Previous Issue
Volume 10, September

Table of Contents

Atmosphere, Volume 10, Issue 10 (October 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Levels, Sources and Health Risk of PM2.5 and PM1-Bound PAHs across the Greater Athens Area: The Role of the Type of Environment and the Meteorology
Atmosphere 2019, 10(10), 622; https://doi.org/10.3390/atmos10100622 (registering DOI) - 15 Oct 2019
Abstract
Fine particulate matter (PM) has significant impacts on public health. Among its various chemical components, Polycyclic Aromatic Hydrocarbons (PAHs) are of particular importance since they contribute to a large extent or even enhance its toxic potency. Despite the verified importance of the fine [...] Read more.
Fine particulate matter (PM) has significant impacts on public health. Among its various chemical components, Polycyclic Aromatic Hydrocarbons (PAHs) are of particular importance since they contribute to a large extent or even enhance its toxic potency. Despite the verified importance of the fine PM pollution for the Greater Athens Area (GAA), information on its composition with respect to the hydrocarbons is extremely scarce. This study aims to uncover the occurrence of the PM2.5 and PM1-bound PAHs across the GAA investigating the impact of the sources and meteorology on the configuration of their profile and potential health risk. The fieldwork took place at three different locations during two different mesoscale wind regimes. Using the Diagnostic PAHs’ Ratio method, the sources were identified while for the quantification of the emissions from the traffic and central heating sectors, the FEI-GREGAA emission inventory was taken into consideration. The potential health risk was estimated calculating the toxic/mutagenic equivalency factors. The peaks for both the PM mass and the PAHs were attributed to the intensity of the emissions. On the other hand, the carcinogenic/mutagenic risk was mainly influenced by the varying characteristics of traffic and especially for the background atmosphere, from the arriving air masses from longer scale distances. Full article
(This article belongs to the Special Issue Ambient Aerosol Measurements in Different Environments)
Show Figures

Graphical abstract

Open AccessArticle
Tailpipe VOC Emissions from Late Model Gasoline Passenger Vehicles in the Japanese Market
Atmosphere 2019, 10(10), 621; https://doi.org/10.3390/atmos10100621 (registering DOI) - 15 Oct 2019
Abstract
High concentrations of tropospheric ozone remain a concern, and strategies to reduce the precursors of ozone, volatile organic compounds (VOCs) and nitrogen oxides, have been established in many countries. In this study, chassis dynamometer experiments were conducted for 25 late model gasoline passenger [...] Read more.
High concentrations of tropospheric ozone remain a concern, and strategies to reduce the precursors of ozone, volatile organic compounds (VOCs) and nitrogen oxides, have been established in many countries. In this study, chassis dynamometer experiments were conducted for 25 late model gasoline passenger vehicles in the Japanese market to evaluate VOC emission trends. Tailpipe emissions were collected and analyzed using gas chromatography mass spectrometer and flame ionization detector, and liquid chromatography–mass spectrometry (LC-MS). Results showed that tailpipe VOC emissions increased linearly with vehicle mileage due to deterioration of the three-way catalysis converter used to purify the toxic components in vehicle emissions. Distance normalized total VOC emissions showed that port injection mini-sized vehicles were effective in decreasing tailpipe VOC emissions because of their low vehicle weight. The VOC composition of tailpipe emissions was dependent on the fuel type (regular or premium gasoline). VOC emissions from hybrid vehicles were similar to those of other vehicles because cooling of the three-way catalysis converter during battery operations sometimes tended to reduce catalyst effectiveness during engine operations. However, it can also be assumed that each manufacturer is aware of this phenomenon and is taking action. Further monitoring of hybrid vehicles is warranted to ensure that these vehicles remain an effective means of mitigating air pollution. Full article
(This article belongs to the Special Issue Traffic-Related Emissions)
Show Figures

Graphical abstract

Open AccessArticle
Density Fluctuations in the Lower Thermosphere of Mars Retrieved From the ExoMars Trace Gas Orbiter (TGO) Aerobraking
Atmosphere 2019, 10(10), 620; https://doi.org/10.3390/atmos10100620 (registering DOI) - 15 Oct 2019
Abstract
The upper atmosphere of Mars is constantly perturbed by small-scale gravity waves propagating from below. As gravity waves strongly affect the large-scale dynamics and thermal state, constraining their statistical characteristics is of great importance for modeling the atmospheric circulation. We present a new [...] Read more.
The upper atmosphere of Mars is constantly perturbed by small-scale gravity waves propagating from below. As gravity waves strongly affect the large-scale dynamics and thermal state, constraining their statistical characteristics is of great importance for modeling the atmospheric circulation. We present a new data set of density perturbation amplitudes derived from accelerometer measurements during aerobraking of the European Space Agency’s Trace Gas Orbiter. The obtained data set presents features found by three previous orbiters: the lower thermosphere polar warming in the winter hemisphere, and the lack of links between gravity wave activity and topography. In addition, the orbits allowed for demonstrating a very weak diurnal variability in wave activity at high latitudes of the southern winter hemisphere for the first time. The estimated vertical damping rates of gravity waves agree well with theoretical predictions. No clear anticorrelation between perturbation amplitudes and the background temperature has been found. This indicates differences in dissipation mechanisms of gravity waves in the lower and upper thermosphere. Full article
(This article belongs to the Special Issue Observations and Measurements of the Martian Atmosphere)
Show Figures

Figure 1

Open AccessArticle
Possible Link Between Arctic Sea Ice and January PM10 Concentrations in South Korea
Atmosphere 2019, 10(10), 619; https://doi.org/10.3390/atmos10100619 - 14 Oct 2019
Viewed by 131
Abstract
In this study, we investigated the possible teleconnection between PM10 concentrations in South Korea and Arctic Sea ice concentrations at inter-annual time scales using observed PM10 data from South Korea, NCEP R2 data, and NOAA Sea Ice Concentration (SIC) data from [...] Read more.
In this study, we investigated the possible teleconnection between PM10 concentrations in South Korea and Arctic Sea ice concentrations at inter-annual time scales using observed PM10 data from South Korea, NCEP R2 data, and NOAA Sea Ice Concentration (SIC) data from 2001 to 2018. From the empirical orthogonal function (EOF) analysis, we found that the first mode (TC1) was a large-scale mode for PM10 in South Korea and explained about 27.4% of the total variability. Interestingly, the TC1 is more dominantly influenced by the horizontal ventilation effect than the vertical atmospheric stability effect. The pollution potential index (PPI), which is defined by the weighted average of the two ventilation effects, is highly correlated with the TC1 of PM10 at a correlation coefficient of 0.75, indicating that the PPI is a good measure for PM10 in South Korea at inter-annual time scales. Regression maps show that the decrease of SIC over the Barents Sea is significantly correlated with weakening of high pressure over the Ural mountain range region, the anomalous high pressure at 500 hPa over the Korean peninsula, and the weakening of the Siberian High and Aleutian low. Moreover, these patterns are similar to the correlation pattern with the PPI, suggesting that the variability of SIC over the Barents Sea may play an important role in modulating the variability of PM10 in South Korea through teleconnection from the Barents Sea to the Korean peninsula via Eurasia. Full article
(This article belongs to the Special Issue Recent Advances of Air Pollution Studies in South Korea)
Show Figures

