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Abstract: Wind erosion is a major cause of soil losses in China’s drylands which is further stimulated
by climate variability and fragile ecological conditions. Climatic erosivity is an important index
of wind erosion, therefore, evaluation of its spatiotemporal variations and relationship with the El
Niño–Southern Oscillation (ENSO) will provide a theoretical basis for the comprehensive management
and prevention of soil erosion. In this study, by using the climatic erosivity equation, geographic
information system (GIS) and geostatistical analysis, we quantified the climatic erosivity, explored its
spatiotemporal variations, and detected the effects of the Multivariate ENSO Index (MEI) on climatic
erosivity in the Otindag Desert during the period of 1980–2016. The results indicated that the climatic
erosivity (C-factor value) ranged from 82–445, and it decreased from the western margin to the eastern
margin of the desert. The climatic erosivity showed a significant downward trend at seasonal and
annual scales (p < 0.05). As far as spring, autumn and annual climatic erosivity, the whole region
showed a downward trend, however, the summer and winter climatic erosivity varied spatially,
in which the central and western regions showed a downward trend, but the eastern region showed
an upward trend. The results showed that the average climatic erosivity is weaker during La Niña
events than during El Niño events. The climatic erosivity recorded by 14 of the 20 meteorological
stations, all located in central and west regions, exhibited a significant correlation with MEI (p < 0.05).
The ENSO has a significant impact on climatic erosivity.
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1. Introduction

Wind erosion causes land degradation in arid regions and is affected by natural and human factors
such as climate, landscape, farming, grazing and other factors. There have been various changes in the
global and regional climate patterns, especially in the past few decades [1]. The major alterations were
associated with the frequency and intensity of wind events and precipitation patterns. These changes
influence not only the wind erosivity, but also adversely affect the land erodibility [2–6].

Currently, there are various models to quantify wind erosivity, among which the wind erosion
equation (WEQ) and the revised wind erosion equation (RWEQ) are well-known and widely used [7,8].
These models require multiple inputs, such as soil, vegetation types and climate data. Therefore, due to
the data limitations, these models are generally unsuitable analyses of wind erosion at large-scale.
In contrast, the wind erosion climatic factor (C-factor), commonly referred to as the indicator of
wind erosion, can be used to measure the trend of climate change and its influence on wind erosion
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conditions [5,9]. Therefore, the spatial and temporal distribution difference of the C-factor often
indicates the wind erosion potential of the region [10].

Numerous studies have been done on the spatial distribution of climatic erosivity in many countries,
and the distribution of climatic erosivity on different scales in China has also been reported [11–14].
The identification of wind erosion regions should consider the comprehensive effect of soil type,
climate, vegetation and other factors. Wind erosion region is the basic unit of desertification control,
soil conservation inventory and planning. Therefore, it is necessary to understand the spatial distribution
of climatic erosivity [5].

The trend analysis of time series of climatic erosivity is helpful to analyze the potential impact of
climate change on wind erosion, especially in arid regions with strong soil erosion potential, and arid
regions are more sensitive to climate variability due to fragile biophysical conditions [15,16]. In China’s
arid regions, various changes have taken place in climate factors such as temperature and precipitation
in recent decades [3,4,17]. Therefore, understanding the temporal variation of climatic erosivity and its
effect on climate variability are of great significance to combat desertification.

Climate variability affects the intensity of wind erosion and that is the dominant factor controlling
the desertification of the arid region [18]. Many proxies indicating climate variability have been
proposed, such as El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian
Ocean Dipole (OPD) and Pacific Decadal Oscillation (PDO) [19–22]. In terms of climate variability,
ENSO has been an important factor in attracting people’s attention. It has a significant impact on the
global climate through the interaction between the atmosphere and the ocean. ENSO occurs only
near the equator of the Pacific Ocean, but it can cause climate anomalies across almost the entire
world [23,24].

The ENSO is called the ENSO cycle because of its obvious periodicity of interaction between
sea and air. La Niña and El Niño, which represent the cold and warm periods respectively, are two
extreme phases of the ENSO cycle. Various indicators reflect ENSO, including Niño 3.4 sea surface
temperature (SST) anomalies, the Multivariate ENSO Index (MEI) and the Southern Oscillation Index
(SOI). Because the MEI contains more information than other indexes, it is more suitable to monitor
ENSO than the SOI or SST indexes [25,26].

