic data such as nuclear magnetic resonance (NMR), 1D- and 2D-NMR, and liquid chromatography-mass spectrometry (LC-MS). As the obtained results, the isolated compounds were divided into two groups—phenolic glycosides (19) and triterpenoid saponins (1015). The anti-inflammatory effects of crude extracts, fractions, and isolated compounds were investigated on the production of the pro-inflammatory cytokines interleukin (IL)-12 p40, IL-6, and tumour necrosis factor-α in lipopolysaccharide-stimulated bone marrow-derived dendritic cells. The IC50 values, ranging from 0.08 ± 0.01 to 21.05 ± 0.40 μM, indicated potent inhibitory effects of the isolated compounds on the production of all three pro-inflammatory cytokines. In particular, compounds 312, 14, and 15 showed promising anti-inflammatory activity. These results suggest that phenolic and triterpenoid saponins from P. tenuifolia may be excellent anti-inflammatory agents. Full article
Show Figures

Graphical abstract

Article
Seed Morphology of Allium L. (Amaryllidaceae) from Central Asian Countries and Its Taxonomic Implications
Plants 2020, 9(9), 1239; https://doi.org/10.3390/plants9091239 - 20 Sep 2020
Cited by 2 | Viewed by 1440
Abstract
We studied seed macro- and micro-morphological characteristics of 48 Allium species (51 accessions) belonging to 24 sections and 7 subgenera. Our taxonomic sampling focused on the central Asian regions of Uzbekistan, Kyrgyzstan, and Mongolia. The seed length ranged between 1.74 ± 0.16–4.47 ± [...] Read more.
We studied seed macro- and micro-morphological characteristics of 48 Allium species (51 accessions) belonging to 24 sections and 7 subgenera. Our taxonomic sampling focused on the central Asian regions of Uzbekistan, Kyrgyzstan, and Mongolia. The seed length ranged between 1.74 ± 0.16–4.47 ± 0.43 mm and width ranged between 1.06 ± 0.08–3.44 ± 0.23 mm, showing various shapes. The irregular and elongated polygonal testa cells occurred in all investigated species. Seed testa sculptures showed high variation in their anticlinal walls associated with different shapes: straight to with U-, S- or Omega-type undulations among the species. The moderately flat to convex periclinal walls with various sized verrucae or granules were found in all investigated taxa. Based on our research, we conclude that seed characteristics such as size, shape, and the seed testa features show their significant variability, revealing key characteristics to support taxonomic relationships and major clades recovered in the molecular phylogeny of the genus Allium. Especially, the anticlinal wall characteristics were highly variable and decisive at the both section and species levels. In addition, widely varied shapes and sizes of the seeds were remarkably effective to distinguish Allium species. Full article
(This article belongs to the Special Issue Diversification of Angiosperms)
Show Figures

Graphical abstract

Article
Genetic Diversity, Nitrogen Fixation, and Water Use Efficiency in a Panel of Honduran Common Bean (Phaseolus vulgaris L.) Landraces and Modern Genotypes
Plants 2020, 9(9), 1238; https://doi.org/10.3390/plants9091238 - 19 Sep 2020
Cited by 1 | Viewed by 1308
Abstract
Common bean (Phaseolus vulgaris L.) provides critical nutrition and a livelihood for millions of smallholder farmers worldwide. Beans engage in symbiotic nitrogen fixation (SNF) with Rhizobia. Honduran hillside farmers farm marginal land and utilize few production inputs; therefore, bean varieties with high [...] Read more.
Common bean (Phaseolus vulgaris L.) provides critical nutrition and a livelihood for millions of smallholder farmers worldwide. Beans engage in symbiotic nitrogen fixation (SNF) with Rhizobia. Honduran hillside farmers farm marginal land and utilize few production inputs; therefore, bean varieties with high SNF capacity and environmental resiliency would be of benefit to them. We explored the diversity for SNF, agronomic traits, and water use efficiency (WUE) among 70 Honduran landrace, participatory bred (PPB), and conventionally bred bean varieties (HON panel) and 6 North American check varieties in 3 low-N field trials in Ontario, Canada and Honduras. Genetic diversity was measured with a 6K single nucleotide polymorphism (SNP) array, and phenotyping for agronomic, SNF, and WUE traits was carried out. STRUCTURE analysis revealed two subpopulations with admixture between the subpopulations. Nucleotide diversity was greater in the landraces than the PPB varieties across the genome, and multiple genomic regions were identified where population genetic differentiation between the landraces and PPB varieties was evident. Significant differences were found between varieties and breeding categories for agronomic traits, SNF, and WUE. Landraces had above average SNF capacity, conventional varieties showed higher yields, and PPB varieties performed well for WUE. Varieties with the best SNF capacity could be used in further participatory breeding efforts. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
Show Figures