Figure 1

Open AccessArticle
Comparison of PM2.5 Chemical Components over East Asia Simulated by the WRF-Chem and WRF/CMAQ Models: On the Models’ Prediction Inconsistency
Atmosphere 2019, 10(10), 618; https://doi.org/10.3390/atmos10100618 - 12 Oct 2019
Viewed by 198
Abstract
High levels of atmospheric concentration of PM2.5 (particulate matters less than 2.5 μm in size) are one of the most urgent societal issues over the East Asian countries. Air quality models have been used as an essential tool to predict spatial and [...] Read more.
High levels of atmospheric concentration of PM2.5 (particulate matters less than 2.5 μm in size) are one of the most urgent societal issues over the East Asian countries. Air quality models have been used as an essential tool to predict spatial and temporal distribution of the PM2.5 and to support relevant policy making. This study aims to investigate the performance of high-fidelity air quality models in simulating surface PM2.5 chemical composition over the East Asia region in terms of a prediction consistency, which is a prerequisite for accurate air quality forecasts and reliable policy decision. The WRF-Chem (Weather Research and Forecasting-Chemistry) and WRF/CMAQ (Weather Research and Forecasting/Community Multiscale Air Quality modeling system) models were selected and uniquely configured for a one-month simulation by controlling surface emissions and meteorological processes (model options) to investigate the prediction consistency focusing the analyses on the effects of meteorological and chemical processes. The results showed that the surface PM2.5 chemical components simulated by both the models had significant inconsistencies over East Asia ranging fractional differences of 53% ± 30% despite the differences in emissions and meteorological fields were minimal. The models’ large inconsistencies in the surface PM2.5 concentration were attributed to the significant differences in each model’s chemical responses to the meteorological variables, which were identified from the multiple linear regression analyses. Our findings suggest that the significant models’ prediction inconsistencies should be considered with a great caution in the PM2.5 forecasts and policy support over the East Asian region. Full article
Open AccessCommunication
Can the MerPAS Passive Air Sampler Discriminate Landscape, Seasonal, and Elevation Effects on Atmospheric Mercury? A Feasibility Study in Mississippi, USA
Atmosphere 2019, 10(10), 617; https://doi.org/10.3390/atmos10100617 - 12 Oct 2019
Viewed by 119
Abstract
Accurately measuring gaseous elemental mercury (GEM) concentrations in the atmosphere is important to understand its sources, cycling, distribution, and temporal trends. The MerPAS passive air sampler from Tekran Inc. (Toronto, ON, Canada) captures GEM on sulfur-impregnated activated carbon after it passes through a [...] Read more.
Accurately measuring gaseous elemental mercury (GEM) concentrations in the atmosphere is important to understand its sources, cycling, distribution, and temporal trends. The MerPAS passive air sampler from Tekran Inc. (Toronto, ON, Canada) captures GEM on sulfur-impregnated activated carbon after it passes through a Radeillo diffusive barrier. Because they are small, relatively low in cost, and require no power, they can be deployed at multiple locations, yielding a much greater spatial resolution, albeit at coarser temporal resolution, compared to active sampling. In this study, we used the MerPAS to measure GEM concentration gradients at a mixed hardwood forest, wetland, pond, and a mowed (grass) field, all within close proximity (<500 m) to each other. Vertical profiles (0.5, 3.0, 5.5 m) were assessed during summer and winter. The sorbent was analyzed using a direct mercury analyzer. The samplers were captured between 0.90 to 2.2 ng over 2 weeks, well above the mean blank of 0.14 ng. We observed differences between the landscapes, elevation, and seasons. Nearest to the surface, GEM concentrations were lowest in the wetland (both seasons), where there was dense vegetation, and highest in the mowed field (both seasons). Generally, GEM levels increased with the elevation above the ground, except for the forest where the trend was slightly reversed. This suggests a possible net GEM deposition from the atmosphere to surfaces for three of the four landscapes. GEM concentrations were slightly higher in the winter than the summer at 5.5 m height where air masses were unimpeded by vegetation. Overall, we conclude that the MerPAS is indeed capable of measuring GEM gradients between landscapes, elevations, and seasons, if given sufficient collection time, good analytical precision, and low blank levels. Full article
(This article belongs to the Special Issue Atmospheric Mercury: Sources, Sinks, and Transformations)
Show Figures

Figure 1

Open AccessArticle
The 10–20 d Low-Frequency Oscillation Characteristics of Summer Precipitation in Eastern China in the Decaying Year of CP ENSO
Atmosphere 2019, 10(10), 616; https://doi.org/10.3390/atmos10100616 - 11 Oct 2019
Viewed by 125
Abstract
Using National Centers for Atmospheric Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and observational data, the low-frequency oscillation characteristics of precipitation in eastern China during the decaying summer of central Pacific El Niño–Southern Oscillation (CP ENSO) and the corresponding low-frequency atmospheric oscillation [...] Read more.
Using National Centers for Atmospheric Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and observational data, the low-frequency oscillation characteristics of precipitation in eastern China during the decaying summer of central Pacific El Niño–Southern Oscillation (CP ENSO) and the corresponding low-frequency atmospheric oscillation characteristic were investigated. The results showed that summer precipitation in eastern China during the decaying year of CP El Niño (La Niña) was more (less) than the climatological mean and that 10–20 d was its dominant period. Low-frequency oscillations at different tropospheric levels had different effects on low-frequency precipitation. In the upper troposphere, Eastern China was dominated by low-frequency divergence and positive (negative) anomaly of low-frequency height during the decaying year of CP El Niño (La Niña), and there was strong (weak) northwest–southeast wave-active flux transport. In the middle troposphere, the range and intensity of the subtropical western Pacific High (SWPH) of CP El Niño was larger and stronger than that of CP La Niña, which may be related to the low-frequency height fields. Meanwhile, the correspnding low-frequency wind field, water vapor circulation systems and moisture transport channels in the lower troposphere, along with the low-frequency vertical movement were significantly different, causing the low-frequency precipitation of CP El Niño to be stronger than CP La Niña. Full article
(This article belongs to the Section Climatology and Meteorology)
Show Figures