The Otindag Desert is one of the four major sandy lands and an important part of the ecological
barrier in China [27]. The ecological environment in this area is fragile and vulnerable. Wind erosion is
the main factor affecting the ecological environment in this region [28,29]. However, there is a lack
of study on the spatial and temporal characteristics of climatic erosivity in Otindag Desert. In order
to better direct the soil conservation management agents in the Otindag desert, it is necessary for
scholars to fill this knowledge gap. Additionally, studies on the effects of ENSO on climatic erosivity in
arid areas of northern China have not previously been reported. This study does not only provide a
theoretical basis for the comprehensive management and prevention of soil erosion in Otindag desert,
but also is of great significance for proper monitoring, evaluation, prediction, and management of wind
erosion-susceptible lands. Therefore, the aims of this study are to (1) detect the temporal and spatial
distributions of climatic erosivity in the Otindag Desert, China; and to (2) assess the effect of La Niña
and El Niño on climatic erosivity at annual and monthly scales during the period from 1980 to 2016.

2. Materials and Methods

2.1. Study Area

The Otindag Desert is located approximately between 111◦06′ and 18◦18′ E and between 41◦52′

and 45◦10′ N latitude (Figure 1). Its location is in the latitudes of the westerlies of the Northern
Hemisphere and on the northwestern margin of the East Asia Summer Monsoon [30], which is bounded
by the Yan Mountains in the south and by the Great Khingan Mountain in the east. The altitude of the
Otindag Desert ranges from ~2000 m in the southeast to ~1000 m in the northwest. Rivers originating
from the surrounding mountains flow into or pass through this dune field. In all climate classifications,
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the Otindag Desert belongs to the temperate semi-arid zone. According to data from weather stations
inside and around the desert, the average annual precipitation of the desert increases from northwest
to southeast, varying from 150 to 400 mm, and the average annual temperature ranges from ~2 ◦C
in the north to ~4 ◦C in the south. The average wind speed decreases from northwest to southeast,
varying from 3.5 to 5.3 m/s, and the main wind direction is NW [29].
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Figure 1. Location map of the Otindag Desert and weather stations. Detailed information about the 
20 weather stations is in Table S1. 
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Otindag Desert were recorded by the National Meteorological Information Centre of China [31]. 

In this study, monthly series of the variability index of MEI from 1980 to 2016, which were 
derived from the US National Oceanic and Atmospheric Administration [32], were used to 
demonstrate the consistency of the ENSO and to analyze the relationship between the ENSO and 
climatic erosivity in Otindag Desert.  

2.3. Climatic Erosivity Calculation  

Various algorithms have been developed for the climatic erosivity, among which the Food and 
Agriculture Organization of the United Nations (FAO)equation is widely used because it is more 
easily obtains accurate results when compared to the complex physics-based models [9]. The FAO 
equation is a revised version of the Chepil model [33], and the equation is: 𝐶 = ∑ 𝑢 𝑑 , (1) 
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Figure 1. Location map of the Otindag Desert and weather stations. Detailed information about the 20
weather stations is in Table S1.

2.2. Database

During the study period from 1980 to 2016, daily weather data such as precipitation, maximum
and minimum temperature, wind speed and relative humidity of 20 weather stations in and around
Otindag Desert were recorded by the National Meteorological Information Centre of China [31].

In this study, monthly series of the variability index of MEI from 1980 to 2016, which were derived
from the US National Oceanic and Atmospheric Administration [32], were used to demonstrate the
consistency of the ENSO and to analyze the relationship between the ENSO and climatic erosivity in
Otindag Desert.

2.3. Climatic Erosivity Calculation

Various algorithms have been developed for the climatic erosivity, among which the Food and
Agriculture Organization of the United Nations (FAO)equation is widely used because it is more easily
obtains accurate results when compared to the complex physics-based models [9]. The FAO equation
is a revised version of the Chepil model [33], and the equation is:

C =
1

100

∑12

i=1
u3

(
ETPi − Pi

ETPi

)
di, (1)

where u, ETPi, Pi and di are the monthly average wind speed at 2 m above the ground, monthly
potential evaporation, monthly rainfall, and the number of days per month, respectively. The ETPi is
calculated by the Equation (2) [34]:

ETPi = 0.19 (20 + Ti)
2(1− ri), (2)
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where Ti is the monthly average temperature, and ri is the monthly humidity.
The C-factor value of each month was calculated according to Equations (1) and (2).

2.4. Method of Linear Regression

Linear regression is a simple and efficient tool to analyze the variation trend of climatic erosivity.
The key to linear trend analysis is to detect sudden change (in increasing or decreasing directions) in
time series and to describe the possible generation processes under a given observation sequence [35].
The linear regression equation is:

Yi = aXi + b (i = 1, 2, 3...., n), (3)

where Xi and Yi are the independent and dependent variables, respectively; where a is the regression
slope that reflects the rate of changes of the time series, and b is the intercept. The correlation coefficient
between Xi and Yi can be written as:

r =

√√√√√√∑n
i=1 Xi2 −

1
n

(∑n
i=1 Xi

)2

∑n
i=1 Yi2 −

1
n

(∑n
i=1 Yi

)2 , (4)

where the value range of correlation coefficient r is −1.0 to 1.0. The two variables Xi and Yi show a
positive correlation if r > 0; negative correlation if r < 0 and no correlation if r = 0 [36].

2.5. Method of Spatial Interpolation

The kriging method is a geostatistical interpolation technique which considers both the distance
and the degree of variation between known data points when estimating values in unknown areas [37].
Spatial continuity of climatic erosivity was investigated by calculating semi-variograms, and the
semi-variograms γ(h) using Equation (5) [38]:

γ(h) =
1

2n(h)

∑n(h)

p=1

[
z
(
sp

)
− z

(
sp + h

)]2
, (5)

where n(h) is the number of paired points within a distance h, z(sp) and z(sp + h) are the values in points sp

and sp + h, respectively. Experimental variograms were fitted with the exponential, spherical, Gaussian,
and linear models. The model with the smallest residual sum of squares (RSS) was further investigated
to find the number of neighbors that returned the best cross-validation result. Geostatistical and spatial
correlation analysis including cross-validation tests were performed by ArcGIS 10.1. After evaluating
the results given by above analyses, it was shown that ordinary kriging with spherical model performed
the best as it generated the lowest RSS; ordinary kriging was also widely used in a number of studies
for the estimation of meteorological and hydrological variables [39,40]. Therefore, the ordinary kriging
method was selected to calculate the spatial distribution of the C-factor value from 20 weather stations
and to generate the spatial distribution map of the Otindag Desert for the period of 1980–2016.

In order to understand the spatial distribution for change features of climatic erosivity, the average
values, changes, and the trends of C-factor value were further interpolated as well.

2.6. Correlation Analysis

Climatic erosivity is calculated by wind speed, rainfall, temperature and other climate factors.
Meanwhile, ENSO is closely related to these climate factors [41]. Therefore, correlation analysis was
carried out and specifically considered the trends in El Niño and La Niña events.

In the correlation analysis, the monthly MEI was taken as one variable, and the corresponding data
of monthly C-factor values from 1980 to 2016 were taken as another variable. Afterward, the relationship
between the C-factor value and ENSO was analyzed.
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3. Results

3.1. Annual Climatic Erosivity Analysis

The annual C-factor value of each weather station was obtained by accumulating the C-factor
value of each month. The 36-year average annual C-factor value distribution map was generated by
the ordinary kriging interpolation method. From Figure 2, we can see that the mean annual C-factor
value ranged from 82 to 445, with an average value of 184. However, the standard deviation reached
64, which shows that there is great spatial variation.

value ranged from 82 to 445, with an average value of 184. However, the standard deviation reached 
64, which shows that there is great spatial variation.  

  
Figure 2. The 36-year average annual C-factor value distribution characteristics. 

The lower values were mainly distributed in the eastern Otindag Desert, while the southwest 
had higher levels. The C-factor value increased gradually from east to west showing that in these 
areas, especially in the western region, soil conservation measures should be implemented and at the 
same time human activities should be closely monitored.  

In order to analyze the influence of spatial location differences on climatic erosivity, a linear 
regression between longitude, latitude and annual C-factor value was carried out. In this study, at 
95% confidence level (significance level a = 0.05) and weather station number n = 20, the critical 
value of the correlation coefficient was 0.444. Figure 3a shows that the correlation coefficient is r = 
0.448 (p < 0.05), which means that a significant relationship exists between the longitude and 
C-factor value. Figure 3b shows that the correlation coefficient is r = 0.182 (p > 0.05), suggesting no 
existing significant relationship. Thereby, the C-factor value decreases with the increase of 
longitude, i.e., the C-factor value gradually decreased from the western margin to the eastern 
margin of the desert. 

 

Figure 2. The 36-year average annual C-factor value distribution characteristics.

The lower values were mainly distributed in the eastern Otindag Desert, while the southwest had
higher levels. The C-factor value increased gradually from east to west showing that in these areas,
especially in the western region, soil conservation measures should be implemented and at the same
time human activities should be closely monitored.

In order to analyze the influence of spatial location differences on climatic erosivity, a linear
regression between longitude, latitude and annual C-factor value was carried out. In this study, at 95%
confidence level (significance level a = 0.05) and weather station number n = 20, the critical value
of the correlation coefficient was 0.444. Figure 3a shows that the correlation coefficient is r = 0.448
(p < 0.05), which means that a significant relationship exists between the longitude and C-factor value.
Figure 3b shows that the correlation coefficient is r = 0.182 (p > 0.05), suggesting no existing significant
relationship. Thereby, the C-factor value decreases with the increase of longitude, i.e., the C-factor
value gradually decreased from the western margin to the eastern margin of the desert.
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Figure 3. The relationship between (a) longitude, (b) latitude and annual C-factor value. 

3.2. Trend Analysis 

The annual and seasonal variations in trends of climatic erosivity from 1980 to 2016 were 
analyzed via linear regression. As can be seen from Figure 4, the C-factor values in spring were the 
highest of the four seasons and in summer they were the lowest. Besides, C-factor values in both 
seasonal and annual scales showed a fluctuating decreasing trend starting from the 1980s. 
Furthermore, the C-factor values in spring and autumn decreased continuously from 1980 to 2000 
and thereafter kept a relatively stable state, while in summer they decreased continuously before 
2004 but slightly increased after 2004. In addition, the annual C-factor values decreased before 1990 
and slightly recovered between 1990 and 1996 but decreased before 2005 and thereafter slowly 
increased. In winter they fluctuated greatly, having the lowest correlation coefficient (R2 = 0.12).  

In terms of the general trend from 1980 to 2016, the C-factor values both in seasonal and annual 
scales suggested a decreasing trend, with the highest (−0.23 per year) and the lowest (−0.10 per year) 
degrees of decrease occurring in spring and winter, respectively; its annual decrease degree was 
−1.87 per year. Importantly, all the R2 values in Figure 4 are above 𝑅 .  = 0.32862 = 0.1080, which 
suggests that all of the results have passed the significance test. Therefore, the declining trend of the 
C-factor values of the Otindag Desert is significant.  

Figure 3. The relationship between (a) longitude, (b) latitude and annual C-factor value.

3.2. Trend Analysis

The annual and seasonal variations in trends of climatic erosivity from 1980 to 2016 were analyzed
via linear regression. As can be seen from Figure 4, the C-factor values in spring were the highest of
the four seasons and in summer they were the lowest. Besides, C-factor values in both seasonal and
annual scales showed a fluctuating decreasing trend starting from the 1980s. Furthermore, the C-factor
values in spring and autumn decreased continuously from 1980 to 2000 and thereafter kept a relatively
stable state, while in summer they decreased continuously before 2004 but slightly increased after 2004.
In addition, the annual C-factor values decreased before 1990 and slightly recovered between 1990
and 1996 but decreased before 2005 and thereafter slowly increased. In winter they fluctuated greatly,
having the lowest correlation coefficient (R2 = 0.12).

In terms of the general trend from 1980 to 2016, the C-factor values both in seasonal and annual
scales suggested a decreasing trend, with the highest (−0.23 per year) and the lowest (−0.10 per year)
degrees of decrease occurring in spring and winter, respectively; its annual decrease degree was −1.87
per year. Importantly, all the R2 values in Figure 4 are above R2

0.05 = 0.32862 = 0.1080, which suggests
that all of the results have passed the significance test. Therefore, the declining trend of the C-factor
values of the Otindag Desert is significant.

3.3. Distribution of Climatic Erosivity Variation Trends

A linear relationship of seasonal (as well as annual) C-factor value during the time series from
1980 to 2016 was established, and correlation coefficients for the 20 weather stations were calculated.
The variation trends can be analyzed and discussed at a 95% confidence level (significance level a = 0.05)
based on the correlation coefficients. The critical value of correlation coefficient test R0.05,36 is 0.3286 at
significance level a = 0.05 and year number n = 36. If the variation of climatic erosivity passed the
significance test at a 95% confidence level, it indicated that there is a significant downward or upward
trend; if it did achieve a 95% confidence level, it showed a non-significant downward or upward trend.

The statistics of variation trend (see Table 1) show that the spring, summer, autumn, winter and
annual climatic erosivity all tended to decline overall at most of the weather stations. Especially in the
summer, there were 15 weather stations with a downward trend, accounting for about 75% of the total,
which indicates that climatic erosivity in the season tends to decline as a whole.
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Figure 4. Trend charts of C-factor value in (a–d) seasonal and (e) annual scales from 1980 to 2016. 
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Note: ‘↓’ and ‘↑’ represent the total number with downward and upward trends, respectively; ‘↓*’ 
and ‘↑*’ represent the number with a non-significant downward and upward trend, respectively; 
and ‘↓**’and‘↑**’ represent the number with a significant downward and upward trends (95% 
confidence level), respectively. 
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climatic erosivity variation at different weather stations were described. The trend line slope 
representing the rate of change was also calculated from the linear relationship. Then, the ordinary 

Figure 4. Trend charts of C-factor value in (a–d) seasonal and (e) annual scales from 1980 to 2016.

Table 1. Variation trends of the C-factor value of weather stations.

Periods of Time ↑ ↑* ↑** ↓ ↓* ↓**

Spring 6 4 2 14 6 8
Summer 5 2 3 15 5 10
Autumn 6 4 2 14 6 8
Winter 9 7 2 11 5 6
Annual 6 4 2 14 6 8

Note: ‘↓’ and ‘↑’ represent the total number with downward and upward trends, respectively; ‘↓*’ and ‘↑*’ represent
the number with a non-significant downward and upward trend, respectively; and ‘↓**’ and ‘↑**’ represent the
number with a significant downward and upward trends (95% confidence level), respectively.

Based on the linear relationship between C-factor values and time series, the characteristics
of climatic erosivity variation at different weather stations were described. The trend line slope
representing the rate of change was also calculated from the linear relationship. Then, the ordinary
kriging interpolation technique was used to spatially interpolate the slope data at different time scales,
as shown in Figure 5.

As far as spring, autumn and annual climatic erosivity, the whole region exhibited a downward
trend, especially at Zhurihe, Siziwang Banner, Jining, Huade and Zhangbei stations, which all showed
a significant decline. Summer and winter climatic erosivity in the central and western regions were
on the decline, but some regions in the east exhibited an upward trend. Moreover, Fengning and
Weichang stations showed a significant upward trend. As a whole, no matter at the seasonal or annual
scale, climatic erosivity in most regions of the Otindag Desert was on the decline.
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kriging interpolation technique was used to spatially interpolate the slope data at different time 
scales, as shown in Figure 5. 

As far as spring, autumn and annual climatic erosivity, the whole region exhibited a downward 
trend, especially at Zhurihe, Siziwang Banner, Jining, Huade and Zhangbei stations, which all 
showed a significant decline. Summer and winter climatic erosivity in the central and western 
regions were on the decline, but some regions in the east exhibited an upward trend. Moreover, 
Fengning and Weichang stations showed a significant upward trend. As a whole, no matter at the 
seasonal or annual scale, climatic erosivity in most regions of the Otindag Desert was on the decline.  

Figure 5. Distribution maps of C-factor value change rates and variation trends in (a–d) seasonal and 
(e) annual scales. Red and green triangles denote upward and downward trends, respectively, and 
larger triangles denote those which have passed the significance test at p = 0.05 while the smaller ones 
do not. 

3.4. Climatic Erosivity Anomalies Associated with ENSO 

La Niña and El Niño are the cold and warm periods of the ENSO cycle, respectively. In this 
study, MEI from 1980 to 2016 was taken as the basis to predict La Niña events (cold) and El Niño 
events (warm) and the statistical value of the C-factor is obtained (Table 2). 

Information on average erosivity is presented in Table 2, which shows that climatic erosivity for 
El Niño events is higher than the average value, while the La Niña events are exactly the opposite. 
Statistical analysis exhibited that from 1980 to 2016, the average monthly C-factor value was 11.9. 
The C-factor value was 12.03 during the El Niño/La Niña period, which was slightly higher than the 

  

  

 

 

Figure 5. Distribution maps of C-factor value change rates and variation trends in (a–d) seasonal
and (e) annual scales. Red and green triangles denote upward and downward trends, respectively,
and larger triangles denote those which have passed the significance test at p = 0.05 while the smaller
ones do not.

3.4. Climatic Erosivity Anomalies Associated with ENSO

La Niña and El Niño are the cold and warm periods of the ENSO cycle, respectively. In this study,
MEI from 1980 to 2016 was taken as the basis to predict La Niña events (cold) and El Niño events
(warm) and the statistical value of the C-factor is obtained (Table 2).

Information on average erosivity is presented in Table 2, which shows that climatic erosivity for
El Niño events is higher than the average value, while the La Niña events are exactly the opposite.
Statistical analysis exhibited that from 1980 to 2016, the average monthly C-factor value was 11.9.
The C-factor value was 12.03 during the El Niño/La Niña period, which was slightly higher than the
average C-factor value within 1980–2016. The climatic erosivity showed high variability in warm
and cold events. In the cold events, the C-factor value reached the minimum value, namely 6.31;
its maximum was 21.67, and its average value was only 11.16. In the warm events, the C-factor value
reached the minimum value of 7.1; its maximum was 23.6, and its average value was 12.41.

A comparison between neutral average monthly C-factor value and the El Niño period C-factor
value shows that the rate is 0.95, thereby indicating that the neutral monthly climatic erosivity is
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lower than the El Niño period monthly climatic erosivity. The average monthly C-factor value during
the La Niña period is 11.16, which is a little lower than the neutral average monthly C-factor value.
As shown in Table 2, the C-factor value is lower during cold events and higher during warm events.
After excluding other factors affecting soil erosion, wind erodibility was relatively light during the La
Niña period, while it was potentially serious during the El Niño period in the Otindag Desert.

During the period from 1980 to 2016, the correlation between the C-factor value and MEI was
significant at a 99% confidence level (p < 0.01). The C-factor value in the Otindag Desert increased as the
MEI increased and showed a significant positive correlation. With regard to the annual C-factor value
and MEI for 20 stations for the period of 1980 to 2016, 14 of the 20 weather stations were significantly
correlated (p < 0.05), and 7 weather stations were highly correlated (p < 0.01). As shown in Figure 6,
the stations with significant correlation between monthly C-factor value and MEI are mostly located in
Otindag Desert, while those with non-significant correlation between C-factor value and MEI mostly
located in the eastern margin of the Otindag Desert.

average C-factor value within 1980–2016. The climatic erosivity showed high variability in warm 
and cold events. In the cold events, the C-factor value reached the minimum value, namely 6.31; its 
maximum was 21.67, and its average value was only 11.16. In the warm events, the C-factor value 
reached the minimum value of 7.1; its maximum was 23.6, and its average value was 12.41. 

A comparison between neutral average monthly C-factor value and the El Niño period C-factor 
value shows that the rate is 0.95, thereby indicating that the neutral monthly climatic erosivity is 
lower than the El Niño period monthly climatic erosivity. The average monthly C-factor value 
during the La Niña period is 11.16, which is a little lower than the neutral average monthly C-factor 
value. As shown in Table 2, the C-factor value is lower during cold events and higher during warm 
events. After excluding other factors affecting soil erosion, wind erodibility was relatively light 
during the La Niña period, while it was potentially serious during the El Niño period in the Otindag 
Desert. 

During the period from 1980 to 2016, the correlation between the C-factor value and MEI was 
significant at a 99% confidence level (p < 0.01). The C-factor value in the Otindag Desert increased as 
the MEI increased and showed a significant positive correlation. With regard to the annual C-factor 
value and MEI for 20 stations for the period of 1980 to 2016, 14 of the 20 weather stations were 
significantly correlated (p < 0.05), and 7 weather stations were highly correlated (p < 0.01). As shown 
in Figure 6, the stations with significant correlation between monthly C-factor value and MEI are 
mostly located in Otindag Desert, while those with non-significant correlation between C-factor 
value and MEI mostly located in the eastern margin of the Otindag Desert. 

 
Figure 6. Correlation between annual climatic erosivity and Multivariate ENSO Index (MEI) for 20 
weather stations from 1980 to 2016. A red cross shows a non-significant correlation (p > 0.05), a light 
blue asterisk represents a significant correlation at p < 0.05, and a larger blue asterisk represents a 
highly significant correlation at p < 0.01. 

 

Figure 6. Correlation between annual climatic erosivity and Multivariate ENSO Index (MEI) for
20 weather stations from 1980 to 2016. A red cross shows a non-significant correlation (p > 0.05), a light
blue asterisk represents a significant correlation at p < 0.05, and a larger blue asterisk represents a
highly significant correlation at p < 0.01.
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Table 2. Average monthly climatic erosivity during El Niño and La Niña events from 1980 to 2016.

No. Warm and Cold Events Time Span Average Monthly Erosivity No. Warm and Cold Events Time Span Average Monthly Erosivity

1 Warm 1980.1–1980.7 23.6 12 warm 2005.2–2005.5 14.78
2 Warm 1982.6–1983.8 15.73 13 cold 2006.3–2006.4 21.67
3 Cold 1985.3–1985.5 21.47 14 warm 2006.7–2007.2 7.29
4 Warm 1986.8–1988.3 13.91 15 cold 2007.8–2008.5 10.02
5 Cold 1988.6–1989.8 11.64 16 warm 2009.7–2010.5 11.75
6 Warm 1991.5–1992.7 11.47 17 cold 2010.6–2011.4 10.98
7 Warm 1992.12–1993.12 11.92 18 cold 2011.8–2012.2 6.31
8 Warm 1994.6–1995.3 9.34 19 warm 2012.5–2012.7 12.19
9 Warm 1997.4–1998.6 11.92 20 warm 2014.5–2014.9 10.09

10 Cold 1998.9–2000.4 10.58 21 warm 2015.3–2016.6 12.96
11 Warm 2002.5–2003.3 7.1 Average climatic erosivity El Niño/La Niña 12.03

Average climatic erosivity El Niño 12.41 Average climatic erosivity La Niña 11.16
Neutral average climatic erosivity 11.78 Average climatic erosivity 11.9

Neutral average monthly climatic erosivity/average monthly climatic erosivity El Niño 0.95
Neutral average monthly climatic erosivity/average monthly climatic erosivity La Niña 1.06
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4. Discussion

The Otindag Desert, with severe aeolian processes, is an important dust emission area in China [29].
Our results showed that the annual average C-factor value was 184 in Otindag Desert during 1980–2016
and it has reached the level of severe wind erodibility (C ≥ 100) [42]. By way of contrast, the climatic
erosivity mean value in Tarim Basin [43] and western Inner Mongolia [11] were 17.5 and 154.5,
respectively, which indicated that the Otindag Desert has higher risk of wind erosion desertification
than other areas of China, and more attention should be focused on forecasting wind erosion and
combating desertification in the region.

Based on the analysis of the C-factor value in the Otindag Desert in the last 40 years from 1980 to
2016, it is found that the C-factor values in the region show a significant downward trend in both the
seasonal scale and the annual scale (Figure 4). In addition, most of the weather stations exhibited a
downward trend, gradually decreasing from the west to the east (Figure 5). The interaction between the
dominant atmospheric conditions and complex local topography might affect the spatial distribution
of the C-factor to some extent [44]. In the region, the Great Khingan Mountain and Yan Mountain
are located in the eastern and southern borders, respectively. The two mountains intersect in the
southeast of the Otindag Desert, thus forming the topography of the low west and high east. Thereby,
they directly hinder the movement of the near-surface airflow, which results in the C-factor value being
higher in the west but lower in the east of Otindag Desert (Figure 2).

The decrease in average wind speed is the main reason for the decrease of the C-factor value [45,46].
Wind speed in the Otindag Desert has decreased significantly over the past 50 years [6]. In the past
decades, similar downward wind trends have been observed in many parts of the world, such as North
America [47,48], central and northeastern China [47], European countries [49,50], African countries [51]
and Australia [52]. In the two hemispheres, in the tropics and mid-latitudes, surface wind speeds drop
at a rate of −0.014 m s−1 a−1 [53]. The reason for wind weakening was recognized to include a decrease
in pressure gradient [54] and weakness of continental cold high pressure [55,56], which were closely
related to climate variability.

Climate variability is a very interesting issue, especially considering the impact of ENSO on
the climate. Climate models show that global warming may be associated with increases in El Niño
frequencies [57]. ENSO, as a climate driver, has complex effects on the biota. It not only affects the
temperature and rainfall [58], it may also affect wind speed which controls the aeolian processes [59].

Our findings indicate that La Niña events have climatic erosivity that is lower than the normal
value, while for El Niño the effect is the opposite (Table 2). This result is similar to the relationship
between the rates of dune migration in Northeastern Brazil with the ENSO events as analyzed by
Maia et al. [60]. They indicated that the rate of dune migration in El Niño years is faster than normal
years whereas in La Niño year it is lower than normal years.

MEI shows a significant positive correlation with C-factor value, and meteorological stations
which exhibited a significant correlation between monthly C-factor value and MEI are mostly located
in Otindag Desert. Meteorological stations located in the eastern margin of the Otindag Desert showed
no significant correlation between C-factor value and MEI, as well as lower changing rates (Figures 5
and 6), as discussed above, which may be directly influenced by the local topography. In addition,
the airflow of Otindag Desert is mostly affected by the Asian monsoon [29], which generated a
considerable aeolian process at that time. It is also noteworthy that the Asian monsoon is closely
related to the ENSO cycles [61,62]. Therefore, finding out the impact mechanism of ENSO on climatic
erosivity in the future is a feasible way to predict the climatic erosivity in Otindag Desert.

5. Conclusions

Wind erosion is the most common cause of land degradation in arid areas. In this study, the wind
erosion climatic erosivity in the Otindag Desert of China during 1980–2016 was calculated based on
the climatic erosivity equation. The spatial and temporal variations in wind erosion climatic erosivity
at both seasonal and annual scales were also analyzed. The results indicated that the annual mean
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climatic erosivity (C-factor value) ranged from 82–445 during the study period, and it decreased from
the western margin to the eastern margin of the desert. From 1980 to 2016, the C-factor value showed a
significant declining trend (p < 0.05) at both seasonal and annual scales. As far as spring, autumn,
and annual climatic erosivity, a downward trend was observed in the whole desert; but for summer and
winter, the central and western regions exhibited a downward trend while the eastern region showed
an upward trend. The average C-factor value was weaker during La Niña events and stronger during
El Niño events, which implies that the climatic erosivity was controlled by large-scale atmospheric
circulations. If ENSO has a significant effect on climatic erosivity in the Otindag Desert, it may also
affect climatic erosivity in other parts of the North China or other regions where the climate is remotely
related to the ENSO system. Our results not only improve the understanding of how the ENSO affects
climatic erosivity in arid areas like the Otindag Desert but also provide a new way to predict and
control long-term desertification.
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