Graphical abstract

Communication
Variation in Seed Metabolites between Two Indica Rice Accessions Differing in Seed Longevity
Plants 2020, 9(9), 1237; https://doi.org/10.3390/plants9091237 - 19 Sep 2020
Viewed by 852
Abstract
For a better understanding of germination after seed storage, metabolite profiling was conducted using hybrid triple quadrupole time-of-flight (QTOF) mass spectrometry. After moisture content (MC) equilibration, seeds of “WAS170” (short-lived) and “IR65483” (long-lived) were stored at 10.9% MC and 45 °C. Samples for [...] Read more.
For a better understanding of germination after seed storage, metabolite profiling was conducted using hybrid triple quadrupole time-of-flight (QTOF) mass spectrometry. After moisture content (MC) equilibration, seeds of “WAS170” (short-lived) and “IR65483” (long-lived) were stored at 10.9% MC and 45 °C. Samples for metabolite analysis were taken after 0 and 20 days of storage. Among 288 metabolites, two flavonoids (kaempferide and quercetin-3-arabinoside), one amino acid (S-sulfocysteine) and one sugar (D-glucose) increased in “IR65483” seeds after storage but were not detected in “WAS170” seeds. Based on the genome sequence database, we identified clear allelic differences with non-synonymous mutations on the six flavonol synthase genes regulating the accumulation of kaempferol- and quercetin-metabolites. On the other hand, two metabolites (thiamine monophosphate and harmaline) increased in short-lived seeds after storage; these metabolites could be potential biochemical indicators of seed deterioration. Full article
Review
Accelerating Tomato Breeding by Exploiting Genomic Selection Approaches
Plants 2020, 9(9), 1236; https://doi.org/10.3390/plants9091236 - 18 Sep 2020
Cited by 4 | Viewed by 1258
Abstract
Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gain per unit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving [...] Read more.
Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gain per unit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving complex traits that are controlled by many genes with small effects. GS enables the prediction of the breeding value of candidate genotypes for selection. In this work, we address important issues related to GS and its implementation in the plant context with special emphasis on tomato breeding. Genomic constraints and critical parameters affecting the accuracy of prediction such as the number of markers, statistical model, phenotyping and complexity of trait, training population size and composition should be carefully evaluated. The comparison of GS approaches for facilitating the selection of tomato superior genotypes during breeding programs is also discussed. GS applied to tomato breeding has already been shown to be feasible. We illustrated how GS can improve the rate of gain in elite line selection, and descendent and backcross schemes. The GS schemes have begun to be delineated and computer science can provide support for future selection strategies. A new promising breeding framework is beginning to emerge for optimizing tomato improvement procedures. Full article
(This article belongs to the Special Issue Molecular Breeding in Horticultural Plants)
Show Figures

Figure 1

Article
Genome-Wide Identification and Analysis of SRO Gene Family in Chinese Cabbage (Brassica rapa L.)
Plants 2020, 9(9), 1235; https://doi.org/10.3390/plants9091235 - 18 Sep 2020
Viewed by 851
Abstract
Similar to radical-induced cell death 1 (SROs) is a family of small proteins unique to plants. SRO transcription factors play an important role in plants’ response to biotic and abiotic stresses. In this study, we identified 12 BrSRO genes in Chinese cabbage ( [...] Read more.
Similar to radical-induced cell death 1 (SROs) is a family of small proteins unique to plants. SRO transcription factors play an important role in plants’ response to biotic and abiotic stresses. In this study, we identified 12 BrSRO genes in Chinese cabbage (Brassica rapa L.). Among them, a comprehensive overview of the SRO gene family is presented, including physical and chemical characteristics, chromosome locations, phylogenetic analysis, gene structures, motif analysis, and cis-element analyses. The number of amino acids of BrSRO genes is between 77–779 aa, isoelectric point changed from 6.02 to 9.6. Of the 12 BrSRO genes, 11 were randomly distributed along the 7 chromosomes, while BrSRO12 was located along unassigned scaffolds. Phylogenetic analysis indicated that the SRO proteins from six species, including Arabidopsis, banana, rice, Solanum lycopersicum, Zea mays, and Chinese cabbage were divided into eleven groups. The exon-rich BrSRO6 and BrSRO12 containing 15 exons were clustered to group K. All 12 genes have motif 2, which indicate that motif 2 is a relatively conservative motif. There are many hormone and stress response elements in BrSRO genes. The relative expression levels of 12 BrSRO genes under high temperature, drought, salt, and low temperature conditions were analyzed by real-time fluorescence quantitative PCR. The results indicated the relative expression level of BrSRO8 was significantly up-regulated when plants were exposed to high temperature. The relative expression levels of BrSRO1, 3, 7, 8, and 9 were higher under low temperature treatment. The up-regulated genes response to drought and salt stresses were BrSRO1, 5, 9 and BrSRO1, 8, respectively. These results indicated that these genes have certain responses to different abiotic stresses. This work has provided a foundation for further functional analyses of SRO genes in Chinese cabbage. Full article
(This article belongs to the Special Issue Genetics and Genomics of the Brassicaceae)
Show Figures

