Combined Lithium-Rich Czochralski Growth and Diffusion Method for Z-Cut Near-Stoichiometric Lithium Niobate Crystals and the Study of Periodic Domain Structures
Abstract
1. Introduction
2. Experimental Process
2.1. Lithium-Rich Czochralski Growth Method
2.2. Diffusion Method
2.2.1. Combination of Lithium-Rich Czochralski Growth and Diffusion Methods
2.2.2. Conventional Diffusion Method
2.3. Preparation of Periodic Domain Structures
3. Results and Discussion
3.1. Curie Temperatures of the Li-Rich Czochralski Growth Method
3.2. Bow of Crystals After Diffusion
3.3. Dispersion Curve Measurements
3.4. Ferroelectric Hysteresis Loop
3.5. Triangular Domain Structures
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grein, M.E.; Kerman, A.J.; Dauler, E.A.; Shatrovoy, O.; Molnar, R.J.; Rosenberg, D.; Boroson, D.M. Design of a ground-based optical receiver for the lunar laser communications demonstration. In Proceedings of the 2011 International Conference on Space Optical Systems and Applications (ICSOS) IEEE, Santa Monica, CA, USA, 11–13 May 2011; pp. 78–82. [Google Scholar]
- Chen, P.; Wang, X.; Liu, B.; Yan, L.; Du, X.; Zhang, J.; Zhao, J. Cu-doped KTN crystal with controllable, reversible, and fast photochromic properties: A superior electro-optical material for improving beam deflection performance. Ceram. Int. 2024, 50, 32645–32654. [Google Scholar] [CrossRef]
- Yan, A.M.; Zhi, Y.N.; Sun, J.F.; Liu, L.R. Design and experiment of a large aperture digital beam deflector based on electro-optic crystal switch array. Appl. Phys. B 2012, 107, 421–427. [Google Scholar] [CrossRef]
- Ren, H.; Liu, L.; Song, Z.; Zhang, J.; Liu, D.A. Single-LiNbO3-slab-integrated 1xN electro-optic switch. In Photonic Devices and Algorithms for Computing V; SPIE: Bellingham, DC, USA, 2003; Volume 5201, pp. 180–189. [Google Scholar]
- Djukic, D.; Roth, R.; Yardley, J.T.; Osgood, R.M., Jr.; Bakhru, S.; Bakhru, H. Low-voltage planar-waveguide electrooptic prism scanner in Crystal-Ion-Sliced thin-film LiNbO3. Opt. Express 2004, 12, 6159–6164. [Google Scholar] [CrossRef] [PubMed]
- Bosco, A.; Boogert, S.T.; Boorman, G.E.; Blair, G.A. A large aperture electro-optic deflector. Appl. Phys. Lett. 2009, 94, 211104. [Google Scholar] [CrossRef]
- Yang, F.; Wu, Y.; Cai, C.; Fang, H. Designing an Electro-Optical Tunable Racetrack Microring Resonator on a Diamond–Lithium Niobate Thin-Film Hybrid Platform. Electronics 2003, 12, 4616. [Google Scholar] [CrossRef]
- Xiong, X.; Cao, Q.-T.; Xiao, Y.-F. Thin-film lithium niobate photonic integrated devices: Advances and oppotunities. Acta Phys. Sin. 2023, 72. [Google Scholar] [CrossRef]
- Ganesamoorthy, S.; Nakamura, M.; Takekawa, S.; Kumaragurubaran, S.; Terabe, K.; Kitamura, K. A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals. Mater. Sci. Eng. B 2005, 120, 125–129. [Google Scholar] [CrossRef]
- Xiao, X.; Si, J.; Liang, S.; Xu, Q.; Zhang, H.; Ma, L.; Zhang, X. Preparation, Properties, and Applications of Near Stoichiometric Lithium Tantalate Crystals. Crystals 2023, 13, 1031. [Google Scholar] [CrossRef]
- Tan, S.F.; Li, J.T.; Zhang, L. Progress in the preparation of near stoichiometric ratio lithium niobate crystals. Sci. Technol. Inf. 2009, 11, 6. [Google Scholar]