Figure 1

Open AccessArticle
A Preliminary Impact Study of Wind on Assimilation and Forecast Systems into the One-Dimensional Fog Forecasting Model COBEL-ISBA over Morocco
Atmosphere 2019, 10(10), 615; https://doi.org/10.3390/atmos10100615 - 11 Oct 2019
Viewed by 131
Abstract
The assimilation impact of wind data from aircraft measurements (AMDAR), surface synoptic observations (SYNOP) and 3D numerical weather prediction (NWP) mesoscale model, on short-range numerical weather forecasting (up to 12 h) and on the assimilation system, using the one-dimensional fog forecasting model COBEL-ISBA [...] Read more.
The assimilation impact of wind data from aircraft measurements (AMDAR), surface synoptic observations (SYNOP) and 3D numerical weather prediction (NWP) mesoscale model, on short-range numerical weather forecasting (up to 12 h) and on the assimilation system, using the one-dimensional fog forecasting model COBEL-ISBA (Code de Brouillard à l’Échelle Locale-Interactions Soil Biosphere Atmosphere), is studied in the present work. The wind data are extracted at Nouasseur airport, Casablanca, Morocco, over a winter period from the national meteorological database. It is the first time that wind profiles (up to 1300 m) are assimilated in the framework of a single-column model. The impact is assessed by performing NWP experiments with data denial tests, configured to be close to the operational settings. The assimilation system estimates the flow-dependent background covariances for each run of the model and takes the cross-correlations between temperature, humidity and wind components into account. When assimilated into COBEL-ISBA with an hourly update cycle, the wind field has a positive impact on temperature and specific humidity analysis and forecasts accuracy. Thus, a superior fit of the analysis background fields to observations is found when assimilating AMDAR without NWP wind data. The latter has shown a detrimental impact in all experiments. Besides, wind assimilation gave a clear improvement to short-range forecasts of near-surface thermodynamical parameters. Although, assimilation of SYNOP and AMDAR wind measurements slightly improves the probability of detection of fog but also increases the false alarms ratio by a lower magnitude. Full article
(This article belongs to the Special Issue Observation, Simulation and Predictability of Fog)
Show Figures

Figure 1

Open AccessArticle
Spatial and Temporal Variation of Wind Erosion Climatic Erosivity and Its Response to ENSO in the Otindag Desert, China
Atmosphere 2019, 10(10), 614; https://doi.org/10.3390/atmos10100614 - 10 Oct 2019
Viewed by 185
Abstract
Wind erosion is a major cause of soil losses in China’s drylands which is further stimulated by climate variability and fragile ecological conditions. Climatic erosivity is an important index of wind erosion, therefore, evaluation of its spatiotemporal variations and relationship with the El [...] Read more.
Wind erosion is a major cause of soil losses in China’s drylands which is further stimulated by climate variability and fragile ecological conditions. Climatic erosivity is an important index of wind erosion, therefore, evaluation of its spatiotemporal variations and relationship with the El Niño–Southern Oscillation (ENSO) will provide a theoretical basis for the comprehensive management and prevention of soil erosion. In this study, by using the climatic erosivity equation, geographic information system (GIS) and geostatistical analysis, we quantified the climatic erosivity, explored its spatiotemporal variations, and detected the effects of the Multivariate ENSO Index (MEI) on climatic erosivity in the Otindag Desert during the period of 1980–2016. The results indicated that the climatic erosivity (C-factor value) ranged from 82–445, and it decreased from the western margin to the eastern margin of the desert. The climatic erosivity showed a significant downward trend at seasonal and annual scales (p < 0.05). As far as spring, autumn and annual climatic erosivity, the whole region showed a downward trend, however, the summer and winter climatic erosivity varied spatially, in which the central and western regions showed a downward trend, but the eastern region showed an upward trend. The results showed that the average climatic erosivity is weaker during La Niña events than during El Niño events. The climatic erosivity recorded by 14 of the 20 meteorological stations, all located in central and west regions, exhibited a significant correlation with MEI (p < 0.05). The ENSO has a significant impact on climatic erosivity. Full article
(This article belongs to the Section Climatology and Meteorology)
Show Figures

Figure 1

Open AccessArticle
Downscaling Precipitation in the Data-Scarce Inland River Basin of Northwest China Based on Earth System Data Products
Atmosphere 2019, 10(10), 613; https://doi.org/10.3390/atmos10100613 - 10 Oct 2019
Viewed by 180
Abstract
Precipitation is a key climatic variable that connects the processes of atmosphere and land surface, and it plays a leading role in the water cycle. However, the vast area of Northwest China, its complex geographical environment, and its scarce observation data make it [...] Read more.
Precipitation is a key climatic variable that connects the processes of atmosphere and land surface, and it plays a leading role in the water cycle. However, the vast area of Northwest China, its complex geographical environment, and its scarce observation data make it difficult to deeply understand the temporal and spatial variation of precipitation. This paper establishes a statistical downscaling model to downscale the monthly precipitation in the inland river basin of Northwest China with the Tarim River Basin (TRB) as a typical representation. This method combines polynomial regression and machine learning, and it uses the batch gradient descent (BGD) algorithm to train the regression model. We downscale the monthly precipitation and obtain a dataset from January 2001 to December 2017 with a spatial resolution of 1 km × 1 km. The results show that the downscaling model presents a good performance in precipitation simulation with a high resolution, and it is more effective than ordinary polynomial regression. We also investigate the temporal and spatial variations of precipitation in the TRB based on the downscaling dataset. Analyses illustrate that the annual precipitation in the southern foothills of the Tianshan Mountains and the North Kunlun Mountains showed a significant upward trend during the study periods, while the annual precipitation in the central plains presented a significant downward trend. Full article
Open AccessArticle
Employing the Method of Characteristics to Obtain the Solution of Spectral Evolution of Turbulent Kinetic Energy Density Equation in an Isotropic Flow
Atmosphere 2019, 10(10), 612; https://doi.org/10.3390/atmos10100612 - 10 Oct 2019
Viewed by 149
Abstract
This study aims to review the physical theory and parametrizations associated to Turbulent Kinetic Energy Density Function (STKE). The bibliographic references bring a broad view of the physical problem, mathematical techniques and modeling of turbulent kinetic energy dynamics in the convective boundary layer. [...] Read more.
This study aims to review the physical theory and parametrizations associated to Turbulent Kinetic Energy Density Function (STKE). The bibliographic references bring a broad view of the physical problem, mathematical techniques and modeling of turbulent kinetic energy dynamics in the convective boundary layer. A simplified model based on the dynamical equation for the STKE, in an isotropic and homogeneous turbulent flow regime, is done by formulating and considering the isotropic inertial energy transfer and viscous dissipation terms. This model is described by the Cauchy Problem and solved employing the Method of Characteristics. Therefore, a discussion on Linear First Order Partial Differential Equation, its existence, and uniqueness of solution has been presented. The spectral function solution obtained from its associated characteristic curves and initial condition (Method of Characteristics) reproduces the main features of a modeled physical system. In addition, this modeling allows us to obtain the scaling parameters, which are frequently employed in parameterizations for turbulent dispersion. Full article
(This article belongs to the Special Issue Pollutant Dispersion in the Atmospheric Boundary Layer)
Open AccessArticle
Scaling Properties of Atmospheric Wind Speed in Mesoscale Range
Atmosphere 2019, 10(10), 611; https://doi.org/10.3390/atmos10100611 - 10 Oct 2019
Viewed by 159
Abstract
The scaling properties of turbulent flows are well established in the inertial sub-range. However, those of the synoptic-scale motions are less known, also because of the difficult analysis of data presenting nonstationary and periodic features. Extensive analysis of experimental wind speed data, collected [...] Read more.
The scaling properties of turbulent flows are well established in the inertial sub-range. However, those of the synoptic-scale motions are less known, also because of the difficult analysis of data presenting nonstationary and periodic features. Extensive analysis of experimental wind speed data, collected at the Mauna Loa Observatory of Hawaii, is performed using different methods. Empirical Mode Decomposition, interoccurrence times statistics, and arbitrary-order Hilbert spectral analysis allow to eliminate effects of large-scale modulations, and provide scaling properties of the field fluctuations (Hurst exponent, interoccurrence distribution, and intermittency correction). The obtained results suggest that the mesoscale wind dynamics owns features which are typical of the inertial sub-range turbulence, thus extending the validity of the turbulent cascade phenomenology to scales larger than observed before. Full article
Show Figures

