Influence of Cold Metal Transfer Parameters on Weld Bead Geometry, Mechanical Properties, and Corrosion Performance of Dissimilar Aluminium Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Weld Bead Geometry
3.2. Tensile Testing
3.3. Impact Testing
3.4. Microhardness
3.5. Corrosion
4. Conclusions
- CMT1 exhibited superior mechanical performance with a tensile strength of 233 MPa, and a higher yield-to-ultimate tensile strength ratio of 0.94, attributed to its narrower heat-affected zone (HAZ) and improved bead geometry.
- CMT2, by contrast, showed lower tensile strength (UTS = 222 MPa, YS = 184 MPa, and a ratio of 0.87), likely due to increased heat input, leading to a wider bead and larger HAZ.
- The impact toughness of CMT1 was 8 J, higher than CMT2’s 6 J, which can be linked to refined grain structures and reduced HAZ width in CMT1.
- Hardness values were also higher in CMT1 across the HAZ and weld zone, again correlated to the reduced HAZ size. CMT2 showed relatively lower hardness due to grain coarsening and broader thermal exposure.
- In terms of corrosion resistance, CMT1 demonstrated a lower corrosion rate, aligning with its better mechanical properties and more stable microstructure. CMT2, with a broader HAZ and lower mechanical strength, was more prone to corrosion.
- The findings clearly show that higher welding speeds, as used in CMT1, contribute to enhanced joint quality through better control of bead formation and thermal input. In contrast, the slower welding speed in CMT2 led to wider HAZs and compromised mechanical and corrosion properties. This study offers valuable insights for industries such as aerospace, automotive, and marine engineering, where lightweight dissimilar Al joints are critical.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, H.; Singh, K.; Vardhan, S.; Mohan, S. Study on the wear performance of AA 6061 and AA 6082 based metal matrix composites. Mater. Today Proc. 2021, 43, 660–664. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Seleman, M.M.E.-S.; Ahmed, E.; Reyad, H.A.; Touileb, K.; Albaijan, I. Friction Stir Spot Welding of Different Thickness Sheets of Aluminum Alloy AA6082-T6. Materials 2022, 15, 2971. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.Z.; Seleman, M.M.E.-S.; Ahmed, E.; Reyad, H.A.; Alsaleh, N.A.; Albaijan, I. A Novel Friction Stir Deposition Technique to Refill Keyhole of Friction Stir Spot Welded AA6082-T6 Dissimilar Joints of Different Sheet Thicknesses. Materials 2022, 15, 6799. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, B.; Ahmed, M.M.Z.; Habba, M.I.A.; Fouad, R.A.; Elshaghoul, Y.G.Y.; Gadallah, E.A. TIG Welding of EN AW-6082 Al Alloy: A Comparative Analysis of Filler Rods on Microstructural and Mechanical Performance. J. Manuf. Mater. Process. 2025, 9, 21. [Google Scholar] [CrossRef]
- Dada, M.; Popoola, P. Recent advances in joining technologies of aluminum alloys: A review. Discov. Mater. 2024, 4, 86. [Google Scholar] [CrossRef]
- Karrar, G.; Galloway, A.; Toumpis, A.; Li, H.; Al-Badour, F. Microstructural characterisation and mechanical properties of dissimilar AA5083-copper joints produced by friction stir welding. J. Mater. Res. Technol. 2020, 9, 11968–11979. [Google Scholar] [CrossRef]
- Nagaraja, S.; Anand, P.B.; Mariswamy, M.; Alkahtani, M.Q.; Islam, S.; Khan, M.A.; Khan, W.A.; Bhutto, J.K. “Friction stir welding of dissimilar Al–Mg alloys for aerospace applications: Prospects and future potential” Reviews on advanced materials science. Rev. Adv. Mater. Sci. 2024, 63, 20240033. [Google Scholar] [CrossRef]
- Yang, Y.; Bhowmik, A.; Tan, J.L.; Du, Z.; Zhou, W. A New Strategy for Dissimilar Material Joining between SiC and Al Alloys through Use of High-Si Al Alloys. Metals 2022, 12, 887. [Google Scholar] [CrossRef]
- Ahmed, M.; Javidani, M.; Mirakhorli, F.; Maltais, A.; Chen, X.G. Novel High-Strength Al-Si-Mg Filler Wires for Aluminum Welding. In Proceedings of the 62nd Conference of Metallurgists, COM 2023; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Adin, M.Ş. A parametric study on the mechanical properties of MIG and TIG welded dissimilar steel joints. J. Adhes. Sci. Technol. 2024, 38, 115–138. [Google Scholar] [CrossRef]
- Nandhakumar, S.; Kumar, K.G.; Arivazhagan, N.; Manikandan, M.; Jose, B.; Renangi, S. Technology development of novel autogenous double pulse tungsten insert gas welding technique to evaluate the depth of penetration, micro segregation via machine learning and desirability function approach. Mater. Today Commun. 2024, 40, 109614. [Google Scholar] [CrossRef]
- Yelamasetti, B.; Sushma, S.P.; Mohammed, Z.; Altammar, H.; Khan, M.F.; Moinuddin, S.Q. Synergistic Effects of Thermal Cycles and Residual Stress on Microstructural Evolution and Mechanical Properties in Monel 400 and AISI 316L Weld Joints. Metals 2025, 15, 469. [Google Scholar] [CrossRef]
- Kumar, P.; Sinha, A.N.; Hirwani, C.K.; Murugan, M.; Saravanan, A.; Singh, A.K. Effect of welding current in TIG welding 304L steel on temperature distribution, microstructure and mechanical properties. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 369. [Google Scholar] [CrossRef]
- Kumar, P.; Arif, A.; Prasad, A.C.V.; Danaiah, P.; Singh, A.K.; Patro, M.; Kishore, K.S.; Murugan, M. Study of welding process parameter in TIG joining of aluminum aolly (6061). Mater. Today Proc. 2021, 47, 4020–4025. [Google Scholar] [CrossRef]
- Vasantharaja, P.; Vasudevan, M.; Maduraimuthu, V. Effect of Arc Welding Processes on the Weld Attributes of Type 316LN Stainless Steel Weld joint. Trans. Indian Inst. Met. 2018, 71, 127–137. [Google Scholar] [CrossRef]
- Ganesh, K.C.; Balasubramanian, K.R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints. Met. Mater. Trans. B 2016, 47, 1347–1362. [Google Scholar] [CrossRef]
- Nandan, G.; Kumar, G.; Arora, K.; Kumar, A. MIG and CMT brazing of aluminum alloys and steel: A review. Mater. Today Proc. 2022, 56 Pt 1, 481–488. [Google Scholar] [CrossRef]
- Afzal, M.S.; Wakeel, A.; Nasir, M.A.; Qazi, M.I.; Abas, M. Optimization of process parameters for shielded metal arc welding for ASTM A 572 grade 50. J. Eng. Res. 2024, 13, 1072–1088. [Google Scholar] [CrossRef]
- Abima, C.S.; Akinlabi, S.A.; Madushele, N.; Akinlabi, E.T. Comparative study between TIG-MIG Hybrid, TIG and MIG welding of 1008 steel joints for enhanced structural integrity. Sci. Afr. 2022, 17, e01329. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Sirohi, S.; Pandey, S.M.; Rajasekaran, T.; Pandey, C. Attributes of FSW and UWFSW butt joints of armour grade AA5083 aluminium alloy: Impact of tool pin profile. Heliyon 2024, 10, e38351. [Google Scholar] [CrossRef] [PubMed]
- Yelamasetti, B.; Sridevi, M.; Sree, N.S.; Geetha, N.K.; Bridjesh, P.; Shelare, S.D.; Prakash, C. Comparative Studies on Mechanical Properties and Microstructural Changes of AA5052 and AA6082 Dissimilar Weldments Developed by TIG. J. Mater. Eng. Perform. 2024, 34, 9972–9985. [Google Scholar] [CrossRef]
- Verma, S.; Gupta, M.; Misra, J.P. Performance evaluation of friction stir welding using machine learning approaches. MethodsX 2018, 5, 1048–1058. [Google Scholar] [CrossRef]
- Kesharwani, R.; Jha, K.K.; Imam, M.; Sarkar, C.; Barsoum, I. Correlation of microstructure, texture, and mechanical properties of friction stir welded Joints of AA7075-T6 plates using a flat tool pin profile. Heliyon 2024, 10, e25449. [Google Scholar] [CrossRef] [PubMed]
- Pouraliakbar, H.; Jandaghi, M.R.; Ghaffari, G.; Fallah, V.; Moverare, J.; Khalaj, G. Friction stir processing of AA6061-T6/graphene nanocomposites: Unraveling the influence of tool geometry, rotation, and advancing speed on microstructure and mechanical properties. J Alloys Compd 2024, 1002, 175400. [Google Scholar] [CrossRef]
- Hilmawan, M.I.; Putri, E.D.S.; Muhayat, N.; Manurung, Y.H.; Ilhamdi; Sulardjaka; Hendrato; Triyono. Effect of tools rotational speed on the mechanical properties of one-step double-acting friction stir welded aluminum alloy AA 6061 hollow panel. Int. J. Light. Mater. Manuf. 2024, 7, 467–479. [Google Scholar] [CrossRef]
- Tang, Y.; Li, W.; Zou, Y.; Wang, W.; Xu, Y.; Vairis, A.; Çam, G. Effects of tool rotation direction on microstructure and mechanical properties of 6061 aluminum alloy joints by the synergistically double-sided friction stir welding. J. Manuf. Process. 2024, 126, 109–123. [Google Scholar] [CrossRef]
- Bellamkonda, P.N.; Dwivedy, M.; Addanki, R. Cold metal transfer technology—A review of recent research developments. Results Eng. 2024, 23, 102423. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, H.; He, P. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater. Des. 2009, 30, 1850–1852. [Google Scholar] [CrossRef]
- Shen, H.; Yu, J.; Wang, L.; Vogel, F.; Li, C.; Nagaumi, H. A comparative filling materials study on microstructure and mechanical properties of welded joints of dissimilar Al–Mg–Si alloys using CMT-laser beam oscillation hybrid welding. J. Mater. Res. Technol. 2025, 34, 1029–1044. [Google Scholar] [CrossRef]
- Shanker, H.; Wattal, R. Comparative Study of Microstructural and Mechanical Properties of Robotic Cmt and Gmaw Welded 7475-T7351 Aluminium Alloy Joints. Mater. Today Commun. 2023, 37, 106994. [Google Scholar] [CrossRef]
- Yelamasetti, B.; Devi, B.T.L.; Sree, N.S.; Vempati, S.; Sonar, T.; Kumar, A.; Rakesh, C.; Sharma, A.; Ansari, M.A. Investigations on mechanical behavior of AA2014-T6 weldments developed using CMT welding: As-weld and post weld heat treatment conditions. J. Mater. Res. Technol. 2025, 35, 1409–1418. [Google Scholar] [CrossRef]
- Yelamasetti, B.; G, V.R.; Manikyam, S.; Saxena, K.K. Multi-response Taguchi grey relational analysis of mechanical properties and weld bead dimensions of dissimilar joint of AA6082 and AA7075. Adv. Mater. Process. Technol. 2021, 8, 1474–1484. [Google Scholar] [CrossRef]
- Gungor, B.; Kaluc, E.; Taban, E.; SIK ŞŞ, A. Mechanical and microstructural properties of robotic Cold Metal Transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys. Mater. Des. 2014, 54, 207–211. [Google Scholar] [CrossRef]
- Singh, I.J.; Murtaza, Q.; Kumar, P. Effect of CMT Welding Process Parameters on the Microstructural and Mechanical Properties of Dissimilar Aluminum Alloys of AA8011 and AA6061. Trans. Indian Inst. Met. 2025, 78, 3. [Google Scholar] [CrossRef]
- Pineau, A.; Pardoen, T. Failure of metals. In Comprehensive Structural Integrity, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 321–432. [Google Scholar] [CrossRef]
- Karihaloo, B.; Xiao, Q. Linear and nonlinear fracture mechanics. In Comprehensive Structural Integrity; Elsevier: Amsterdam, The Netherlands, 2003; pp. 81–212. [Google Scholar] [CrossRef]
- Carta, M.; Aydi, L.; Buonadonna, P.; Morea, D.; El Mehtedi, M. Effect of post heat treatment on microstructure and mechanical properties of hot-rolled AA2017 aluminum alloy. Heliyon 2024, 10, e40922. [Google Scholar] [CrossRef]
- Das, A. Correlation of fractographic features with tensile properties in systematically varied microstructures of a pearlitic steel. Can. Met. Q. 2025, 1–12. [Google Scholar] [CrossRef]
- Alaboodi, A.S.; Sivasankaran, S.; Ramkumar, K.; Ammar, H.R. Microstructural evolution and enhanced mechanical performance of dissimilar CoCrFeMnNi High Entropy Alloy-Duplex Stainless Steel welds using laser beam welding. J. Mater. Res. Technol. 2025, 36, 4985–4998. [Google Scholar] [CrossRef]
- Velmurugan, S.; Babu, N.; Santhosh, V. Effect of Post-Heat treatment on corrosion resistance and microstructural characteristics of CMT-WAAM Inconel 718 in 3.5% NACL solution. J. Indian Chem. Soc. 2025, 102, 101625. [Google Scholar] [CrossRef]
Element (%) | Cu | Mg | Si | Fe | Mn | Zn | Ti | Cr | Al |
---|---|---|---|---|---|---|---|---|---|
ER2219 | 6.3 | 0.02 | 0.3 | 0.2 | 0.3 | 0.05 | 0.15 | 0.05 | Bal. |
AA6061 | 0.25 | 1 | 0.6 | 0.35 | 0.05 | 0.1 | 0.1 | 0.15 | Bal. |
AA6082 | 0.05 | 0.8 | 1 | 0.25 | 0.7 | 0.15 | 0.05 | 0.15 | Bal. |
Parameters/Sample ID | CMT1 | CMT2 |
---|---|---|
Filament diameter, mm | 1.6 | 1.6 |
Welding current, A | 160 | 160 |
Wire feed rate, m/min | 5 | 3 |
Welding speed, m/min | 0.5 | 0.3 |
Sample ID | WBW, mm | WBH, mm | BBW, mm | WPH, mm | HAZ Width AA6082, mm | HAZ Width AA6061, mm |
---|---|---|---|---|---|---|
CMT1 | 15.94 ± 2 | 0.972 ± 0.2 | 6.99 ± 0.5 | 1.51 ± 0.2 | 4.475 ± 0.5 | 5.174 ± 0.5 |
CMT2 | 17.17 ± 2 | 0.50 ± 0.2 | 8.21 ± 0.5 | 1.52 ± 0.2 | 5.366 ± 0.5 | 7.528 ± 0.5 |
Sample ID | YS, MPa | UTS, MPa | Ratio = YS/UTS | % Elongation |
---|---|---|---|---|
CMT1 | 219 | 233 | 0.94 | 3.66 |
CMT2 | 194 | 222 | 0.87 | 5.98 |
Sample ID | CMT1 | CMT2 |
---|---|---|
E. corr V | 0.0174 | 0.0136 |
i cor. A | 1.21 × 10−6 | 1.61 × 10−6 |
I cor. A/cm2 | 1.21 × 10−6 | 1.61 × 10−6 |
Rp Ohm | 2.04 × 10−6 | 1.49 × 10−6 |
ba V/dec | 0.149 | 0.115 |
bc V/dec | 0.092 | 0.105 |
C. rate mm/y | 0.01368 | 0.01795 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yelamasetti, B.; Zubairuddin, M.; Sushma I, S.P.; Khan, M.F.; Moinuddin, S.Q.; Altammar, H. Influence of Cold Metal Transfer Parameters on Weld Bead Geometry, Mechanical Properties, and Corrosion Performance of Dissimilar Aluminium Alloys. Crystals 2025, 15, 722. https://doi.org/10.3390/cryst15080722
Yelamasetti B, Zubairuddin M, Sushma I SP, Khan MF, Moinuddin SQ, Altammar H. Influence of Cold Metal Transfer Parameters on Weld Bead Geometry, Mechanical Properties, and Corrosion Performance of Dissimilar Aluminium Alloys. Crystals. 2025; 15(8):722. https://doi.org/10.3390/cryst15080722
Chicago/Turabian StyleYelamasetti, Balram, Mohammed Zubairuddin, Sri Phani Sushma I, Mohammad Faseeulla Khan, Syed Quadir Moinuddin, and Hussain Altammar. 2025. "Influence of Cold Metal Transfer Parameters on Weld Bead Geometry, Mechanical Properties, and Corrosion Performance of Dissimilar Aluminium Alloys" Crystals 15, no. 8: 722. https://doi.org/10.3390/cryst15080722
APA StyleYelamasetti, B., Zubairuddin, M., Sushma I, S. P., Khan, M. F., Moinuddin, S. Q., & Altammar, H. (2025). Influence of Cold Metal Transfer Parameters on Weld Bead Geometry, Mechanical Properties, and Corrosion Performance of Dissimilar Aluminium Alloys. Crystals, 15(8), 722. https://doi.org/10.3390/cryst15080722