- Furukawa, Y. In Proceedings of the 1st NIMS International Conference on Material Solutions for Photonics Program. Tsukuba, Japan, 14–16 October 2003; pp. 83–84. [Google Scholar]
- Furukawa, Y.; Sato, M.; Kitamura, K.; Nitanda, F. Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method. J. Cryst. Growth 1993, 128, 909–914. [Google Scholar] [CrossRef]
- Yatsenko, A.; Yevdokimov, S.; Palatnikov, M.; Sidorov, N. NMR Spectra Particularities in LiNbO3 Crystals with a Near-Stoichiometric Composition. Ceramics 2023, 6, 432–446. [Google Scholar] [CrossRef]
- Palatnikov, M.; Sidorov, N.; Kadetova, A.; Titov, R.; Biryukova, I.; Makarova, O.; Efremov, I. Growing, structure and optical properties of LiNbO3: B crystals, a material for laser radiation transformation. Materials 2023, 16, 732. [Google Scholar] [CrossRef]
- Greshnyakov, E.D.; Lisjikh, B.I.; Akhmatkhanov, A.R.; Shur, V.Y. Charged domain walls in lithium niobate and lithium tantalate crystals with composition gradients. Ferroelectrics 2023, 604, 32–39. [Google Scholar] [CrossRef]
- Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Pálfalvi, L.; Hebling, J.; Polgar, K. Growth, defect structure, and THz application of stoichiometric lithium niobate. Appl. Phys. Rev. 2015, 2, 40601. [Google Scholar] [CrossRef]
- Bhatt, R.; Bhaumik, I.; Ganesamoorthy, S.; Karnal, A.K.; Gupta, P.K.; Swami, M.K.; Upadhyay, A. Study of structural defects and crystalline perfection of near stoichiometric LiNbO3 crystals grown from flux and prepared by VTE technique. J. Mol. Struct. 2014, 1075, 377–383. [Google Scholar] [CrossRef]
- Elkus, B.S.; Abdelsalam, K.; Rao, A.; Velev, V.; Fathpour, S.; Kumar, P.; Kanter, G.S. Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides. Opt. Express 2019, 27, 38521–38531. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Sun, D.; Liu, Q.; Song, Y.; Zhang, F.; Zhou, W.; Liu, H. Growth of large size near-stoichiometric lithium niobate single crystals with low coercive field for manufacturing high quality periodically poled lithium niobate. Opt. Mater. 2022, 125, 112058. [Google Scholar] [CrossRef]
- Sun, J.; Kong, Y.; Zhang, L.; Yan, W.; Wang, X.; Xu, J.; Zhang, G. Growth of large-diameter nearly stoichiometric lithium niobate crystals by continuous melt supplying system. J. Cryst. Growth 2006, 292, 351–354. [Google Scholar] [CrossRef]
- Furukawa, Y.; Kitamura, K.; Ji, Y.; Montemezzani, G.; Zgonik, M.; Medrano, C.; Günter, P. Photorefractive properties of iron-doped stoichiometric lithium niobate. Opt. Lett. 1997, 22, 501–503. [Google Scholar] [CrossRef]
- Baron, C.; Cheng, H.; Gupta, M.C. Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals. Appl. Phys. Lett. 1996, 68, 481–483. [Google Scholar] [CrossRef]
- Gahagan, K.T.; Scrymgeour, D.A.; Casson, J.L.; Gopalan, V.; Robinson, J.M. Integrated high-power electro-optic lens and large-angle deflector. Appl. Opt. 2001, 40, 5638–5642. [Google Scholar] [CrossRef]
- Gonzalez, M.; Margueron, S.; Murauskas, T.; Boulet, P.; Gauthier-Manuel, L.; Dulmet, B.; Bartasyte, A. Influence of parameters in vapor transport equilibration treatment on composition and homogeneity of LiTaO3 single crystals. Phys. Status Solidi A 2025, 222, 2400129. [Google Scholar] [CrossRef]
- Carruthers, J.R.; Peterson, G.E.; Grasso, M.; Bridenbaugh, P.M. Nonstoichiometry and crystal growth of lithium niobate. J. Appl. Phys. 1971, 42, 1846–1851. [Google Scholar] [CrossRef]
- Dong, Z.; Xu, Q.; Liang, S.; Si, J.; Wang, M.; Zhang, X.; He, J. Research on the Fabrication of X-Cut Near Stoichiometric Lithium Niobate Wafers. Crystals 2025, 15, 282. [Google Scholar] [CrossRef]
- Nakamura, M.; Takekawa, S.; Kumaragurubaran, S.; Kitamura, K. Curie temperature and [Li]/([Li]+[Nb]) ratio of near-stoichiometric LiNbO3 crystal grown from different Li-rich solutions. Jpn. J. Appl. Phys. 2008, 47, 3476. [Google Scholar] [CrossRef]
- Kovács, L.; Ruschhaupt, G.; Polgár, K.; Corradi, G.; Wöhlecke, M. Composition dependence of the ultraviolet absorption edge in lithium niobate. Appl. Phys. Lett. 1997, 70, 2801–2803. [Google Scholar] [CrossRef]
- Liang, L. Research of Up-Conversion Single-Photon Detectors Based on Periodically Poled Lithium Niobate Waveguides. Ph.D. Thesis, Shandong University, Jinan, China, 2019. [Google Scholar]
- Gopalan, V.; Mitchell, T.E.; Furukawa, Y.; Kitamura, K. The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals. Appl. Phys. Lett. 1998, 72, 1981–1983. [Google Scholar] [CrossRef]
Serial Number | n (@532 nm) | k (@532 nm) |
---|---|---|
1 | 2.3637 | 0.0088 |
2 | 2.3654 | 0.0094 |
3 | 2.3620 | 0.0091 |
4 | 2.3619 | 0.0088 |
5 | 2.3643 | 0.0099 |
6 | 2.3645 | 0.0095 |
7 | 2.3645 | 0.0095 |
8 | 2.3527 | 0.0086 |
9 | 2.3612 | 0.0072 |
10 | 2.3619 | 0.0076 |
11 | 2.3505 | 0.0100 |
12 | 2.3606 | 0.0079 |
13 | 2.3636 | 0.0088 |
14 | 2.3654 | 0.0094 |
15 | 2.3618 | 0.0075 |
16 | 2.3643 | 0.0099 |
17 | 2.3645 | 0.0095 |
Transverse mean ∆n16-14 | 1.4 × 10−4/cm−1 | |
Longitudinal mean ∆n17-15 | 3.4 × 10−4/cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Zhang, Y.; Zhang, H.; Chen, J.; Huang, Y.; Si, J.; Liang, S.; Xu, Q.; Zhang, H.; Ma, L.; et al. Combined Lithium-Rich Czochralski Growth and Diffusion Method for Z-Cut Near-Stoichiometric Lithium Niobate Crystals and the Study of Periodic Domain Structures. Crystals 2025, 15, 727. https://doi.org/10.3390/cryst15080727
Xiao X, Zhang Y, Zhang H, Chen J, Huang Y, Si J, Liang S, Xu Q, Zhang H, Ma L, et al. Combined Lithium-Rich Czochralski Growth and Diffusion Method for Z-Cut Near-Stoichiometric Lithium Niobate Crystals and the Study of Periodic Domain Structures. Crystals. 2025; 15(8):727. https://doi.org/10.3390/cryst15080727
Chicago/Turabian StyleXiao, Xuefeng, Yan Zhang, Han Zhang, Jiayi Chen, Yan Huang, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, and et al. 2025. "Combined Lithium-Rich Czochralski Growth and Diffusion Method for Z-Cut Near-Stoichiometric Lithium Niobate Crystals and the Study of Periodic Domain Structures" Crystals 15, no. 8: 727. https://doi.org/10.3390/cryst15080727
APA StyleXiao, X., Zhang, Y., Zhang, H., Chen, J., Huang, Y., Si, J., Liang, S., Xu, Q., Zhang, H., Ma, L., Yang, C., & Zhang, X. (2025). Combined Lithium-Rich Czochralski Growth and Diffusion Method for Z-Cut Near-Stoichiometric Lithium Niobate Crystals and the Study of Periodic Domain Structures. Crystals, 15(8), 727. https://doi.org/10.3390/cryst15080727