Figure 1

Open AccessArticle
Combining Dispersion Modeling and Monitoring Data for Community-Scale Air Quality Characterization
Atmosphere 2019, 10(10), 610; https://doi.org/10.3390/atmos10100610 - 10 Oct 2019
Viewed by 141
Abstract
Spatially and temporally resolved air quality characterization is critical for community-scale exposure studies and for developing future air quality mitigation strategies. Monitoring-based assessments can characterize local air quality when enough monitors are deployed. However, modeling plays a vital role in furthering the understanding [...] Read more.
Spatially and temporally resolved air quality characterization is critical for community-scale exposure studies and for developing future air quality mitigation strategies. Monitoring-based assessments can characterize local air quality when enough monitors are deployed. However, modeling plays a vital role in furthering the understanding of the relative contributions of emissions sources impacting the community. In this study, we combine dispersion modeling and measurements from the Kansas City TRansportation local-scale Air Quality Study (KC-TRAQS) and use data fusion methods to characterize air quality. The KC-TRAQS study produced a rich dataset using both traditional and emerging measurement technologies. We used dispersion modeling to support field study design and analysis. In the study design phase, the presumptive placement of fixed monitoring sites and mobile monitoring routes have been corroborated using a research screening tool C-PORT to assess the spatial and temporal coverage relative to the entire study area extent. In the analysis phase, dispersion modeling was used in combination with observations to help interpret the KC-TRAQS data. We extended this work to use data fusion methods to combine observations from stationary, mobile measurements, and dispersion model estimates. Full article
(This article belongs to the Special Issue Atmospheric Dispersion of Pollutants in Urban Environments)
Show Figures

Figure 1

Open AccessEditorial
Lower Atmosphere Meteorology
Atmosphere 2019, 10(10), 609; https://doi.org/10.3390/atmos10100609 - 10 Oct 2019
Viewed by 141
Abstract
The Atmosphere Special Issue “Lower Atmosphere Meteorology” comprises thirteen original papers dealing with different meteorological processes that occur in the layer of the atmosphere close to the surface and which can greatly affect living beings and materials [...] Full article
(This article belongs to the Special Issue Lower Atmosphere Meteorology)
Open AccessArticle
Comparative Study on Probabilistic Forecasts of Heavy Rainfall in Mountainous Areas of the Wujiang River Basin in China Based on TIGGE Data
Atmosphere 2019, 10(10), 608; https://doi.org/10.3390/atmos10100608 - 09 Oct 2019
Viewed by 153
Abstract
Based on the ensemble precipitation forecast data in the summers of 2014–2018 from the Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE), a comparative study of two multi-model ensemble methods, the Bayesian model average (BMA) and the logistic regression [...] Read more.
Based on the ensemble precipitation forecast data in the summers of 2014–2018 from the Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE), a comparative study of two multi-model ensemble methods, the Bayesian model average (BMA) and the logistic regression (LR), was conducted. Meanwhile, forecasts of heavy precipitation from the two models over the Wujiang River Basin in China for the summer of 2018 were compared to verify their performances. The training period sensitivity test results show that a training period of 2 years was the best for BMA probability forecast model. Compared with the BMA method, the LR model required more statistical samples and its optimal length of the training period was 5 years. According to the Brier score (BS), for precipitation events exceeding 10 mm with lead times of 1–7 days, the BMA outperformed the LR and the raw ensemble prediction system forecasts (RAW) except for forecasts with a lead time of 1 day. Furthermore, for heavy rainfall events exceeding 25 and 50 mm, the RAW and the BMA performed much the same in terms of prediction. The reliability diagram of the two multi-model ensembles (i.e., BMA and LR) was more reliable than the RAW for heavy and moderate rainfall forecasts, and the BMA model had the best performance. The BMA probabilistic forecast can produce a highly concentrated probability density function (PDF) curve and can also provide deterministic forecasts through analyzing percentile forecast results. With regard to the heavy rainfall forecast in mountainous areas, it is recommended to refer to the forecast with a larger percentile between the 75th and 90th percentiles. Nevertheless, extreme events with low probability forecasts may occur and cannot be ignored. Full article
(This article belongs to the Section Climatology and Meteorology)
Show Figures

Figure 1

Open AccessArticle
Inversion Models for the Retrieval of Total and Tropospheric NO2 Columns
Atmosphere 2019, 10(10), 607; https://doi.org/10.3390/atmos10100607 - 09 Oct 2019
Viewed by 191
Abstract
Inversion models for retrieving the total and tropospheric nitrogen dioxide (NO2) columns from spaceborne remote sensing data are presented. For total column retrieval, we propose the so-called differential radiance models with internal and external closure and solve the underlying nonlinear [...] Read more.
Inversion models for retrieving the total and tropospheric nitrogen dioxide ( NO 2 ) columns from spaceborne remote sensing data are presented. For total column retrieval, we propose the so-called differential radiance models with internal and external closure and solve the underlying nonlinear equations by using the method of Tikhonov regularization and the iteratively regularized Gauss–Newton method. For tropospheric column retrieval, we design a nonlinear and a linear model by using the results of the total column retrieval and the value of the stratospheric NO 2 column delivered by a stratosphere–troposphere separation method. We also analyze the fundamentals of the commonly used differential optical absorption spectroscopy (DOAS) model and outline its relationship to the proposed inversion models. By a numerical analysis, we analyze the accuracy of the inversion models to retrieve total and tropospheric NO 2 columns. Full article
(This article belongs to the Special Issue Radiative Transfer Models of Atmospheric and Cloud Properties)
Show Figures

Figure 1

Open AccessArticle
Evaluation of Surface Radiative Fluxes over the Tropical Oceans in AMIP Simulations
Atmosphere 2019, 10(10), 606; https://doi.org/10.3390/atmos10100606 - 09 Oct 2019
Viewed by 166
Abstract
The performance of 20 models from the Atmospheric Model Intercomparison Project (AMIP) was evaluated concerning surface radiation over the tropical oceans (30° S–30° N) from 1979 to 2000. The model ensemble mean of the net surface shortwave radiation (QSW) was [...] Read more.
The performance of 20 models from the Atmospheric Model Intercomparison Project (AMIP) was evaluated concerning surface radiation over the tropical oceans (30° S–30° N) from 1979 to 2000. The model ensemble mean of the net surface shortwave radiation (QSW) was underestimated compared to the International Satellite Cloud Climatology Project (ISCCP) data by 4 W m−2. On the other hand, net longwave radiation (QLW) was overestimated by 4 W m−2, leading to an underestimation of the net surface radiation (Qrad) by 8 W m−2. The most prominent bias in the Qrad appears to be over regions of low-level clouds in the off-equatorial eastern Pacific, eastern Atlantic, and the south-eastern Indian Ocean. The root means squared error of QLW was larger than that of QSW in 17 out of 20 AMIP models. Overestimation of the total cloud cover and atmospheric humidity contributed to the underestimation of Qrad. In general, models with higher horizontal resolutions performed slightly better than those with coarser horizontal resolutions, although some systematic bias persists in all models and in all seasons, in particular, in regions of low-level clouds for QLW, and high-level clouds for QSW. The ensemble mean performed better than most models, but two high-resolution models (GFDL-HIRAM-C180 and GFDL-HIRAM-C360) outperform the model ensemble. Full article
(This article belongs to the Section Climatology and Meteorology)
Show Figures

Figure 1

Open AccessArticle
Release of Highly Active Ice Nucleating Biological Particles Associated with Rain
Atmosphere 2019, 10(10), 605; https://doi.org/10.3390/atmos10100605 - 08 Oct 2019
Viewed by 234
Abstract
Biological particles may play an important role in the climate system by efficiently acting as ice nucleating particles (INPs) at a higher temperature range (e.g., above −20 °C where representative INPs such as mineral dust remain inactive), but there is an obvious lack [...] Read more.
Biological particles may play an important role in the climate system by efficiently acting as ice nucleating particles (INPs) at a higher temperature range (e.g., above −20 °C where representative INPs such as mineral dust remain inactive), but there is an obvious lack of direct evidence that these particles serve in this manner. Here, we collected ambient particles under different weather conditions for identifying INPs that are active above −22 °C. The abundance of such efficient INPs increased during or following rainfall events. The extensive characterization of individual particles by three different analyses (particle morphology and composition, heat sensitivity of ice nucleation activities, and biological fingerprinting by DNA staining) revealed that efficient INPs have distinctly biological characteristics, which differ significantly from more abundant, representative, and relatively less active INPs, such as mineral dust. Additionally, by combining the heat-sensitivity experiments and DNA staining techniques, efficient INPs were found to contain heat-sensitive biomaterials and biological cells. Our findings provide direct evidence that biological particles are preferentially released into the atmosphere during rainfall events and act as important atmospheric INPs at higher temperature ranges (warmer than −22 °C), where typical INPs remain inactive. Full article
Show Figures

Figure 1

Open AccessArticle
Diurnal Variation of Rainfall in a Tropical Coastal Region with Complex Orography
Atmosphere 2019, 10(10), 604; https://doi.org/10.3390/atmos10100604 - 07 Oct 2019
Viewed by 215
Abstract
We examined the diurnal cycle of the rainfall in a coastal tropical mountainous region in central Veracruz State, Mexico (18°–21° N, 95.5°–98.5° W), featuring a striking topographic gradient running from sea level at the Gulf of Mexico coast to 5000 m above sea [...] Read more.
We examined the diurnal cycle of the rainfall in a coastal tropical mountainous region in central Veracruz State, Mexico (18°–21° N, 95.5°–98.5° W), featuring a striking topographic gradient running from sea level at the Gulf of Mexico coast to 5000 m above sea level (m.a.s.l.) in less than 100 km horizontal distance. During the summer, this unique location leads to regular the interaction between the easterly moisture inflow and the mountainous barrier. Over the complex terrain, forced ascent leads the occurrence of maximum rainfall during the afternoon (16–19 local time, LT ≈ 1½ hours ahead of solar time in summer), first along the slope and later over the coast. Along the coastal plain, the precipitation continues until the early morning consistent with there being convergence between land breezes and the trade winds. Observations obtained during a measurement campaign from 28 June to 3 July 2015, indicate that during the early evening downslope winds move against easterly flow, likely due to katabatic outflows previously observed over the region. These features are confirmed using spatial (0.88°) and temporal (30 min) resolution CMORPH rainfall estimates, since we observed evening episodes initiating along the slope during the afternoon (14–17 LT) moving later towards the coast. Full article
(This article belongs to the Special Issue 10th Anniversary of Atmosphere: Climatology and Meteorology)
Show Figures

Graphical abstract

Open AccessArticle
Aerosol Particle and Black Carbon Emission Factors of Vehicular Fleet in Manila, Philippines
Atmosphere 2019, 10(10), 603; https://doi.org/10.3390/atmos10100603 - 04 Oct 2019
Viewed by 263
Abstract
Poor air quality has been identified as one of the main risks to human health, especially in developing regions, where the information on physical chemical properties of air pollutants is lacking. To bridge this gap, we conducted an intensive measurement campaign in Manila, [...] Read more.
Poor air quality has been identified as one of the main risks to human health, especially in developing regions, where the information on physical chemical properties of air pollutants is lacking. To bridge this gap, we conducted an intensive measurement campaign in Manila, Philippines to determine the emission factors (EFs) of particle number (PN) and equivalent black carbon (BC). The focus was on public utility jeepneys (PUJ), equipped with old technology diesel engines, widely used for public transportation. The EFs were determined by aerosol physical measurements, fleet information, and modeled dilution using the Operational Street Pollution Model (OSPM). The results show that average vehicle EFs of PN and BC in Manila is up to two orders of magnitude higher than European emission standards. Furthermore, a PUJ emits up to seven times more than a light-duty vehicles (LDVs) and contribute to more than 60% of BC emission in Manila. Unfortunately, traffic restrictions for heavy-duty vehicles do not apply to PUJs. The results presented in this work provide a framework to help support targeted traffic interventions to improve urban air quality not only in Manila, but also in other countries with a similar fleet composed of old-technology vehicles. Full article
(This article belongs to the Special Issue Ambient Aerosol Measurements in Different Environments)
Open AccessArticle
Intercomparison of the Surface Energy Partitioning in CMIP5 Simulations
Atmosphere 2019, 10(10), 602; https://doi.org/10.3390/atmos10100602 - 04 Oct 2019
Viewed by 183
Abstract
The warming climate significantly modifies the global water cycle. Global evapotranspiration has increased over the past decades, yet climate models agree on the drying trend of land surface. In this study, we conducted an intercomparison analysis of the surface energy partitioning across Coupled [...] Read more.
The warming climate significantly modifies the global water cycle. Global evapotranspiration has increased over the past decades, yet climate models agree on the drying trend of land surface. In this study, we conducted an intercomparison analysis of the surface energy partitioning across Coupled Model Intercomparison Phase 5 (CMIP5) simulations and evaluated its behaviour with surface temperature and soil moisture anomalies, against the theoretically derived thermodynamic formula. Different responses over land and sea surfaces to elevated greenhouse gas emissions were found. Under the Representative Concentration Pathway of +8.5 W m−2 (RCP8.5) warming scenario, the multi-model mean relative efficiency anomaly from CMIP5 simulations is 3.83 and −0.12 over global sea and land, respectively. The significant anomaly over sea was captured by the thermodynamic solution based on the principle of maximum entropy production, with a mean relative error of 14.6%. The declining trend over land was also reproduced, but an accurate prediction of its small anomaly will require the inclusions of complex physical processes in future work. Despite increased potential evapotranspiration under rising temperatures, both CMIP5 simulations and thermodynamic principles suggest that the soil moisture-temperature feedback cannot support long-term enhanced evapotranspiration at the global scale. The dissipation of radiative forcing eventually shifts towards sensible heat flux and accelerates the warming over land, especially over South America and Europe. Full article
Open AccessArticle
Near-Ground Profile of Bora Wind Speed at Razdrto, Slovenia
Atmosphere 2019, 10(10), 601; https://doi.org/10.3390/atmos10100601 - 03 Oct 2019
Viewed by 193
Abstract
Southwest Slovenia is a region well-known for frequent episodes of strong and gusty Bora wind, which may damage structures, affect traffic, and poses threats to human safety in general. With the increased availability of computational power, the interest in high resolution modeling of [...] Read more.
Southwest Slovenia is a region well-known for frequent episodes of strong and gusty Bora wind, which may damage structures, affect traffic, and poses threats to human safety in general. With the increased availability of computational power, the interest in high resolution modeling of Bora on local scales is growing. To model it adequately, the flow characteristics of Bora should be experimentally investigated and parameterized. This study presents the analysis of wind speed vertical profiles at Razdrto, Slovenia, a location strongly exposed to Bora during six Bora episodes of different duration, appearing between April 2010 and May 2011. The empirical power law and the logarithmic law for Bora wind, commonly used for the description of neutrally stratified atmosphere, were evaluated for 10-min averaged wind speed data measured at four different heights. Power law and logarithmic law wind speed profiles, which are commonly used in high resolution computational models, were found to approximate well the measured data. The obtained power law coefficient and logarithmic law parameters, which are for modeling purposes commonly taken to be constant for a specific site, were found to vary significantly between different Bora episodes, most notably due to different wind direction over complex terrain. To increase modeling precision, the effects of local topography on wind profile parameters needs to be experimentally assessed and implemented. Full article
(This article belongs to the Special Issue 10th Anniversary of Atmosphere: Climatology and Meteorology)
Show Figures

Figure 1

Open AccessArticle
Topographic Effects on Titan’s Dune-forming Winds
Atmosphere 2019, 10(10), 600; https://doi.org/10.3390/atmos10100600 - 03 Oct 2019
Viewed by 241
Abstract
The Cassini mission made an unexpected discovery when it found evidence of linear dune fields on Titan’s surface. The orientation of the dunes and their interaction with topography allow scientists to estimate the dominant wind direction on the surface of Titan. There is [...] Read more.
The Cassini mission made an unexpected discovery when it found evidence of linear dune fields on Titan’s surface. The orientation of the dunes and their interaction with topography allow scientists to estimate the dominant wind direction on the surface of Titan. There is some consensus in the community that the dune-forming winds must be net westerly, however, there is an active debate about the dune-forming wind regime. This debate has been guided by several studies of Earth dune fields considered analogous to the Titan dunes including those in Namibia, the Sahara, the Serengeti, and China. Complicating this active debate about the surface wind regime is the fact that global circulation models (GCMs) have historically not been able to reproduce westerly surface winds in the tropics. Here we use the Titan Community Atmosphere Model (CAM) to quantify the impact of topography and an added torque on Titan’s dune-forming winds. Dunes tend to form at higher elevations on Titan, and adding topography to the model alters the near-surface wind directions, making them more westerly and consistent with the dune orientations. The addition of topography and added torque create a wind regime that is consistent with linear dunes in areas of stabilized sediment. Full article
(This article belongs to the Special Issue Modeling and Simulation of Planetary Atmospheres)
Open AccessArticle
Vertical Profiles of Ozone Concentration Collected by an Unmanned Aerial Vehicle and the Mixing of the Nighttime Boundary Layer over an Amazonian Urban Area
Atmosphere 2019, 10(10), 599; https://doi.org/10.3390/atmos10100599 - 03 Oct 2019
Viewed by 332
Abstract
The nighttime boundary layer was studied in an urban area surrounded by tropical forest by use of a copter-type unmanned aerial vehicle (UAV) in central Amazonia during the wet season. Fifty-seven vertical profiles of ozone concentration, potential temperature, and specific humidity were collected [...] Read more.
The nighttime boundary layer was studied in an urban area surrounded by tropical forest by use of a copter-type unmanned aerial vehicle (UAV) in central Amazonia during the wet season. Fifty-seven vertical profiles of ozone concentration, potential temperature, and specific humidity were collected from surface to 500 m above ground level (a.g.l.) at high vertical and temporal resolutions by use of embedded sensors on the UAV. Abrupt changes in ozone concentration with altitude served as a proxy of nighttime boundary layer (NBL) height for the case of a normal, undisturbed, stratified nighttime atmosphere, corresponding to 40% of the cases. The median height of the boundary layer was 300 m. A turbulent mixing NBL constituted 28% of the profiles, while the median height of the boundary layer was 290 m. The remaining 32% of profiles corresponded to complex atmospheres without clear boundary layer heights. The occurrence of the three different cases correlated well with relative cloud cover. The results show that the standard nighttime model widely implemented in chemical transport models holds just 40% of the time, suggesting new challenges in modeling of regional nighttime chemistry. The boundary layer heights were also somewhat higher than observed previously over forested and pasture areas in Amazonia, indicating the important effect of the urban heat island. Full article
Show Figures

Figure 1

Open AccessArticle
Magnitudes of Gravity Wave Pseudomomentum Flux Derived by Combining COSMIC Radio Occultation and ERA-Interim Reanalysis Data
Atmosphere 2019, 10(10), 598; https://doi.org/10.3390/atmos10100598 - 02 Oct 2019
Viewed by 173
Abstract
In the present work, dry temperature profiles provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation (RO) mission and the horizontal wind field provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis are combined for the [...] Read more.
In the present work, dry temperature profiles provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation (RO) mission and the horizontal wind field provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis are combined for the first time to retrieve the magnitudes of gravity wave (GW) pseudomomentum flux (PMF). The vertical wave parameters, including Brunt–Väisälä frequencies, potential energy (Ep), and vertical wavelengths, are retrieved from RO temperature profiles. The intrinsic frequencies, which are retrieved from the horizontal wind field of ERA-Interim, are combined with the vertical wave parameters to derive the horizontal wavelengths and magnitudes of the PMF of GWs. The feasibility of this new strategy is validated first by comparing the distributions of GW parameters during June, July, and August (JJA) 2006 derived this way with those derived by previous studies. Then the seasonal and interannual variations of the distributions of GW PMF for three altitude ranges, 20–25 km, 25–30 km, and 30–35 km, over the globe during the seven years from June 2006 to May 2013 are presented. It is shown that the three altitude intervals share similar seasonal and interannual distribution patterns of GW PMF, while the magnitudes of GW PMF decrease with increased height and the hot spots of GW activity are the most discernable at the lowest altitude interval of 20–25 km. The maximums of PMF usually occur at latitudes around 60° in the winter hemispheres, where eastward winds prevail, and the second maximums exist over the subtropics of the summer hemispheres, where deep convection occurs. In addition, the influence of quasi-biennial oscillation (QBO) on both GW PMF and zonal winds is discernible over subtropical regions. The present work complements the GW PMF interannual variation patterns derived based on satellite observations by previous studies in terms of the altitude range, latitude coverage, and time period analyzed. Full article
(This article belongs to the Special Issue Effects of Climate Change on Earth's Upper Atmosphere)
Open AccessArticle
Assessment of CMIP5 Models Based on the Interdecadal Relationship between the PDO and Winter Temperature in China
Atmosphere 2019, 10(10), 597; https://doi.org/10.3390/atmos10100597 - 02 Oct 2019
Viewed by 167
Abstract
In this study, the impact of the Pacific Decadal Oscillation (PDO) on the China winter temperature (CWT) was assessed on an interdecadal timescale, and the capacities of the 35 models of the fifth Coupled Model Intercomparison Project (CMIP5) were assessed by simulating the [...] Read more.
In this study, the impact of the Pacific Decadal Oscillation (PDO) on the China winter temperature (CWT) was assessed on an interdecadal timescale, and the capacities of the 35 models of the fifth Coupled Model Intercomparison Project (CMIP5) were assessed by simulating the PDO-CWT teleconnection. The Met Office Hadley Centre’s sea ice and sea surface temperature (HadISST) were used as the observational data, and Climatic Research Unit (CRU) datasets provided long-term temperature data for the 1901–2005 period. By calculating the spatial correlation coefficient between the PDO index and winter temperature in China, thirteen CMIP5 models close to the HadISST datasets were selected for this study. These models were averaged as the good multi-model ensemble (GOODMME), and the PDO-CWT spatial correlation between the GOODMME and the observations was 0.80. Overall, the correlation coefficient between the PDO index and atmospheric circulation suggests that the GOODMME produces the same excellent results as do the observations. The results also verify the GOODMME’s superiority in simulating the impact of the PDO on winter temperatures in China. The possible mechanisms underlying the impact of the different phases of the PDO on the CWT are also described. Full article
(This article belongs to the Section Climatology and Meteorology)
Open AccessArticle
Inter-Annual Variability of Boreal Summer Intra-Seasonal Oscillation Propagation from the Indian Ocean to the Western Pacific
Atmosphere 2019, 10(10), 596; https://doi.org/10.3390/atmos10100596 - 02 Oct 2019
Viewed by 151
Abstract
The inter-annual variability of boreal summer intra-seasonal oscillation (BSISO) propagation from the Indian Ocean (IO) to the western Pacific (WP) is investigated for the boreal summers (May to September) of 1979–2018. It is shown that the interannual variability of BSISO mainly happens in [...] Read more.
The inter-annual variability of boreal summer intra-seasonal oscillation (BSISO) propagation from the Indian Ocean (IO) to the western Pacific (WP) is investigated for the boreal summers (May to September) of 1979–2018. It is shown that the interannual variability of BSISO mainly happens in its evolution, not in its strength over the IO. Here, we classify four distinctive modes for inter-annual variability of BSISO propagation: (i) northeast mode, propagating from the IO to the western equatorial Pacific (WEP) and the western North Pacific (WNP); (ii) north-only mode, only propagating to the WNP; (iii) east-only mode, only propagating to the WEP; and (iv) stationary mode, propagating to neither the WEP nor the WNP. It is found that the Maritime Continent (MC) and WEP are two key regions determining these four modes concerning mean state moisture and vertical motion. Associated with central equatorial Pacific cooling, the BSISO of northeast and north-only modes can reach the WP by passing over the MC due to positive mean moisture anomalies and upward mean motion anomalies over the MC. The strong negative mean moisture anomalies and downward mean motion anomalies over the WEP, related to strong central Pacific cooling, prevents the development of BSISO there, resulting in north-only mode. For the east-only and stationary modes associated with the central Pacific warming, their BSISO can hardly pass the MC due to negative mean moisture anomalies and downward mean motion anomalies. The positive mean moisture anomalies and upward mean motion anomalies over the WEP related to strong central Pacific warming, however, will reinitiate the BSISO in the WEP for the east-only mode. Full article
(This article belongs to the Section Climatology and Meteorology)
Open AccessArticle
Seasonal Variability in the Composition of Particulate Matter and the Microclimate in Cultural Heritage Areas
Atmosphere 2019, 10(10), 595; https://doi.org/10.3390/atmos10100595 - 02 Oct 2019
Viewed by 190
Abstract
This study is the first attempt to decipher the effect of particulate matter (PM) composition on people’s health and on historic sites, in correlation with the daily and seasonal microclimate monitoring of the indoor and outdoor areas of the Roman Mosaic Edifice museum [...] Read more.
This study is the first attempt to decipher the effect of particulate matter (PM) composition on people’s health and on historic sites, in correlation with the daily and seasonal microclimate monitoring of the indoor and outdoor areas of the Roman Mosaic Edifice museum (the maritime port of Constanta, Romania). More specifically, the increase of metal concentrations in particulate matter during the summer of 2018 and spring of 2019 in the museum under investigation could possibly be associated with the microclimates of both seasons, with coastal factors, as well as with the anthropic activities specific to the port of Constanta. FTIR and inductively coupled plasma mass spectroscopy (ICP-MS) techniques, used for the investigation of PM2.5–10 samples, revealed high concentrations of Fe, Al-rich, and soluble particles inside the investigated museum area. In this respect, the chemical measurements of the PM2.5–10 masses highlighted high concentrations of heavy metals (i.e., Al, Fe, Zn, Mn, and Pb) and low concentrations of trace metals (i.e., Cr, Ni, Cu, and Cd). Statistical analysis showed that the chemical compositions of the particulate matter in the indoor and outdoor areas of the Roman Mosaic Edifice were influenced by microclimatic conditions, mainly temperature and relative humidity (RH). A potential health risk for tourists is the thermal and humid conditions, alongside the toxic components of the particulate matter. This research seeks to provide solutions for improving the environmental conditions inside the Roman Mosaic Edifice and to offer useful suggestions concerning health promotion and the protection of museum exhibits against possible future deterioration. Full article
Show Figures

Figure 1

Open AccessArticle
Analysis of Atmospheric Aerosol Optical Properties in the Northeast Brazilian Atmosphere with Remote Sensing Data from MODIS and CALIOP/CALIPSO Satellites, AERONET Photometers and a Ground-Based Lidar
Atmosphere 2019, 10(10), 594; https://doi.org/10.3390/atmos10100594 - 02 Oct 2019
Viewed by 255
Abstract
A 12-year analysis, from 2005 to 2016, of atmospheric aerosol optical properties focusing for the first time on Northeast Brazil (NEB) was performed based on four different remote sensing datasets: the Moderate Resolution Imaging Spectroradiometer (MODIS), the Aerosol Robotic Network (AERONET), the Cloud-Aerosol [...] Read more.
A 12-year analysis, from 2005 to 2016, of atmospheric aerosol optical properties focusing for the first time on Northeast Brazil (NEB) was performed based on four different remote sensing datasets: the Moderate Resolution Imaging Spectroradiometer (MODIS), the Aerosol Robotic Network (AERONET), the Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP) and a ground-based Lidar from Natal. We evaluated and identified distinct aerosol types, considering Aerosol Optical Depth (AOD) and Angström Exponent (AE). All analyses show that over the NEB, a low aerosol scenario prevails, while there are two distinct seasons of more elevated AOD that occur every year, from August to October and January to March. According to MODIS, AOD values ranges from 0.04 to 0.52 over the region with a mean of 0.20 and occasionally isolated outliers of up to 1.21. Aerosol types were identified as sea spray, biomass burning, and dust aerosols mostly transported from tropical Africa. Three case studies on days with elevated AOD were performed. All cases identified the same aerosol types and modeled HYSPLIT backward trajectories confirmed their source-dependent origins. This analysis is motivated by the implementation of an atmospheric chemistry model with an advanced data assimilation system that will use the observational database over NEB with the model to overcome high uncertainties in the model results induced by still unvalidated emission inventories. Full article
(This article belongs to the Special Issue Remote Sensing of Aerosols)
Show Figures

Figure 1

Open AccessArticle
Vulnerabilities of the European Union’s Economy to Hydrological Extremes Outside its Borders
Atmosphere 2019, 10(10), 593; https://doi.org/10.3390/atmos10100593 - 02 Oct 2019
Viewed by 320
Abstract
Climate change is leading to increased water scarcity and drought in many parts of the world. This has implications for the European Union (EU) because a lot of the water intensive goods consumed or used there are produced abroad. This makes the EU’s [...] Read more.
Climate change is leading to increased water scarcity and drought in many parts of the world. This has implications for the European Union (EU) because a lot of the water intensive goods consumed or used there are produced abroad. This makes the EU’s economy dependent on water resources well beyond its borders since when a country imports water intensive goods, indirectly it also imports virtual water (water needed to produce the imported goods). This study maps the EU’s global dependency on water resources outside its borders in terms of virtual water imports and assesses how water scarcity and drought may disrupt supplies of key food crops that it imports. The EU uses approximately 668 km3 of water for all of the goods it produces, consumes and exports, annually. Around 38% of that water comes from outside its borders, which means that the EU’s economy is highly dependent on the availability of water in other parts of the world. In the near future, supplies of certain crops to the EU could be disrupted due to water scarcity in other parts of the world; a large portion of the water used in producing soybeans, rice, sugarcane, cotton, almonds, pistachios and grapes for import to the EU comes from areas with significant or severe levels of water scarcity. Although the immediate risks to the EU’s economy are due to current water scarcity levels, any disruption to rainfall patterns that occur in the future, due to the effects of climate change in the countries of origin of key crops, could have a far greater impact. This is because as much as 92% of the EU’s total external water demand from agriculture is attributed to green water use, availability of which has relatively higher vulnerability to drought. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop