Microstructure and Mechanical Property Tailoring in Asymmetrically Shear-Extruded Mg-2.0Al-0.8Sn-0.5Ca Alloys via Zn Addition
Abstract
1. Introduction
2. Experimental Procedures
3. Results
3.1. Microstructures
3.2. Tensile Properties
3.3. Fracture Behavior
4. Discussion
Mechanical Property Analysis
5. Conclusions
- Minor Ca2Mg6Zn3 phases formed exclusively in as-cast alloys with Zn contents at or above 0.4 wt.%. Following solution treatment and hot extrusion processing, all Zn-containing phases dissolved completely into the magnesium matrix. The extruded alloys consistently contained CaMgSn as the dominant secondary phase accompanied by minor (Mg,Al)2Ca constituents.
- The Zn content significantly influenced the dynamic recrystallization during thermomechanical processing. At 0.2 wt.% Zn addition, recrystallization was substantially suppressed, resulting in a recrystallized fraction of approximately 45.4%. Conversely, 0.6 wt.% Zn addition strongly promoted recrystallization, achieving approximately 93.7% recrystallized fraction. This demonstrates Zn’s capacity to induce divergent recrystallization responses.
- Extruded alloy strength displayed non-monotonic dependence on Zn content, peaking at 0.2 wt.% Zn, while elongation followed an inverse trend. The ATX2105-0.2Zn alloy achieved optimal strength-ductility balance with yield strength of approximately 235.1 MPa, ultimate tensile strength of approximately 289.2 MPa, and elongation of approximately 16.1%. These enhancements originated from synergistic contributions of grain boundary strengthening, solid-solution strengthening, and dislocation strengthening mechanisms.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pollock, T.M. Weight Loss with Magnesium Alloys. Science 2010, 328, 986–987. [Google Scholar] [CrossRef]
- Liu, B.-Y.; Liu, F.; Yang, N.; Zhai, X.-B.; Zhang, L.; Yang, Y.; Li, B.; Li, J.; Ma, E.; Nie, J.-F.; et al. Large plasticity in magnesium mediated by pyramidal dislocations. Science 2019, 365, 73–75. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Ning, H.; Meng, Z.-Y.; Guan, K.; Wang, H.-Y. Achieving high ductility and low in-plane anisotropy in magnesium alloy through a novel texture design strategy. J. Magnes. Alloy. 2024, 12, 2863–2873. [Google Scholar] [CrossRef]
- Joost, W.J.; Krajewski, P.E. Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 2017, 128, 107–112. [Google Scholar] [CrossRef]
- Hirsch, J.; Al-Samman, T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013, 61, 818–843. [Google Scholar] [CrossRef]
- Luo, A.A. Magnesium: Current and potential automotive applications. JOM 2002, 54, 42–48. [Google Scholar] [CrossRef]
- Zha, M.; Liang, J.-W.; Xing, H.; Xu, H.; Jiang, B.; Wang, C.; Jia, H.-L.; Wang, H.-Y. Spheroiding and refining of coarse CaMgSn phase in Mg–Al–Sn–Ca alloys for simultaneously improved strength and ductility via sub-rapid solidification and controlled rolling. Mater. Sci. Eng. A 2022, 834, 142598. [Google Scholar] [CrossRef]
- Wang, F.; Sun, S.-J.; Yu, B.; Zhang, F.; Mao, P.-L.; Liu, Z. First principles investigation of binary intermetallics in Mg–Al–Ca–Sn alloy: Stability, electronic structures, elastic properties and thermodynamic properties. Trans. Nonferrous Met. Soc. China 2016, 26, 203–212. [Google Scholar] [CrossRef]
- Wang, D.; Dong, K.; Jin, Z.; Guan, K.; Cao, F.; Zhao, H.; Zha, M.; Wang, H.-Y. Novel Mg-Al-Sn-Ca with enhanced mechanical properties and high corrosion rate via sub-rapid solidification for degradable magnesium alloy. J. Alloys Compd. 2022, 914, 165325. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Cai, J.; Wang, C.; Deng, H.; Li, Z. Effect of Ca addition on microstructure and mechanical properties of Mg–3.8Al–1.1Sn alloys. Mater. Today Commun. 2024, 38, 108204. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Zhang, N.; Wang, C.; Jiang, Q.-C. First-principles study of the generalized stacking fault energy in Mg–3Al–3Sn alloy. Scr. Mater. 2011, 65, 723–726. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Cai, J.; Ma, P.; Zhao, X.; Li, Z. Fabrication of high strength-ductility Mg-3.8Al-1.1Sn-0.4Ca alloy via differential-thermal asymmetric extrusion. J. Alloys Compd. 2024, 1002, 175182. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, C.; Wang, M.; Deng, H.; Ma, P.; Li, Z. Enhanced Mechanical Properties and Isotropy of Mg-2Al-0.8Sn Alloy through Ca Addition. Materials 2021, 14, 7557. [Google Scholar] [CrossRef]
- Singh, A.; Tsai, A. Structural characteristics of β1′ precipitates in Mg–Zn-based alloys. Scr. Mater. 2007, 57, 941–944. [Google Scholar] [CrossRef]
- Bian, M.; Huang, X.; Chino, Y. Substantial improvement in cold formability of concentrated Mg–Al–Zn–Ca alloy sheets by high temperature final rolling. Acta Mater. 2021, 220, 117328. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Xu, T.; Yan, H.; Mao, Y.; Chen, R. Regulating the grain refinement and rolling properties of coarse-crystalline Mg-Zn-Gd-Ca-Mn alloy through multi-pass cold rolling and annealing. Mater. Sci. Eng. A 2024, 911, 146940. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Chen, W.; Li, Z.; Hou, H.; Zhao, Y. Simultaneously improving thermal conductivity, mechanical properties and metal fluidity through Cu alloying in Mg-Zn-based alloys. J. Magnes. Alloys 2024, 12, 3823–3839. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, Y.; Li, R.; Gao, Y. Enhanced strength-ductility synergy and activation of non-basal slip in as-extruded Mg–Zn–Ca alloy via heterostructure. J. Mater. Res. Technol. 2023, 28, 1841–1851. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, Y.; Li, R.; Shen, Y.; Lei, J. Achieving exceptional improvement of yield strength in Mg–Zn–Ca alloy wire by nanoparticles induced by extreme plastic deformation. Mater. Sci. Eng. A 2022, 853, 143733. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Bian, M.Z.; Xu, S.; Davies, C.H.J.; Birbilis, N.; Nie, J.F. Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet. Mater. Sci. Eng. A 2016, 674, 459–471. [Google Scholar] [CrossRef]
- Shi, D.; Ma, A.; Pérez-Prado, M.; Cepeda-Jiménez, C. Activation of second-order pyramidal slip and other secondary mechanisms in solid solution Mg-Zn alloys and their effect on tensile ductility. Acta Mater. 2022, 244, 118555. [Google Scholar] [CrossRef]
- Son, H.-W.; Hyun, S.-K. Dislocation characteristics and dynamic recrystallization in hot deformed AM30 and AZ31 alloys. J. Magnes. Alloys 2022, 10, 3495–3505. [Google Scholar] [CrossRef]
- Wang, Q.; Song, J.; Jiang, B.; Tang, A.; Chai, Y.; Yang, T.; Huang, G.; Pan, F. An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion. Mater. Sci. Eng. A 2018, 720, 85–97. [Google Scholar] [CrossRef]
- Yang, Q.; Jiang, B.; Pan, H.; Song, B.; Jiang, Z.; Dai, J.; Wang, L.; Pan, F. Influence of different extrusion processes on mechanical properties of magnesium alloy. J. Magnes. Alloys 2014, 2, 220–224. [Google Scholar] [CrossRef]
- Yang, Q.; Jiang, B.; He, J.; Song, B.; Liu, W.; Dong, H.; Pan, F. Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process. Mater. Sci. Eng. A 2014, 612, 187–191. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Z.; Wang, M.; Li, Y.; Cai, J.; Li, Z. Microstructure and mechanical properties of Mg-Al-Sn-Ca alloy extruded by asymmetric severe shear extrusion with different asymmetric coefficients. J. Alloys Compd. 2023, 960, 170884. [Google Scholar] [CrossRef]
- Li, Z.-G.; Miao, Y.; Jia, H.-L.; Zheng, R.; Wang, M.-H.; Wang, H.-Y. Designing a low-alloyed Mg–Al–Sn–Ca alloy with high strength and extraordinary formability by regulating fine grains and unique texture. Mater. Sci. Eng. A 2022, 852, 143687. [Google Scholar] [CrossRef]
- Liu, K.; Fu, J.; Liang, H.; Li, S.; Du, X.; Zhang, Y.; Du, W. Elucidating the dominant role of second phase morphology in corrosion behavior of biodegradable Mg-Zn-Mn-Ca alloys. J. Alloys Compd. 2025, 1020, 179540. [Google Scholar] [CrossRef]
- Fan, Y.; Zhu, G.; Park, J.-S.; Zhang, X.; Song, Z.; Wang, H.; Zeng, X.; Wang, L. The role of Ca on the microstructure and tensile properties of Mg-Al-Zn-Ca alloys. Materialia 2023, 29, 101787. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Wang, C.; Zhao, L.-Q.; Ma, P.-K.; Song, J.-W.; Xu, J.; Cheng, X.-M.; Wang, H.-Y. Superplastic Deformation Behavior of Rolled Mg-8Al-2Sn and Mg-8Al-1Sn-1Zn Alloys at High Temperatures. Materials 2020, 13, 1074. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Guo, Z.-P.; Zhang, P.-Y.; Zhou, Y.; Ma, P.-K. Influence of Texture on the Mechanical Properties of a Mg-6Al-1Zn-0.9Sn Alloy Processed by ECAP. Materials 2021, 14, 2664. [Google Scholar] [CrossRef]
- Ma, C.-Y.; Xia, N.; Wang, C.; Li, M.-X.; Hua, Z.-M.; Ren, M.-W.; Wang, H.-Y. A novel Mg-5Al-2Zn-2Sn alloy with high strength-ductility synergy fabricated via simple hot rolling and annealing treatment. J. Alloys Compd. 2021, 869, 159308. [Google Scholar] [CrossRef]
- Ma, X.; Huang, C.; Moering, J.; Ruppert, M.; Höppel, H.W.; Göken, M.; Narayan, J.; Zhu, Y. Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Mater. 2016, 116, 43–52. [Google Scholar] [CrossRef]
- Pan, H.; Kang, R.; Li, J.; Xie, H.; Zeng, Z.; Huang, Q.; Yang, C.; Ren, Y.; Qin, G. Mechanistic investigation of a low-alloy Mg–Ca-based extrusion alloy with high strength–ductility synergy. Acta Mater. 2020, 186, 278–290. [Google Scholar] [CrossRef]
Nominal Composition | σgrain /MPa | σss /MPa | σD /MPa | σp /MPa | YSCalculated /MPa | YSMeasured /MPa | Deviation/MPa |
---|---|---|---|---|---|---|---|
ATX2105 | 155.0 | 13.6 | 14.5 | 27.3 | 210.4 | 223.4 | −13 |
ATXZ210502 | 164.7 | 21.0 | 17.7 | 27.3 | 230.7 | 235.1 | −4.4 |
ATXZ210504 | 155.0 | 25.5 | 13.0 | 27.3 | 220.8 | 224.6 | −3.8 |
ATXZ210506 | 152.8 | 29.3 | 9.0. | 27.3 | 218.4 | 209.4 | +9.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Li, W.-Q.; Deng, H.; Zhang, H.-Q.; Cai, J.-L.; Li, Z.-G. Microstructure and Mechanical Property Tailoring in Asymmetrically Shear-Extruded Mg-2.0Al-0.8Sn-0.5Ca Alloys via Zn Addition. Crystals 2025, 15, 735. https://doi.org/10.3390/cryst15080735
Wang C, Li W-Q, Deng H, Zhang H-Q, Cai J-L, Li Z-G. Microstructure and Mechanical Property Tailoring in Asymmetrically Shear-Extruded Mg-2.0Al-0.8Sn-0.5Ca Alloys via Zn Addition. Crystals. 2025; 15(8):735. https://doi.org/10.3390/cryst15080735
Chicago/Turabian StyleWang, Chao, Wen-Qi Li, Hai Deng, Huai-Qiang Zhang, Jin-Long Cai, and Zhi-Gang Li. 2025. "Microstructure and Mechanical Property Tailoring in Asymmetrically Shear-Extruded Mg-2.0Al-0.8Sn-0.5Ca Alloys via Zn Addition" Crystals 15, no. 8: 735. https://doi.org/10.3390/cryst15080735
APA StyleWang, C., Li, W.-Q., Deng, H., Zhang, H.-Q., Cai, J.-L., & Li, Z.-G. (2025). Microstructure and Mechanical Property Tailoring in Asymmetrically Shear-Extruded Mg-2.0Al-0.8Sn-0.5Ca Alloys via Zn Addition. Crystals, 15(8), 735. https://doi.org/10.3390/cryst15080735