Figure 1

Article
Impact of Proton Beam Irradiation on the Growth and Biochemical Indexes of Barley (Hordeum vulgare L.) Seedlings Grown under Salt Stress
Plants 2020, 9(9), 1234; https://doi.org/10.3390/plants9091234 - 18 Sep 2020
Viewed by 639
Abstract
The present paper examines the effects of salt stress on the growth, pigments, lipid peroxidation and antioxidant ability of barley (Hordeum vulgare L.) seedlings raised from proton beam irradiated caryopses. In order to assess the effects of radiation on the early stages [...] Read more.
The present paper examines the effects of salt stress on the growth, pigments, lipid peroxidation and antioxidant ability of barley (Hordeum vulgare L.) seedlings raised from proton beam irradiated caryopses. In order to assess the effects of radiation on the early stages of plant growth and analyze its possible influence on the alleviation of salinity, 3 and 5 Gy doses were used on dried barley seeds and germination occurred in the presence/absence of NaCl (100 mM and 200 mM). After treatment, photosynthetic pigments increased in the 5 Gy variant, which registered a higher value than the control. Among the antioxidant enzymes studied (SOD, CAT, and POD) only CAT activity increased in proton beam irradiated seeds germinated under salinity conditions, which indicates the activation of antioxidant defense. The malondialdehyde (MDA) content declined with the increase of irradiation doses on seeds germinated at 200 mM NaCl. On the other hand, the concentration of 200 mM NaCl applied alone or combined with radiation revealed an increase in soluble protein content. The growth rate suggests that 3 Gy proton beam irradiation of barley seeds can alleviate the harmful effects of 100 mM NaCl salinity, given that seedlings’ growth rate increased by 1.95% compared to the control. Full article
Show Figures

Figure 1

Article
The Molecular and Functional Characterization of the Durum Wheat Lipoxygenase TdLOX2 Suggests Its Role in Hyperosmotic Stress Response
Plants 2020, 9(9), 1233; https://doi.org/10.3390/plants9091233 - 18 Sep 2020
Cited by 2 | Viewed by 702
Abstract
In plants, lipoxygenases (LOXs) are involved in various processes, such as growth, development, and response to stress cues. In the present study, the expression pattern of six durum wheat LOX-encoding genes (TdLpx-B1.1, TdLpx-B1.2, TdLpx-A2, TdLpx-B2, TdLpx-A3 and TdLpx-B3 [...] Read more.
In plants, lipoxygenases (LOXs) are involved in various processes, such as growth, development, and response to stress cues. In the present study, the expression pattern of six durum wheat LOX-encoding genes (TdLpx-B1.1, TdLpx-B1.2, TdLpx-A2, TdLpx-B2, TdLpx-A3 and TdLpx-B3) under hyperosmotic stress was investigated. With osmotic (0.42 M mannitol) and salt (0.21 M NaCl) stress imposed at the early stages of seedling growth, a strong induction of the TdLpx-A2 gene expression in the shoots paralleled an equally strong increase in the LOX activity. Enhanced levels of malondialdehyde (MDA) and increased rates of superoxide anion generation were also observed as a result of the stress imposition. Sequence analysis of the TdLOX2 encoded by the TdLpx-A2 gene revealed that it belonged to the type-1 9-LOX group. When overexpressed in E. coli, TdLOX2 exhibited normal enzyme activity, high sensitivity to specific LOX inhibitors, with 76% and 99% inhibition by salicylhydroxamic and propyl gallate, respectively, and a preference for linoleic acid as substrate, which was converted exclusively to its corresponding 13-hydroperoxide. This unexpected positional specificity could be related to the unusual TV/K motif that in TdLOX2 replaces the canonical TV/R motif of 9-LOXs. Treatment of seedlings with propyl gallate strongly suppressed the increase in LOX activity induced by the hyperosmotic stress; the MDA accumulation was also reduced but less markedly, whereas the rate of superoxide anion generation was even more increased. Overall, our findings suggest that the up-regulation of the TdLpx-A2 gene is a component of the durum wheat response to hyperosmotic stress and that TdLOX2 may act by counteracting the excessive generation of harmful reactive oxygen species responsible for the oxidative damages that occur in plants under stress. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants)
Show Figures

Figure 1

Article
Chemical Constituents of the Leaves of Campanula takesimana (Korean Bellflower) and Their Inhibitory Effects on LPS-induced PGE2 Production
Plants 2020, 9(9), 1232; https://doi.org/10.3390/plants9091232 - 18 Sep 2020
Viewed by 811
Abstract
Campanula takesimana Nakai (Campanulaceae; Korean bellflower) is one of the endemic herbs of Korea. The plant has been used as traditional medicines for treating asthma, tonsillitis, and sore throat in Korea. A hot water extract of the leaves of C. takesimana exhibited a [...] Read more.
Campanula takesimana Nakai (Campanulaceae; Korean bellflower) is one of the endemic herbs of Korea. The plant has been used as traditional medicines for treating asthma, tonsillitis, and sore throat in Korea. A hot water extract of the leaves of C. takesimana exhibited a significant inhibitory effect on lipopolysaccharide (LPS)-stimulated prostaglandin E2 (PGE2) production. Repetitive chromatographic separation of the hot water extract led to the isolation of three new neolignan glucosides, campanulalignans A–C (13), with 15 known compounds (418). The structures of new compounds 13 were elucidated by analyzing nuclear magnetic resonance (NMR) spectroscopic data, along with high resolution quadrupole time of flight mass (HR-Q-TOF-MS) spectrometric data. Among the isolates, simplidin (7), 5-hydroxyconiferaldehyde (11), icariside F2 (12), benzyl-α-l-arabinopyranosyl-(1″→6′)-β-d-glucopyranoside (13), and kaempferol 3-O-β-d-apiosyl (1→2)-β-d-glucopyranoside (15) were isolated from the Campanulaceae family for the first time. The isolates (1, 2, and 418) were assessed for their anti-inflammatory effects on LPS-stimulated PGE2 production on RAW 264.7 cells. 7R,8S-Dihydrodehydrodiconiferyl alcohol (5), 3′,4-O-dimethylcedrusin 9-O-β-glucopyranoside (6), pinoresinol di-O-β-d-glucoside (8), ferulic acid (10), 5-hydroxyconiferaldehyde (11), and quercetin (18) showed significant inhibitory effects on LPS-stimulated PGE2 production. Full article
Show Figures

Graphical abstract

Article
Effects of Increased N Deposition on Leaf Functional Traits of Four Contrasting Tree Species in Northeast China
Plants 2020, 9(9), 1231; https://doi.org/10.3390/plants9091231 - 18 Sep 2020
Cited by 1 | Viewed by 757
Abstract
Northeast China is persistently affected by heavy nitrogen (N) deposition. Studying the induced variation in leaf traits is pivotal to develop an understanding of the adaptive plasticity of affected species. This study thus assesses effects of increased N deposition on leaf morphological and [...] Read more.
Northeast China is persistently affected by heavy nitrogen (N) deposition. Studying the induced variation in leaf traits is pivotal to develop an understanding of the adaptive plasticity of affected species. This study thus assesses effects of increased N deposition on leaf morphological and anatomical traits and their correlation among and with biomass allocation patterns. A factorial experiment was conducted utilizing seedlings of two gymnosperms (Larix gmelinii, Pinus koraiensis) and two angiosperms (Fraxinus mandshurica, Tilia amurensis). Leaf mass per area and leaf density decreased and leaf thickness increased under high N deposition but trait interrelations remained stable. In gymnosperms, leaf mass per area was correlated to both leaf thickness and area, while being correlated to leaf density only in angiosperms. Epidermis, mesophyll thickness, conduit and vascular bundle diameter increased. Despite the differences in taxonomic groups and leaf habits, the common patterns of variation suggest that a certain degree of convergence exists between the species’ reaction towards N deposition. However, stomata pore length increased in angiosperms, and decreased in gymnosperms under N deposition. Furthermore, biomass and leaf mass fraction were correlated to leaf traits in gymnosperms only, suggesting a differential coordination of leaf traits and biomass allocation patterns under high N deposition per taxonomic group. Full article
(This article belongs to the Special Issue Forest Environment and Ecology)
Show Figures

Graphical abstract

Article
The Common Ice Plant (Mesembryanthemum crystallinum L.)–Phytoremediation Potential for Cadmium and Chromate-Contaminated Soils
Plants 2020, 9(9), 1230; https://doi.org/10.3390/plants9091230 - 18 Sep 2020
Cited by 1 | Viewed by 1014
Abstract
The common ice plant (Mesembryanthemum crystallinum L.) is a widely studied model due to its tolerance to numerous biotic and abiotic stresses. In this study, carried out in model pots, the plants were treated with variant doses of Cd(II) and Cr(VI) and [...] Read more.
The common ice plant (Mesembryanthemum crystallinum L.) is a widely studied model due to its tolerance to numerous biotic and abiotic stresses. In this study, carried out in model pots, the plants were treated with variant doses of Cd(II) and Cr(VI) and proved resistant to extreme levels of these heavy metals. Initial toxicity symptoms were observed upon final concentrations of 818 mg Cd kg−1 soil d.w., and 1699 mg Cr kg−1 applied as potassium chromate. Biometric analyses revealed that none of the Cr(VI) doses affected dry weight of the plant organs thus maintaining the shoot-to-root ratio. The Cd and Cr hypertolerance strategies were divergent and resulted in different accumulation patterns. For the case of Cd(II), an excluder-like mechanism was developed to prevent the plant from toxicity. For chromate, high accumulation potential together with Cr(VI) root-to-shoot translocation at sublethal concentrations was revealed (up to 6152 mg Cr kg−1 shoot at 4248 mg Cr kg−1 soil). It is concluded that M. crystallinum reveals considerable phytoremediation capabilities due to unique growth potential in contaminated substrates and is suitable for bioreclamation of degraded soils. The plant is especially applicable for efficient phytoextraction of chromate-contamination, whereas for Cd-affected areas it may have a phytostabilizing effect. Full article
(This article belongs to the Special Issue Plant Acclimatization to Abiotic Stress)
Show Figures

Graphical abstract

Article
Molecular Study of Selected Taxonomically Critical Taxa of the Genus Iris L. from the Broader Alpine-Dinaric Area
Plants 2020, 9(9), 1229; https://doi.org/10.3390/plants9091229 - 18 Sep 2020
Cited by 1 | Viewed by 1136
Abstract
Some wild, morphologically diverse taxa of the genus Iris in the broad Alpine-Dinaric area have never been explored molecularly, and/or have ambiguous systematic status. The main aims of our research were to perform a molecular study of critical Iris taxa from that area [...] Read more.
Some wild, morphologically diverse taxa of the genus Iris in the broad Alpine-Dinaric area have never been explored molecularly, and/or have ambiguous systematic status. The main aims of our research were to perform a molecular study of critical Iris taxa from that area (especially a narrow endemic accepted species I. adriatica, for which we also analysed genome size) and to explore the contribution of eight microsatellites and highly variable chloroplast DNA (ndhJ, rpoC1) markers to the understanding of the Iris taxa taxonomy and phylogeny. Both the microsatellite-based UPGMA and plastid markers-based maximum likelihood analysis discriminated three main clusters in the set of 32 analysed samples, which correspond well to the lower taxonomic categories of the genus, and support separate status of ambiguous regional taxa (e.g., I. sibirica subsp. erirrhiza, I. x croatica and I. x rotschildii). The first molecular data on I. adriatica revealed its genome size (2C = 12.639 ± 0.202 pg) and indicated the existence of ecotypes. For future molecular characterisation of the genus we recommend the utilisation of microsatellite markers supplemented with a combination of plastid markers. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Graphical abstract

Article
Allelopathic Potential of Aqueous Extract from Acacia melanoxylon R. Br. on Lactuca sativa
Plants 2020, 9(9), 1228; https://doi.org/10.3390/plants9091228 - 18 Sep 2020
Cited by 2 | Viewed by 780
Abstract
We studied the polyphenol (phenolic compounds and flavonoids) composition and allelopathic effects of Acacia melanoxylon R. Br. aerial foliage aqueous extract (0%, 25%, 50%, 75% and 100%) on the seedling growth and plant biomass of the general biotest species, lettuce (Lactuca sativa). [...] Read more.
We studied the polyphenol (phenolic compounds and flavonoids) composition and allelopathic effects of Acacia melanoxylon R. Br. aerial foliage aqueous extract (0%, 25%, 50%, 75% and 100%) on the seedling growth and plant biomass of the general biotest species, lettuce (Lactuca sativa). Mean leaf fresh weight, leaf dry weight, root fresh weight and root dry weight were decreased following exposure to Acacia aerial foliage, flowers aqueous extract (AFE) and phyllodes aqueous extract (APE) after 6 days. The reduction in plant dry biomass was more than 50% following treatment with AFE. The decrease in mean root length was approximately 37.7% and 29.20% following treatment with Acacia flowers extract (AFE) at 75% and 100% concentration, respectively. Root dry weight of L. sativa was reduced by both flowers and phyllodes extract. The reduction of protein contents in lettuce leaves following Acacia foliage extract proved that both AFE and APE exhibit polyphenols that causes the toxicity which led to decrease in leaf protein contents. High-Performance Liquid Chromatography (HPLC) was employed to analyze the A. melanoxylon flowers and phyllodes. A total of 13 compounds (accounting for most abundant compounds in flowers and phyllodes) include different flavonoids and phenolic compounds. The phytochemical compounds detected were: Gallic acid, protocatechuic acid, p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillic acid, syringic acid, p-coumaric acid, and ferulic acid. The major flavonoid compounds identified include rutin, luteolin, apigenin, and catechin. Allelopathic effects of flower and phyllodes extracts from A. melanoxylon may be due to the presence of above compounds identified by HPLC analysis. Full article
Show Figures

Graphical abstract

Article
Comparison of the Ability to Control Water Loss in the Detached Leaves of Wedelia trilobata, Wedelia chinensis, and Their Hybrid
Plants 2020, 9(9), 1227; https://doi.org/10.3390/plants9091227 - 18 Sep 2020
Viewed by 648
Abstract
In the process of biological invasion, hybridization between invasive species and native species is very common, which may lead to the formation of hybrids with a stronger adaptability. The hybrid of Wedelia trilobata (an alien invasive species) and Wedelia chinensis (an indigenous congener) [...] Read more.
In the process of biological invasion, hybridization between invasive species and native species is very common, which may lead to the formation of hybrids with a stronger adaptability. The hybrid of Wedelia trilobata (an alien invasive species) and Wedelia chinensis (an indigenous congener) has been found in South China. In our previous study, we found that the hybrid showed heterosis under cadmium stress. However, the results of this experiment demonstrated that the leaves of the hybrid had no heterosis in controlling water loss. The results showed that the water loss rate of W. trilobata was the slowest, that of W. chinensis was the fastest, and that of the hybrid was in the middle. Compared with W. chinensis and the hybrid, W. trilobata accumulated more abscisic acid (ABA) in leaves to control water loss. After the leaves were detached, W. chinensis leaves suffered the most serious damage, the lowest maximum photochemical efficiency, the most serious membrane lipid peroxidation, and the largest accumulation of malondialdehyde and reactive oxygen species. Compared with W. chinensis and its hybrid, the leaves of W. trilobata could accumulate more antioxidant enzymes and antioxidants, and the total antioxidant capacity was the strongest. The results demonstrate that the ability of the hybrid to reduce water loss was lower than that of W. trilobata, but higher than that of W. chinensis. They showed that the drought resistance of the hybrid may be higher than that of W. chinensis, and it might threaten the survival of W. chinensis. Full article
(This article belongs to the Special Issue Plants Heterosis)
Show Figures

Graphical abstract

Article
Use of Non-Destructive Measurements to Identify Cucurbit Species (Cucurbita maxima and Cucurbita moschata) Tolerant to Waterlogged Conditions
Plants 2020, 9(9), 1226; https://doi.org/10.3390/plants9091226 - 18 Sep 2020
Cited by 1 | Viewed by 798
Abstract
Limited information is available regarding the physiology of squash plants grown under waterlogging stress. The objectives of this study were to investigate the growth and physiological performances of three cucurbit species, Cucurbita maxima cultivar (cv.) OK-101 (OK) and Cucurbita moschata cv. Early Price [...] Read more.
Limited information is available regarding the physiology of squash plants grown under waterlogging stress. The objectives of this study were to investigate the growth and physiological performances of three cucurbit species, Cucurbita maxima cultivar (cv.) OK-101 (OK) and Cucurbita moschata cv. Early Price (EP) and Strong Man (SM), in response to waterlogging conditions, and to develop a precise, integrated, and quantitative non-destructive measurement of squash genotypes under stress. All tested plants were grown in a growth chamber under optimal irrigation and growth conditions for a month, and the pot plants were then subjected to non-waterlogging (control) and waterlogging treatments for periods of 1, 3, 7, and 13 days (d), followed by a 3-d post-waterlogging recovery period after water drainage. Plants with phenotypes, such as fresh weight (FW), dry weight (DW), and dry matter (DM) of shoots and roots, and various physiological systems, including relative water content (RWC), soil and plant analysis development (SPAD) chlorophyll meter, ratio of variable/maximal fluorescence (Fv/Fm), quantum photosynthetic yield (YII), normalized difference vegetation index (NDVI), and photochemical reflectance index (PRI) values, responded differently to waterlogging stress in accordance with the duration of the stress period and subsequent recovery period. When plants were treated with stress for 13 d, all plants exhibited harmful effects to their leaves compared with the control, but EP squash grew better than SM and OK squashes and exhibited stronger tolerance to waterlogging and showed less injury. Changes in the fresh weight, dry weight, and dry matter of shoots and roots indicated that OK plants suffered more severely than EP plants at the 3-d drainage period. The values of RWC, SPAD, Fv/Fm, YII, NDVI, and PRI in both SM and OK plants remarkably decreased at waterlogging at the 13-d time point compared with controls under identical time periods. However, the increased levels of SPAD, Fv/Fm, YII, NDVI, and PRI observed on 7 d or 13 d of waterlogging afforded the EP plant leaf with improved waterlogged tolerance. Significant and positive correlations were observed among NDVI and PRI with SPAD, Fv/Fm, and YII, indicating that these photosynthetic indices can be useful for developing non-destructive estimations of chlorophyll content in squashes when screening for waterlogging-tolerant plants, for establishing development practices for their cultivation in fields, and for enhanced cultivation during waterlogging in frequently flooded areas. Full article
(This article belongs to the Special Issue The Impacts of Abiotic Stresses on Plant Development)
Show Figures

Graphical abstract

Article
Seed Transcriptome Annotation Reveals Enhanced Expression of Genes Related to ROS Homeostasis and Ethylene Metabolism at Alternating Temperatures in Wild Cardoon
Plants 2020, 9(9), 1225; https://doi.org/10.3390/plants9091225 - 18 Sep 2020
Cited by 4 | Viewed by 865
Abstract
The association among environmental cues, ethylene response, ABA signaling, and reactive oxygen species (ROS) homeostasis in the process of seed dormancy release is nowadays well-established in many species. Alternating temperatures are recognized as one of the main environmental signals determining dormancy release, but [...] Read more.
The association among environmental cues, ethylene response, ABA signaling, and reactive oxygen species (ROS) homeostasis in the process of seed dormancy release is nowadays well-established in many species. Alternating temperatures are recognized as one of the main environmental signals determining dormancy release, but their underlying mechanisms are scarcely known. Dry after-ripened wild cardoon achenes germinated poorly at a constant temperature of 20, 15, or 10 °C, whereas germination was stimulated by 80% at alternating temperatures of 20/10 °C. Using an RNA-Seq approach, we identified 23,640 and annotated 14,078 gene transcripts expressed in dry achenes and achenes exposed to constant or alternating temperatures. Transcriptional patterns identified in dry condition included seed reserve and response to dehydration stress genes (i.e., HSPs, peroxidases, and LEAs). At a constant temperature, we observed an upregulation of ABA biosynthesis genes (i.e., NCED9), ABA-responsive genes (i.e., ABI5 and TAP), as well as other genes previously related to physiological dormancy and inhibition of germination. However, the alternating temperatures were associated with the upregulation of ethylene metabolism (i.e., ACO1, 4, and ACS10) and signaling (i.e., EXPs) genes and ROS homeostasis regulators genes (i.e., RBOH and CAT). Accordingly, the ethylene production was twice as high at alternating than at constant temperatures. The presence in the germination medium of ethylene or ROS synthesis and signaling inhibitors reduced significantly, but not completely, germination at 20/10 °C. Conversely, the presence of methyl viologen and salicylhydroxamic acid (SHAM), a peroxidase inhibitor, partially increased germination at constant temperature. Taken together, the present study provides the first insights into the gene expression patterns and physiological response associated with dormancy release at alternating temperatures in wild cardoon (Cynara cardunculus var. sylvestris). Full article
(This article belongs to the Special Issue Seed Dormancy: Molecular Control of Its Induction and Alleviation)
Show Figures

Figure 1

Article
Diallelic Analysis of Tropical Maize Germplasm Response to Spontaneous Chromosomal Doubling
Plants 2020, 9(9), 1224; https://doi.org/10.3390/plants9091224 - 17 Sep 2020
Viewed by 812
Abstract
Chromosome doubling is an important step in the production of maize doubled haploid (DH) lines to induce fertility in the male and female reproductive organs of haploid plants. Chromosomal doubling is routinely accomplished by treating haploid seedlings with mitosis-inhibiting chemicals. However, chromosomal doubling [...] Read more.
Chromosome doubling is an important step in the production of maize doubled haploid (DH) lines to induce fertility in the male and female reproductive organs of haploid plants. Chromosomal doubling is routinely accomplished by treating haploid seedlings with mitosis-inhibiting chemicals. However, chromosomal doubling involves several labor-intensive steps and toxic chemicals. Spontaneous chromosomal doubling without any chemical treatments occurs at high frequency in haploids from a few maize genotypes. This study focused on elucidating the genetic components of two traits important for using spontaneous doubling in maize-breeding programs, namely, haploid male fertility (HMF) and haploid fertility (HF). In two different sets of diallel crosses, haploids were derived and assessed for HMF and HF in two environments in replicated trials. The results revealed significant genotypic variations for both traits. The general combining ability (GCA) and specific combining (SCA) were significant for both traits. Significant and positive GCA effects of up to 14% and 9% were found for HMF and HF, respectively. No significant reciprocal effects and genotype-by-environment (G×E) interactions were found for HF in both experiments, but HMF showed significant effects for both in one of the experiments. The GCA effects were more important than the SCA effects for HMF and HF across environments, implying that selection could facilitate their improvement. The high correlations between F1-hybrid performance and mid-parent values, as well as that between F1-hybrid performance and GCA effects, also supports the assumption that these traits are controlled by a few genes. SCA effects also played a role, especially when lines with low spontaneous doubling were used as parents. Overall, spontaneous doubling can be introgressed and improved in elite germplasm with selection, and it has the potential to be employed in DH pipelines. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

Article
Genetic Diversity and Population Structure of Maize Inbred Lines with Varying Levels of Resistance to Striga Hermonthica Using Agronomic Trait-Based and SNP Markers
Plants 2020, 9(9), 1223; https://doi.org/10.3390/plants9091223 - 17 Sep 2020
Viewed by 915
Abstract
Striga hermonthica is a serious biotic stress limiting maize production in sub-Saharan Africa. The limited information on the patterns of genetic diversity among maize inbred lines derived from source germplasm with mixed genetic backgrounds limits the development of inbred lines, hybrids, and synthetics [...] Read more.
Striga hermonthica is a serious biotic stress limiting maize production in sub-Saharan Africa. The limited information on the patterns of genetic diversity among maize inbred lines derived from source germplasm with mixed genetic backgrounds limits the development of inbred lines, hybrids, and synthetics with durable resistance to S. hermonthica. This study was conducted to assess the level of genetic diversity in a panel of 150 diverse maize inbred lines using agronomic and molecular data and also to infer the population structure among the inbred lines. Ten Striga-resistance-related traits were used for the phenotypic characterization, and 16,735 high-quality single-nucleotide polymorphisms (SNPs), identified by genotyping-by-sequencing (GBS), were used for molecular diversity. The phenotypic and molecular hierarchical cluster analyses grouped the inbred lines into five clusters, respectively. However, the grouping patterns between the phenotypic and molecular hierarchical cluster analyses were inconsistent due to non-overlapping information between the phenotypic and molecular data. The correlation between the phenotypic and molecular diversity matrices was very low (0.001), which is in agreement with the inconsistencies observed between the clusters formed by the phenotypic and molecular diversity analyses. The joint phenotypic and genotypic diversity matrices grouped the inbred lines into three groups based on their reaction patterns to S. hermonthica, and this was able to exploit a broad estimate of the actual diversity among the inbred lines. The joint analysis shows an invaluable insight for measuring genetic diversity in the evaluated materials. The result indicates that wide genetic variability exists among the inbred lines and that the joint diversity analysis can be utilized to reliably assign the inbred lines into heterotic groups and also to enhance the level of resistance to Striga in new maize varieties. Full article
Show Figures

Graphical abstract

Article
Content of Capsaicinoids and Capsiate in “Filius” Pepper Varieties as Affected by Ripening
Plants 2020, 9(9), 1222; https://doi.org/10.3390/plants9091222 - 17 Sep 2020
Cited by 1 | Viewed by 628
Abstract
Peppers are fruits with wide genetic variability and multiple ways of being consumed that hold a relevant position in the human diet. Nowadays, consumers are interested in new gastronomic experiences provided by pepper cultivars that present new shapes, colors, and flavors while preserving [...] Read more.
Peppers are fruits with wide genetic variability and multiple ways of being consumed that hold a relevant position in the human diet. Nowadays, consumers are interested in new gastronomic experiences provided by pepper cultivars that present new shapes, colors, and flavors while preserving their bioactive compounds, such as their capsaicinoids and capsinoids. However, numerous changes take place during their development that may alter their biological properties. Therefore, this work evaluates the capsaicinoid and capsiate contents in two traditional varieties of ornamental peppers (“Filius Blue” and “Filius Green’”) during fruit maturation. The aim is to determine the ideal harvesting moment depending on the farmer’s objective (e.g., achieving a specific color, shape, or flavor; achieving the maximum concentrations of bioactive compounds). The capsaicinoid contents followed different patterns in the two varieties analyzed. The “Filius Blue” variety exhibited increasing concentrations of capsaicinoids up to the 41st day post-anthesis (dpa), from which point on this trend was reversed. The concentrations in the “Filius Green” variety increased and decreased several times, reaching maximum concentrations on the 69th dpa. Regarding capsiate contents, both varieties varied in the same way, reaching maximum concentrations on the 34th dpa and then decreasing. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Graphical abstract

Article
Comparative Analysis of Volatile Compounds of Gamma-Irradiated Mutants of Rose (Rosa hybrida)
Plants 2020, 9(9), 1221; https://doi.org/10.3390/plants9091221 - 17 Sep 2020
Cited by 1 | Viewed by 833
Abstract
Roses are one of the most important floricultural crops, and their essential oils have long been used for cosmetics and aromatherapy. We investigated the volatile compound compositions of 12 flower-color mutant variants and their original cultivars. Twelve rose mutant genotypes were developed by [...] Read more.
Roses are one of the most important floricultural crops, and their essential oils have long been used for cosmetics and aromatherapy. We investigated the volatile compound compositions of 12 flower-color mutant variants and their original cultivars. Twelve rose mutant genotypes were developed by treatment with 70 Gy of 60Co gamma irradiation of six commercial rose cultivars. Essential oils from the flowers of the 18 genotypes were analyzed by gas chromatography–mass spectrometry. Seventy-seven volatile compounds were detected, which were categorized into six classes: Aliphatic hydrocarbons, aliphatic alcohols, aliphatic ester, aromatic compounds, terpene alcohols, and others. Aliphatic (hydrocarbons, alcohols, and esters) compounds were abundant categories in all rose flowers. The CR-S2 mutant had the highest terpene alcohols and oil content. Three (CR-S1, CR-S3, and CR-S4) mutant genotypes showed higher ester contents than their original cultivar. Nonacosane, 2-methylhexacosane, and 2-methyltricosane were major volatile compounds among all genotypes. Hierarchical cluster analysis (HCA) of the rose genotypes gave four groups according to grouping among the 77 volatile compounds. In addition, the principal component analysis (PCA) model was successfully applied to distinguish most attractive rose lines. These findings will be useful for the selection of rose genotypes with improved volatile compounds. Full article
(This article belongs to the Special Issue Plant Mutation Breeding)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop