Next Issue
Volume 20, March
Previous Issue
Volume 20, January
 
 

Mar. Drugs, Volume 20, Issue 2 (February 2022) – 77 articles

Cover Story (view full-size image): Oceans represent an important source of natural products with extraordinary structures and promising biological properties. Of these, marine polyketides bearing tetrahydrofuranyl units are present in a wide variety of sponges, fungus or dinoflagellates. Furthermore, they display a wide array of pharmacological activities including anti-inflammatory, antifungal or anticancer effects. The search for new, efficient and selective methods to access these interesting bioactive compounds remains an aspiration for many scientists. In this review, we provide an overview of marine polyketides containing tetrahydrofuran rings, focussing the discussion on their structural, biological properties and approaches towards their synthesis. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 2771 KiB  
Article
Deoxyvasicinone with Anti-Melanogenic Activity from Marine-Derived Streptomyces sp. CNQ-617
by Se-eun Lee, Min-ju Kim, Prima F. Hillman, Dong-Chan Oh, William Fenical, Sang-Jip Nam and Kyung-Min Lim
Mar. Drugs 2022, 20(2), 155; https://doi.org/10.3390/md20020155 - 21 Feb 2022
Cited by 12 | Viewed by 2865
Abstract
The tricyclic quinazoline alkaloid deoxyvasicinone (DOV, 1) was isolated from a marine-derived Streptomyces sp. CNQ-617, and its anti-melanogenic effects were investigated. Deoxyvasicinone was shown to decrease the melanin content of B16F10 and MNT-1 cells that have been stimulated by α-melanocyte-stimulating [...] Read more.
The tricyclic quinazoline alkaloid deoxyvasicinone (DOV, 1) was isolated from a marine-derived Streptomyces sp. CNQ-617, and its anti-melanogenic effects were investigated. Deoxyvasicinone was shown to decrease the melanin content of B16F10 and MNT-1 cells that have been stimulated by α-melanocyte-stimulating hormone (α-MSH). In addition, microscopic images of the cells showed that deoxyvasicinone attenuated melanocyte activation. Although, deoxyvasicinone did not directly inhibit tyrosinase (TYR) enzymatic activity, real-time PCR showed that it inhibited the mRNA expression of TYR, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). In the artificial 3D pigmented skin model MelanodermTM, deoxyvasicinone brightened the skin significantly, as confirmed by histological examination. In conclusion, this study demonstrated that the marine microbial natural product deoxyvascinone has an anti-melanogenic effect through downregulation of melanogenic enzymes. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Streptomyces)
Show Figures

Figure 1

11 pages, 3956 KiB  
Article
Computational Design of High-Affinity Blockers for Sodium Channel NaV1.2 from μ-Conotoxin KIIIA
by Guangsi Meng and Serdar Kuyucak
Mar. Drugs 2022, 20(2), 154; https://doi.org/10.3390/md20020154 - 21 Feb 2022
Viewed by 2297
Abstract
The voltage-gated sodium channel subtype 1.2 (NaV1.2) is instrumental in the initiation of action potentials in the nervous system, making it a natural drug target for neurological diseases. Therefore, there is much pharmacological interest in finding blockers of NaV1.2 [...] Read more.
The voltage-gated sodium channel subtype 1.2 (NaV1.2) is instrumental in the initiation of action potentials in the nervous system, making it a natural drug target for neurological diseases. Therefore, there is much pharmacological interest in finding blockers of NaV1.2 and improving their affinity and selectivity properties. An extensive family of peptide toxins from cone snails (conotoxins) block NaV channels, thus they provide natural templates for the design of drugs targeting NaV channels. Unfortunately, progress was hampered due to the absence of any NaV structures. The recent determination of cryo-EM structures for NaV channels has finally broken this impasse. Here, we use the NaV1.2 structure in complex with μ-conotoxin KIIIA (KIIIA) in computational studies with the aim of improving KIIIA’s affinity and blocking capacity for NaV1.2. Only three KIIIA amino acid residues are available for mutation (S5, S6, and S13). After performing molecular modeling and simulations on NaV1.2–KIIIA complex, we have identified the S5R, S6D, and S13K mutations as the most promising for additional contacts. We estimate these contacts to boost the affinity of KIIIA for NaV1.2 from nanomole to picomole domain. Moreover, the KIIIA[S5R, S6D, S13K] analogue makes contacts with all four channel domains, thus enabling the complete blocking of the channel (KIIIA partially blocks as it has contacts with three domains). The proposed KIIIA analogue, once confirmed experimentally, may lead to novel anti-epileptic drugs. Full article
(This article belongs to the Special Issue Conotoxins II)
Show Figures

Figure 1

24 pages, 2206 KiB  
Review
Impact of Co-Culture on the Metabolism of Marine Microorganisms
by Flore Caudal, Nathalie Tapissier-Bontemps and Ru Angelie Edrada-Ebel
Mar. Drugs 2022, 20(2), 153; https://doi.org/10.3390/md20020153 - 21 Feb 2022
Cited by 18 | Viewed by 4404
Abstract
Natural products from plants have been listed for hundreds of years as a source of biologically active molecules. In recent years, the marine environment has demonstrated its ability to provide new structural entities. More than 70% of our planet’s surface is covered by [...] Read more.
Natural products from plants have been listed for hundreds of years as a source of biologically active molecules. In recent years, the marine environment has demonstrated its ability to provide new structural entities. More than 70% of our planet’s surface is covered by oceans, and with the technical advances in diving and remotely operated vehicles, it is becoming easier to collect samples. Although the risk of rediscovery is significant, the discovery of silent gene clusters and innovative analytical techniques has renewed interest in natural product research. Different strategies have been proposed to activate these silent genes, including co-culture, or mixed fermentation, a cultivation-based approach. This review highlights the potential of co-culture of marine microorganisms to induce the production of new metabolites as well as to increase the yields of respective target metabolites with pharmacological potential, and moreover to indirectly improve the biological activity of a crude extract. Full article
Show Figures

Figure 1

16 pages, 2981 KiB  
Article
EPA-Enriched Phospholipids Alleviate Renal Interstitial Fibrosis in Spontaneously Hypertensive Rats by Regulating TGF-β Signaling Pathways
by Hao-Hao Shi, Ling-Yu Zhang, Li-Pin Chen, Jin-Yue Yang, Cheng-Cheng Wang, Chang-Hu Xue, Yu-Ming Wang and Tian-Tian Zhang
Mar. Drugs 2022, 20(2), 152; https://doi.org/10.3390/md20020152 - 19 Feb 2022
Cited by 8 | Viewed by 2801
Abstract
Hypertensive nephropathy is a chronic kidney disease caused by hypertension. Eicosapentaenoic acid (EPA) has been reported to possess an antihypertensive effect, and our previous study suggested that EPA-enriched phospholipid (EPA-PL) had more significant bioactivities compared with traditional EPA. However, the effect of dietary [...] Read more.
Hypertensive nephropathy is a chronic kidney disease caused by hypertension. Eicosapentaenoic acid (EPA) has been reported to possess an antihypertensive effect, and our previous study suggested that EPA-enriched phospholipid (EPA-PL) had more significant bioactivities compared with traditional EPA. However, the effect of dietary EPA-PL on hypertensive nephropathy has not been studied. The current study was designed to examine the protection of EPA-PL against kidney damage in spontaneously hypertensive rats (SHRs). Treatment with EPA-PL for three weeks significantly reduced blood pressure through regulating the renin–angiotensin system in SHRs. Moreover, dietary EPA-PL distinctly alleviated kidney dysfunction in SHRs, evidenced by reduced plasma creatinine, blood urea nitrogen, and 24 h proteinuria. Histology results revealed that treatment of SHRs with EPA-PL alleviated renal injury and reduced tubulointerstitial fibrosis. Further mechanistic studies indicated that dietary EPA-PL remarkably inhibited the activation of TGF-β and Smad 3, elevated the phosphorylation level of PI3K/AKT, suppressed the activation of NF-κB, reduced the expression of pro-inflammatory cytokines, including IL-1β and IL-6, and repressed the oxidative stress and the mitochondria-mediated apoptotic signaling pathway in the kidney. These results indicate that EPA-PL has potential value in the prevention and alleviation of hypertensive nephropathy. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Graphical abstract

17 pages, 51414 KiB  
Article
Chitosan and Hyaluronic Acid Nanoparticles as Vehicles of Epoetin Beta for Subconjunctival Ocular Delivery
by Beatriz Silva, Lídia M. Gonçalves, Berta São Braz and Esmeralda Delgado
Mar. Drugs 2022, 20(2), 151; https://doi.org/10.3390/md20020151 - 18 Feb 2022
Cited by 12 | Viewed by 3061
Abstract
Neuroprotection in glaucoma using epoetin beta (EPOβ) has yielded promising results. Our team has developed chitosan-hyaluronic acid nanoparticles (CS/HA) designed to carry EPOβ into the ocular globe, improving the drug’s mucoadhesion and retention time on the ocular surface to increase its bioavailability. In [...] Read more.
Neuroprotection in glaucoma using epoetin beta (EPOβ) has yielded promising results. Our team has developed chitosan-hyaluronic acid nanoparticles (CS/HA) designed to carry EPOβ into the ocular globe, improving the drug’s mucoadhesion and retention time on the ocular surface to increase its bioavailability. In the present in vivo study, we explored the possibility of delivering EPOβ to the eye through subconjunctival administration of chitosan-hyaluronic acid-EPOβ (CS/HA-EPOβ) nanoparticles. Healthy Wistar Hannover rats (n = 21) were split into 7 groups and underwent complete ophthalmological examinations, including electroretinography and microhematocrit evaluations before and after the subconjunctival administrations. CS/HA-EPOβ nanoparticles were administered to the right eye (OD), and the contralateral eye (OS) served as control. At selected timepoints, animals from each group (n = 3) were euthanized, and both eyes were enucleated for histological evaluation (immunofluorescence and HE). No adverse ocular signs, no changes in the microhematocrits (≈45%), and no deviations in the electroretinographies in both photopic and scotopic exams were observed after the administrations (p < 0.05). Intraocular pressure remained in the physiological range during the assays (11–22 mmHg). EPOβ was detected in the retina by immunofluorescence 12 h after the subconjunctival administration and remained detectable until day 21. We concluded that CS/HA nanoparticles could efficiently deliver EPOβ into the retina, and this alternative was considered biologically safe. This nanoformulation could be a promising tool for treating retinopathies, namely optic nerve degeneration associated with glaucoma. Full article
Show Figures

Graphical abstract

13 pages, 2739 KiB  
Article
Diverse Secondary Metabolites from the Coral-Derived Fungus Aspergillus hiratsukae SCSIO 5Bn1003
by Qi Zeng, Yuchan Chen, Junfeng Wang, Xuefeng Shi, Yihao Che, Xiayu Chen, Weimao Zhong, Weimin Zhang, Xiaoyi Wei, Fazuo Wang and Si Zhang
Mar. Drugs 2022, 20(2), 150; https://doi.org/10.3390/md20020150 - 18 Feb 2022
Cited by 6 | Viewed by 2776
Abstract
Three new metabolites, including a cyclic tetrapeptide asperhiratide (1), an ecdysteroid derivative asperhiratine (2), and a sesquiterpene lactone asperhiratone (3), were isolated and identified from the soft coral-derived fungus Aspergillus hiratsukae SCSIO 5Bn1003, together with [...] Read more.
Three new metabolites, including a cyclic tetrapeptide asperhiratide (1), an ecdysteroid derivative asperhiratine (2), and a sesquiterpene lactone asperhiratone (3), were isolated and identified from the soft coral-derived fungus Aspergillus hiratsukae SCSIO 5Bn1003, together with 10 known compounds. Their structures were elucidated via spectroscopic analysis, X-ray diffraction analysis, and electronic circular dichroism calculations. In addition, the absolute configuration of 1 was determined by Marfey’s technique and an analysis of the acid hydrolysates using a chiral phase HPLC column. Among all the compounds, 6 and 8 showed medium cytotoxic activities against four tumor cell lines (SF-268, HepG-2, MCF-7, and A549), with IC50 values ranging from 31.03 ± 3.04 to 50.25 ± 0.54 µM. Meanwhile, they strongly inhibited α-glucosidase activities, with IC50 values of 35.73 ± 3.94 and 22.00 ± 2.45 µM, which were close to and even stronger than the positive control acarbose (IC50 = 32.92 ± 1.03 µM). Compounds 68 showed significant antibacterial activities against Bacillus subtilis, with MIC values of 10.26 ± 0.76 µM, 17.00 ± 1.25 µM, and 5.30 ± 0.29 µM, respectively. Compounds 9 and 12 exhibited potent radical scavenging activities against DPPH, with IC50 values of 12.23 ± 0.78 µM and 7.38 ± 1.16 µM. In addition, asperhiratide (1) was evaluated for anti-angiogenic activities in the in vivo zebrafish model, which showed a weak inhibitory effect on intersegmental vessel (ISV) formation. Full article
Show Figures

Figure 1

21 pages, 2087 KiB  
Article
Comparative Venomics of the Cryptic Cone Snail Species Virroconus ebraeus and Virroconus judaeus
by José Ramón Pardos-Blas, Manuel J. Tenorio, Juan Carlos G. Galindo and Rafael Zardoya
Mar. Drugs 2022, 20(2), 149; https://doi.org/10.3390/md20020149 - 17 Feb 2022
Cited by 7 | Viewed by 3201
Abstract
The venom duct transcriptomes and proteomes of the cryptic cone snail species Virroconus ebraeus and Virroconus judaeus were obtained and compared. The most abundant and shared conotoxin precursor superfamilies in both species were M, O1, and O2. Additionally, three new putative conotoxin precursor [...] Read more.
The venom duct transcriptomes and proteomes of the cryptic cone snail species Virroconus ebraeus and Virroconus judaeus were obtained and compared. The most abundant and shared conotoxin precursor superfamilies in both species were M, O1, and O2. Additionally, three new putative conotoxin precursor superfamilies (Virro01-03) with cysteine pattern types VI/VII and XVI were identified. The most expressed conotoxin precursor superfamilies were SF-mi2 and M in V. ebraeus, and Cerm03 and M in V. judaeus. Up to 16 conotoxin precursor superfamilies and hormones were differentially expressed between both species, and clustered into two distinct sets, which could represent adaptations of each species to different diets. Finally, we predicted, with machine learning algorithms, the 3D structure model of selected venom proteins including the differentially expressed Cerm03 and SF-mi2, an insulin type 3, a Gastridium geographus GVIA-like conotoxin, and an ortholog to the Pionoconus magus ω-conotoxin MVIIA (Ziconotide). Full article
Show Figures

Graphical abstract

18 pages, 2379 KiB  
Article
In Silico Screening of Bioactive Compounds of Representative Seaweeds to Inhibit SARS-CoV-2 ACE2-Bound Omicron B.1.1.529 Spike Protein Trimer
by Muruganantham Bharathi, Bhagavathi Sundaram Sivamaruthi, Periyanaina Kesika, Subramanian Thangaleela and Chaiyavat Chaiyasut
Mar. Drugs 2022, 20(2), 148; https://doi.org/10.3390/md20020148 - 17 Feb 2022
Cited by 22 | Viewed by 3942
Abstract
Omicron is an emerging SARS-CoV-2 variant, evolved from the Indian delta variant B.1.617.2, which is currently infecting worldwide. The spike glycoprotein, an important molecule in the pathogenesis and transmissions of SARS-CoV-2 variants, especially omicron B.1.1.529, shows 37 mutations distributed over the trimeric protein [...] Read more.
Omicron is an emerging SARS-CoV-2 variant, evolved from the Indian delta variant B.1.617.2, which is currently infecting worldwide. The spike glycoprotein, an important molecule in the pathogenesis and transmissions of SARS-CoV-2 variants, especially omicron B.1.1.529, shows 37 mutations distributed over the trimeric protein domains. Notably, fifteen of these mutations reside in the receptor-binding domain of the spike glycoprotein, which may alter transmissibility and infectivity. Additionally, the omicron spike evades neutralization more efficiently than the delta spike. Most of the therapeutic antibodies are ineffective against the omicron variant, and double immunization with BioNTech-Pfizer (BNT162b2) might not adequately protect against severe disease induced by omicron B.1.1.529. So far, no efficient antiviral drugs are available against omicron. The present study identified the promising inhibitors from seaweed’s bioactive compounds to inhibit the omicron variant B.1.1.529. We have also compared the seaweed’s compounds with the standard drugs ceftriaxone and cefuroxime, which were suggested as beneficial antiviral drugs in COVID-19 treatment. Our molecular docking analysis revealed that caffeic acid hexoside (−6.4 kcal/mol; RMSD = 2.382 Å) and phloretin (−6.3 kcal/mol; RMSD = 0.061 Å) from Sargassum wightii (S. wightii) showed the inhibitory effect against the crucial residues ASN417, SER496, TYR501, and HIS505, which are supported for the inviolable omicron and angiotensin-converting enzyme II (ACE2) receptor interaction. Cholestan-3-ol, 2-methylene-, (3beta, 5 alpha) (CMBA) (−6.0 kcal/mol; RMSD = 3.074 Å) from Corallina officinalis (C. officinalis) manifested the strong inhibitory effect against the omicron RBD mutated residues LEU452 and ALA484, was magnificently observed as the essential residues in Indian delta variant B.1.617.2 previously. The standard drugs (ceftriaxone and cefuroxime) showed no or less inhibitory effect against RBD of omicron B.1.1.529. The present study also emphasized the pharmacological properties of the considered chemical compounds. The results could be used to develop potent seaweed-based antiviral drugs and/or dietary supplements to treat omicron B.1.1529-infected patients. Full article
Show Figures

Graphical abstract

13 pages, 3056 KiB  
Article
A Tale of Toxin Promiscuity: The Versatile Pharmacological Effects of Hcr 1b-2 Sea Anemone Peptide on Voltage-Gated Ion Channels
by Ernesto Lopes Pinheiro-Junior, Rimma Kalina, Irina Gladkikh, Elena Leychenko, Jan Tytgat and Steve Peigneur
Mar. Drugs 2022, 20(2), 147; https://doi.org/10.3390/md20020147 - 17 Feb 2022
Cited by 7 | Viewed by 2800
Abstract
Sea anemones are a rich source of biologically active compounds. Among approximately 1100 species described so far, Heteractis crispa species, also known as sebae anemone, is native to the Indo-Pacific area. As part of its venom components, the Hcr 1b-2 peptide was first [...] Read more.
Sea anemones are a rich source of biologically active compounds. Among approximately 1100 species described so far, Heteractis crispa species, also known as sebae anemone, is native to the Indo-Pacific area. As part of its venom components, the Hcr 1b-2 peptide was first described as an ASIC1a and ASIC3 inhibitor. Using Xenopus laevis oocytes and the two-electrode voltage-clamp technique, in the present work we describe the remarkable lack of selectivity of this toxin. Besides the acid-sensing ion channels previously described, we identified 26 new targets of this peptide, comprising 14 voltage-gated potassium channels, 9 voltage-gated sodium channels, and 3 voltage-gated calcium channels. Among them, Hcr 1b-2 is the first sea anemone peptide described to interact with isoforms from the Kv7 family and T-type Cav channels. Taken together, the diversity of Hcr 1b-2 targets turns this toxin into an interesting tool to study different types of ion channels, as well as a prototype to develop new and more specific ion channel ligands. Full article
Show Figures

Figure 1

9 pages, 1280 KiB  
Article
A Novel α4/7-Conotoxin QuIA Selectively Inhibits α3β2 and α6/α3β4 Nicotinic Acetylcholine Receptor Subtypes with High Efficacy
by Liujun Wang, Xixi Wu, Xiaopeng Zhu, Dongting Zhangsun, Yong Wu and Sulan Luo
Mar. Drugs 2022, 20(2), 146; https://doi.org/10.3390/md20020146 - 17 Feb 2022
Cited by 2 | Viewed by 1846
Abstract
α6β4 nAChR is expressed in the peripheral and central nervous systems and is associated with pain, addiction, and movement disorders. Natural α-conotoxins (α-CTxs) can effectively block different nAChR subtypes with higher efficacy and selectivity. However, the research on α6β4 nAChR is relatively poor, [...] Read more.
α6β4 nAChR is expressed in the peripheral and central nervous systems and is associated with pain, addiction, and movement disorders. Natural α-conotoxins (α-CTxs) can effectively block different nAChR subtypes with higher efficacy and selectivity. However, the research on α6β4 nAChR is relatively poor, partly because of the lack of available target-specific α-CTxs. In this study, we synthesized a novel α-4/7 conotoxin QuIA that was found from Conus quercinus. We investigated the efficacy of this peptide to different nAChR subtypes using a two-electrode voltage-clamp technique. Remarkably, we found α-QuIA inhibited the neuronal α3β2 and α6/α3β4 nAChR subtypes with significantly high affinity (IC50 was 55.7 nM and 90.68 nM, respectively), and did not block other nAChR subtypes even at a high concentration of 10 μM. In contrast, most α-CTxs have been determined so far to effectively block the α6/α3β4 nAChR subtype while also maintaining a similar higher efficacy against the closely related α6β2β3 and/or α3β4 subtypes, which are different from QuIA. In conclusion, α-QuIA is a novel α4/7-CTx, which has the potential to develop as an effective neuropharmacology tool to detect the function of α6β4 nAChR. Full article
(This article belongs to the Special Issue Conotoxins II)
Show Figures

Figure 1

23 pages, 22577 KiB  
Review
Expression of the Antimicrobial Peptide Piscidin 1 and Neuropeptides in Fish Gill and Skin: A Potential Participation in Neuro-Immune Interaction
by Giacomo Zaccone, Gioele Capillo, Jorge Manuel Oliveira Fernandes, Viswanath Kiron, Eugenia Rita Lauriano, Alessio Alesci, Patrizia Lo Cascio, Maria Cristina Guerrera, Michal Kuciel, Krystyna Zuwala, Jose Manuel Icardo, Atsushi Ishimatsu, Ryosuke Murata, Takafumi Amagai, Antonino Germanà and Marialuisa Aragona
Mar. Drugs 2022, 20(2), 145; https://doi.org/10.3390/md20020145 - 17 Feb 2022
Cited by 25 | Viewed by 4480
Abstract
Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid [...] Read more.
Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future. Full article
(This article belongs to the Special Issue Discovery of New Marine Natural Products using Omics approaches)
Show Figures

Figure 1

16 pages, 5880 KiB  
Review
Secondary Metabolites from Marine Sponges of the Genus Oceanapia: Chemistry and Biological Activities
by Meng-Juan Xu, Lin-Jing Zhong, Jun-Kun Chen, Qing Bu and Lin-Fu Liang
Mar. Drugs 2022, 20(2), 144; https://doi.org/10.3390/md20020144 - 16 Feb 2022
Cited by 6 | Viewed by 3137
Abstract
In this review, we summarized the distribution of the chemically investigated Oceanapia sponges, including the isolation and biological activities of their secondary metabolites, covering the literature from the first report in 1989 to July 2019. There have been 110 compounds reported during this [...] Read more.
In this review, we summarized the distribution of the chemically investigated Oceanapia sponges, including the isolation and biological activities of their secondary metabolites, covering the literature from the first report in 1989 to July 2019. There have been 110 compounds reported during this period, including 59 alkaloids, 33 lipids, 14 sterols and 4 miscellaneous compounds. Besides their unique structures, they exhibited promising bioactivities ranging from insecticidal to antibacterial. Their complex structural characteristics and diverse biological properties have attracted a great deal of attention from chemists and pharmaceuticals seeking to perform their applications in the treatment of disease. Full article
Show Figures

Graphical abstract

12 pages, 7373 KiB  
Article
Quantitation Overcoming Matrix Effects of Lipophilic Toxins in Mytilus galloprovincialis by Liquid Chromatography-Full Scan High Resolution Mass Spectrometry Analysis (LC-HR-MS)
by Camila Q. V. Costa, Inês I. Afonso, Sandra Lage, Pedro Reis Costa, Adelino V. M. Canário and José P. Da Silva
Mar. Drugs 2022, 20(2), 143; https://doi.org/10.3390/md20020143 - 15 Feb 2022
Cited by 9 | Viewed by 2888
Abstract
The analysis of marine lipophilic toxins in shellfish products still represents a challenging task due to the complexity and diversity of the sample matrix. Liquid chromatography coupled with mass spectrometry (LC-MS) is the technique of choice for accurate quantitative measurements in complex samples. [...] Read more.
The analysis of marine lipophilic toxins in shellfish products still represents a challenging task due to the complexity and diversity of the sample matrix. Liquid chromatography coupled with mass spectrometry (LC-MS) is the technique of choice for accurate quantitative measurements in complex samples. By combining unambiguous identification with the high selectivity of tandem MS, it provides the required high sensitivity and specificity. However, LC-MS is prone to matrix effects (ME) that need to be evaluated during the development and validation of methods. Furthermore, the large sample-to-sample variability, even between samples of the same species and geographic origin, needs a procedure to evaluate and control ME continuously. Here, we analyzed the toxins okadaic acid (OA), dinophysistoxins (DTX-1 and DTX-2), pectenotoxin (PTX-2), yessotoxin (YTX) and azaspiracid-1 (AZA-1). Samples were mussels (Mytilus galloprovincialis), both fresh and processed, and a toxin-free mussel reference material. We developed an accurate mass-extracted ion chromatogram (AM-XIC) based quantitation method using an Orbitrap instrument, evaluated the ME for different types and extracts of mussel samples, characterized the main compounds co-eluting with the targeted molecules and quantified toxins in samples by following a standard addition method (SAM). An AM-XIC based quantitation of lipophilic toxins in mussel samples using high resolution and accuracy full scan profiles (LC-HR-MS) is a good alternative to multi reaction monitoring (MRM) for instruments with HR capabilities. ME depend on the starting sample matrix and the sample preparation. ME are particularly strong for OA and related toxins, showing values below 50% for fresh mussel samples. Results for other toxins (AZA-1, YTX and PTX-2) are between 75% and 110%. ME in unknown matrices can be evaluated by comparing their full scan LC-HR-MS profiles with those of known samples with known ME. ME can be corrected by following SAM with AM-XIC quantitation if necessary. Full article
(This article belongs to the Special Issue Novel Methods for Marine Toxins Detection and Quantification)
Show Figures

Figure 1

21 pages, 1842 KiB  
Review
Biotechnological Enhancement of Probiotics through Co-Cultivation with Algae: Future or a Trend?
by Lucija Perković, Elvis Djedović, Tamara Vujović, Marija Baković, Tina Paradžik and Rozelindra Čož-Rakovac
Mar. Drugs 2022, 20(2), 142; https://doi.org/10.3390/md20020142 - 15 Feb 2022
Cited by 15 | Viewed by 5980
Abstract
The diversity of algal species is a rich source of many different bioactive metabolites. The compounds extracted from algal biomass have various beneficial effects on health. Recently, co-culture systems between microalgae and bacteria have emerged as an interesting solution that can reduce the [...] Read more.
The diversity of algal species is a rich source of many different bioactive metabolites. The compounds extracted from algal biomass have various beneficial effects on health. Recently, co-culture systems between microalgae and bacteria have emerged as an interesting solution that can reduce the high contamination risk associated with axenic cultures and, consequently, increase biomass yield and synthesis of active compounds. Probiotic microorganisms also have numerous positive effects on various aspects of health and represent potent co-culture partners. Most studies consider algae as prebiotics that serve as enhancers of probiotics performance. However, the extreme diversity of algal organisms and their ability to produce a plethora of metabolites are leading to new experimental designs in which these organisms are cultivated together to derive maximum benefit from their synergistic interactions. The future success of these studies depends on the precise experimental design of these complex systems. In the last decade, the development of high-throughput approaches has enabled a deeper understanding of global changes in response to interspecies interactions. Several studies have shown that the addition of algae, along with probiotics, can influence the microbiota, and improve gut health and overall yield in fish, shrimp, and mussels aquaculture. In the future, such findings can be further explored and implemented for use as dietary supplements for humans. Full article
Show Figures

Graphical abstract

32 pages, 2267 KiB  
Review
An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications
by Silvia Lomartire and Ana M. M. Gonçalves
Mar. Drugs 2022, 20(2), 141; https://doi.org/10.3390/md20020141 - 15 Feb 2022
Cited by 94 | Viewed by 11488
Abstract
Nowadays, seaweeds are widely involved in biotechnological applications. Due to the variety of bioactive compounds in their composition, species of phylum Ochrophyta, class Phaeophyceae, phylum Rhodophyta and Chlorophyta are valuable for the food, cosmetic, pharmaceutical and nutraceutical industries. Seaweeds have been consumed as [...] Read more.
Nowadays, seaweeds are widely involved in biotechnological applications. Due to the variety of bioactive compounds in their composition, species of phylum Ochrophyta, class Phaeophyceae, phylum Rhodophyta and Chlorophyta are valuable for the food, cosmetic, pharmaceutical and nutraceutical industries. Seaweeds have been consumed as whole food since ancient times and used to treat several diseases, even though the mechanisms of action were unknown. During the last decades, research has demonstrated that those unique compounds express beneficial properties for human health. Each compound has peculiar properties (e.g., antioxidant, antimicrobial, antiviral activities, etc.) that can be exploited to enhance human health. Seaweed’s extracted polysaccharides are already involved in the pharmaceutical industry, with the aim of replacing synthetic compounds with components of natural origin. This review aims at a better understanding of the recent uses of algae in drug development, with the scope of replacing synthetic compounds and the multiple biotechnological applications that make up seaweed’s potential in industrial companies. Further research is needed to better understand the mechanisms of action of seaweed’s compounds and to embrace the use of seaweeds in pharmaceutical companies and other applications, with the final scope being to produce sustainable and healthier products. Full article
(This article belongs to the Special Issue Pharmaceutical Formulation of Marine Drugs)
Show Figures

Graphical abstract

15 pages, 3234 KiB  
Article
AsKC11, a Kunitz Peptide from Anemonia sulcata, Is a Novel Activator of G Protein-Coupled Inward-Rectifier Potassium Channels
by Dongchen An, Ernesto Lopes Pinheiro-Junior, László Béress, Irina Gladkikh, Elena Leychenko, Eivind A. B. Undheim, Steve Peigneur and Jan Tytgat
Mar. Drugs 2022, 20(2), 140; https://doi.org/10.3390/md20020140 - 15 Feb 2022
Cited by 6 | Viewed by 3610
Abstract
(1) Background: G protein-coupled inward-rectifier potassium (GIRK) channels, especially neuronal GIRK1/2 channels, have been the focus of intense research interest for developing drugs against brain diseases. In this context, venom peptides that selectively activate GIRK channels can be seen as a new source [...] Read more.
(1) Background: G protein-coupled inward-rectifier potassium (GIRK) channels, especially neuronal GIRK1/2 channels, have been the focus of intense research interest for developing drugs against brain diseases. In this context, venom peptides that selectively activate GIRK channels can be seen as a new source for drug development. Here, we report on the identification and electrophysiological characterization of a novel activator of GIRK1/2 channels, AsKC11, found in the venom of the sea anemone Anemonia sulcata. (2) Methods: AsKC11 was purified from the sea anemone venom by reverse-phase chromatography and the sequence was identified by mass spectrometry. Using the two-electrode voltage-clamp technique, the activity of AsKC11 on GIRK1/2 channels was studied and its selectivity for other potassium channels was investigated. (3) Results: AsKC11, a Kunitz peptide found in the venom of A. sulcata, is the first peptide shown to directly activate neuronal GIRK1/2 channels independent from Gi/o protein activity, without affecting the inward-rectifier potassium channel (IRK1) and with only a minor effect on KV1.6 channels. Thus, AsKC11 is a novel activator of GIRK channels resulting in larger K+ currents because of an increased chord conductance. (4) Conclusions: These discoveries provide new insights into a novel class of GIRK activators. Full article
Show Figures

Figure 1

23 pages, 1564 KiB  
Review
Chemical Review of Gorgostane-Type Steroids Isolated from Marine Organisms and Their 13C-NMR Spectroscopic Data Characteristics
by Fahd M. Abdelkarem, Mohamed E. Abouelela, Mohamed R. Kamel, Alaa M. Nafady, Ahmed E. Allam, Iman A. M. Abdel-Rahman, Ahmad Almatroudi, Faris Alrumaihi, Khaled S. Allemailem and Hamdy K. Assaf
Mar. Drugs 2022, 20(2), 139; https://doi.org/10.3390/md20020139 - 14 Feb 2022
Cited by 2 | Viewed by 2461
Abstract
Gorgostane steroids are isolated from marine organisms and consist of 30 carbon atoms with a characteristic cyclopropane moiety. From the pioneering results to the end of 2021, isolation, biosynthesis, and structural elucidation using 13C-NMR will be used. Overall, 75 compounds are categorized [...] Read more.
Gorgostane steroids are isolated from marine organisms and consist of 30 carbon atoms with a characteristic cyclopropane moiety. From the pioneering results to the end of 2021, isolation, biosynthesis, and structural elucidation using 13C-NMR will be used. Overall, 75 compounds are categorized into five major groups: gorgost-5-ene, 5,6-epoxygorgostane, 5,6-dihydroxygorgostane, 9,11-secogorgostane, and 23-demethylgorgostane, in addition to miscellaneous gorgostane. The structural diversity, selectivity for marine organisms, and biological effects of gorgostane steroids have generated considerable interest in the field of drug discovery research. Full article
Show Figures

Figure 1

13 pages, 2183 KiB  
Article
Inhibitory Effects of Nitrogenous Metabolites from a Marine-Derived Streptomyces bacillaris on Isocitrate Lyase of Candida albicans
by Beomkoo Chung, Ji-Yeon Hwang, Sung Chul Park, Oh-Seok Kwon, Eunji Cho, Jayho Lee, Hyi-Seung Lee, Dong-Chan Oh, Jongheon Shin and Ki-Bong Oh
Mar. Drugs 2022, 20(2), 138; https://doi.org/10.3390/md20020138 - 13 Feb 2022
Cited by 7 | Viewed by 2857
Abstract
Two nitrogenous metabolites, bacillimide (1) and bacillapyrrole (2), were isolated from the culture broth of the marine-derived actinomycete Streptomyces bacillaris. Based on the results of combined spectroscopic and chemical analyses, the structure of bacillimide (1) was [...] Read more.
Two nitrogenous metabolites, bacillimide (1) and bacillapyrrole (2), were isolated from the culture broth of the marine-derived actinomycete Streptomyces bacillaris. Based on the results of combined spectroscopic and chemical analyses, the structure of bacillimide (1) was determined to be a new cyclopenta[c]pyrrole-1,3-dione bearing a methylsulfide group, while the previously reported bacillapyrrole (2) was fully characterized for the first time as a pyrrole-carboxamide bearing an alkyl sulfoxide side chain. Bacillimide (1) and bacillapyrrole (2) exerted moderate (IC50 = 44.24 μM) and weak (IC50 = 190.45 μM) inhibitory effects on Candida albicans isocitrate lyase, respectively. Based on the growth phenotype using icl-deletion mutants and icl expression analyses, we determined that bacillimide (1) inhibits the transcriptional level of icl in C. albicans under C2-carbon-utilizing conditions. Full article
Show Figures

Figure 1

9 pages, 2343 KiB  
Article
Citreobenzofuran D–F and Phomenone A–B: Five Novel Sesquiterpenoids from the Mangrove-Derived Fungus Penicillium sp. HDN13-494
by Qian Wu, Yimin Chang, Qian Che, Dehai Li, Guojian Zhang and Tianjiao Zhu
Mar. Drugs 2022, 20(2), 137; https://doi.org/10.3390/md20020137 - 13 Feb 2022
Cited by 16 | Viewed by 2876
Abstract
Five new sesquiterpenoids, citreobenzofuran D–F (13) and phomenone A–B (45), along with one known compound, xylarenone A (6), were isolated from the culture of the mangrove-derived fungus Penicillium sp. HDN13-494. Their structures were [...] Read more.
Five new sesquiterpenoids, citreobenzofuran D–F (13) and phomenone A–B (45), along with one known compound, xylarenone A (6), were isolated from the culture of the mangrove-derived fungus Penicillium sp. HDN13-494. Their structures were deduced from extensive spectroscopic data, high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. Furthermore, the absolute structures of 1 were determined by single-crystal X-ray diffraction analysis. Citreobenzofuran E–F (23) are eremophilane-type sesquiterpenoids with rare benzofuran frameworks, while phomenone A (4) contains a rare thiomethyl group, which is the first report of this kind of sesquiterpene with sulfur elements in the skeleton. All the compounds were tested for their antimicrobial and antitumor activity, and phomenone B (5) showed moderate activity against Bacillus subtilis, with an MIC value of 6.25 μM. Full article
Show Figures

Graphical abstract

15 pages, 1724 KiB  
Article
Chitosan/Alginate Nanoparticles for the Enhanced Oral Antithrombotic Activity of Clam Heparinoid from the Clam Coelomactra antiquata
by Guan-Lan Chen, Hong-Ying Cai, Jian-Ping Chen, Rui Li, Sai-Yi Zhong, Xue-Jing Jia, Xiao-Fei Liu and Bing-Bing Song
Mar. Drugs 2022, 20(2), 136; https://doi.org/10.3390/md20020136 - 12 Feb 2022
Cited by 9 | Viewed by 3047
Abstract
Chitosan/alginate nanoparticles (DG1-NPs and DG1/Cur-NPs) aiming to enhance the oral antithrombotic activity of clam heparinoid DG1 were prepared by ionotropic pre-gelation. The influence of parameters, such as the concentration of sodium alginate (SA), chitosan (CTS), CaCl2, clam heparinoid DG1, and curcumin [...] Read more.
Chitosan/alginate nanoparticles (DG1-NPs and DG1/Cur-NPs) aiming to enhance the oral antithrombotic activity of clam heparinoid DG1 were prepared by ionotropic pre-gelation. The influence of parameters, such as the concentration of sodium alginate (SA), chitosan (CTS), CaCl2, clam heparinoid DG1, and curcumin (Cur), on the characteristics of the nanoparticles, were investigated. Results indicate that chitosan and alginate can be used as polymer matrices to encapsulate DG1, and nanoparticle characteristics depend on the preparation parameters. Nano-particles should be prepared using 0.6 mg/mL SA, 0.33 mg/mL CaCl2, 0.6 mg/mL CTS, 7.2 mg/mL DG1, and 0.24 mg/mL Cur under vigorous stirring to produce DG1-NPS and DG1/Cur-NPS with small size, high encapsulation efficiency, high loading capacity, and negative zeta potential from approximately −20 to 30 mV. Data from scanning electron microscopy, Fourier-transform infrared spectrometry, and differential scanning calorimetry analyses showed no chemical reaction between DG1, Cur, and the polymers; only physical mixing. Moreover, the drug was loaded in the amorphous phase within the nanoparticle matrix. In the acute pulmonary embolism murine model, DG1-NPs enhanced the oral antithrombotic activity of DG1, but DG1/Cur-NPs did not exhibit higher antithrombotic activity than DG1-NPs. Therefore, the chitosan/alginate nanoparticles enhanced the oral antithrombotic activity of DG1, but curcumin did not further enhance this effect. Full article
(This article belongs to the Special Issue Alginate-Based Biomaterials and Drug Delivery)
Show Figures

Figure 1

10 pages, 8778 KiB  
Article
Aerophobin-1 from the Marine Sponge Aplysina aerophoba Modulates Osteogenesis in Zebrafish Larvae
by Marta Carnovali, Maria Letizia Ciavatta, Ernesto Mollo, Vassilios Roussis, Giuseppe Banfi, Marianna Carbone and Massimo Mariotti
Mar. Drugs 2022, 20(2), 135; https://doi.org/10.3390/md20020135 - 11 Feb 2022
Cited by 5 | Viewed by 2855
Abstract
Longer life expectancy has led to an increase in efforts directed to the discovery of new healing agents for disorders related to aging, such as bone diseases. Harboring an incredible variety of bioactive metabolites, marine organisms are standing out as fruitful sources also [...] Read more.
Longer life expectancy has led to an increase in efforts directed to the discovery of new healing agents for disorders related to aging, such as bone diseases. Harboring an incredible variety of bioactive metabolites, marine organisms are standing out as fruitful sources also in this therapeutic field. On the other hand, the in vivo zebrafish model has proven to be an excellent low-cost screening platform for the fast identification of molecules able to regulate bone development. By using zebrafish larvae as a mineralization model, we have thus evaluated the effects of the crude acetonic extract from the marine sponge Aplysina aerophoba and its bromotyrosine components on bone development. Obtained results led to the selection of aerophobin-1 (1) as a promising candidate for applications in regenerative medicine, paving the way for the development of a novel therapeutic option in osteoporosis treatment. Full article
Show Figures

Graphical abstract

45 pages, 10491 KiB  
Review
Cytotoxic Compounds from Alcyoniidae: An Overview of the Last 30 Years
by Federico Cerri, Francesco Saliu, Davide Maggioni, Simone Montano, Davide Seveso, Silvia Lavorano, Luca Zoia, Fabio Gosetti, Marina Lasagni, Marco Orlandi, Orazio Taglialatela-Scafati and Paolo Galli
Mar. Drugs 2022, 20(2), 134; https://doi.org/10.3390/md20020134 - 11 Feb 2022
Cited by 12 | Viewed by 5079
Abstract
The octocoral family Alcyoniidae represents a rich source of bioactive substances with intriguing and unique structural features. This review aims to provide an updated overview of the compounds isolated from Alcyoniidae and displaying potential cytotoxic activity. In order to allow a better comparison [...] Read more.
The octocoral family Alcyoniidae represents a rich source of bioactive substances with intriguing and unique structural features. This review aims to provide an updated overview of the compounds isolated from Alcyoniidae and displaying potential cytotoxic activity. In order to allow a better comparison among the bioactive compounds, we focused on molecules evaluated in vitro by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, by far the most widely used method to analyze cell proliferation and viability. Specifically, we surveyed the last thirty years of research, finding 153 papers reporting on 344 compounds with proven cytotoxicity. The data were organized in tables to provide a ranking of the most active compounds, to be exploited for the selection of the most promising candidates for further screening and pre-clinical evaluation as anti-cancer agents. Specifically, we found that (22S,24S)-24-methyl-22,25-epoxyfurost-5-ene-3β,20β-diol (16), 3β,11-dihydroxy-24-methylene-9,11-secocholestan-5-en-9-one (23), (24S)-ergostane-3β,5α,6β,25 tetraol (146), sinulerectadione (227), sinulerectol C (229), and cladieunicellin I (277) exhibited stronger cytotoxicity than their respective positive control and that their mechanism of action has not yet been further investigated. Full article
Show Figures

Figure 1

13 pages, 2070 KiB  
Article
Anti-Allergic Effect of 3,4-Dihydroxybenzaldehyde Isolated from Polysiphonia morrowii in IgE/BSA-Stimulated Mast Cells and a Passive Cutaneous Anaphylaxis Mouse Model
by Eun-A Kim, Eui-Jeong Han, Junseong Kim, Ilekuttige Priyan Shanura Fernando, Jae-Young Oh, Kil-Nam Kim, Ginnae Ahn and Soo-Jin Heo
Mar. Drugs 2022, 20(2), 133; https://doi.org/10.3390/md20020133 - 10 Feb 2022
Cited by 7 | Viewed by 2835
Abstract
In this study, we investigated the anti-allergic effects of 3,4-dihydroxybenzaldehyde (DHB) isolated from the marine red alga, Polysiphonia morrowii, in mouse bone-marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-sensitized mice. DHB inhibited IgE/bovine serum [...] Read more.
In this study, we investigated the anti-allergic effects of 3,4-dihydroxybenzaldehyde (DHB) isolated from the marine red alga, Polysiphonia morrowii, in mouse bone-marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-sensitized mice. DHB inhibited IgE/bovine serum albumin (BSA)-induced BMCMCs degranulation by reducing the release of β-hexosaminidase without inducing cytotoxicity. Further, DHB dose-dependently decreased the IgE binding and high-affinity IgE receptor (FcεRI) expression and FcεRI-IgE binding on the surface of BMCMCs. Moreover, DHB suppressed the secretion and/or the expression of the allergic cytokines, interleukin (IL)-4, IL-5, IL-6, IL-13, and tumor necrosis factor (TNF)-α, and the chemokine, thymus activation-regulated chemokine (TARC), by regulating the phosphorylation of IκBα and the translocation of cytoplasmic NF-κB into the nucleus. Furthermore, DHB attenuated the passive cutaneous anaphylactic (PCA) reaction reducing the exuded Evans blue amount in the mouse ear stimulated by IgE/BSA. These results suggest that DHB is a potential therapeutic candidate for the prevention and treatment of type I allergic disorders. Full article
(This article belongs to the Special Issue Marine Drug Research in Korea)
Show Figures

Figure 1

5 pages, 384 KiB  
Editorial
Antioxidant and Anti-Inflammatory Agents from the Sea: A Molecular Treasure for New Potential Drugs
by Marzia Vasarri and Donatella Degl’Innocenti
Mar. Drugs 2022, 20(2), 132; https://doi.org/10.3390/md20020132 - 10 Feb 2022
Cited by 11 | Viewed by 2783
Abstract
Nowadays, natural compounds are widely used worldwide for the treatment of human diseases and health disorders [...] Full article
(This article belongs to the Special Issue Marine Anti-inflammatory and Antioxidant Agents 2021)
Show Figures

Figure 1

10 pages, 1569 KiB  
Article
Virucidal and Immunostimulating Activities of Monogalactosyl Diacylglyceride from Coccomyxa sp. KJ, a Green Microalga, against Murine Norovirus and Feline Calicivirus
by Kyoko Hayashi, Satoko Komatsu, Hitoshi Kuno, Satomi Asai, Iori Matsuura, Vyankatesh Ramlu Kudkyal and Toshio Kawahara
Mar. Drugs 2022, 20(2), 131; https://doi.org/10.3390/md20020131 - 10 Feb 2022
Cited by 5 | Viewed by 2716
Abstract
Human noroviruses are the most common pathogens causing acute gastroenteritis and may lead to more severe illnesses among immunosuppressed people, including elderly and organ transplant recipients. To date, there are no safe and effective vaccines or antiviral agents for norovirus infections. In the [...] Read more.
Human noroviruses are the most common pathogens causing acute gastroenteritis and may lead to more severe illnesses among immunosuppressed people, including elderly and organ transplant recipients. To date, there are no safe and effective vaccines or antiviral agents for norovirus infections. In the present study, we aimed to demonstrate the antiviral activity of monogalactosyl diacylglyceride (MGDG) isolated from a microalga, Coccomyxa sp. KJ, against murine norovirus (MNV) and feline calicivirus (FCV), the surrogates for human norovirus. MGDG showed virucidal activities against these viruses in a dose- and time-dependent manner—MGDG at 100 μg/mL reduced the infectivity of MNV and FCV to approximately 10% after 60 min incubation. In the animal experiments of MNV infection, intraoral administration of MGDG (1 mg/day) exerted a therapeutic effect by suppressing viral shedding in the feces and produced high neutralizing antibody titers in sera and feces. When MGDG was orally administered to immunocompromised mice treated with 5-fluorouracil, the compound exhibited earlier stopping of viral shedding and higher neutralizing antibody titers of sera than those in the control mice administered with distilled water. Thus, MGDG may offer a new therapeutic and prophylactic alternative against norovirus infections. Full article
Show Figures

Figure 1

19 pages, 1828 KiB  
Article
First Insights into the Repertoire of Secretory Lectins in Rotifers
by Marco Gerdol
Mar. Drugs 2022, 20(2), 130; https://doi.org/10.3390/md20020130 - 9 Feb 2022
Cited by 8 | Viewed by 2863
Abstract
Due to their high biodiversity and adaptation to a mutable and challenging environment, aquatic lophotrochozoan animals are regarded as a virtually unlimited source of bioactive molecules. Among these, lectins, i.e., proteins with remarkable carbohydrate-recognition properties involved in immunity, reproduction, self/nonself recognition and several [...] Read more.
Due to their high biodiversity and adaptation to a mutable and challenging environment, aquatic lophotrochozoan animals are regarded as a virtually unlimited source of bioactive molecules. Among these, lectins, i.e., proteins with remarkable carbohydrate-recognition properties involved in immunity, reproduction, self/nonself recognition and several other biological processes, are particularly attractive targets for biotechnological research. To date, lectin research in the Lophotrochozoa has been restricted to the most widespread phyla, which are the usual targets of comparative immunology studies, such as Mollusca and Annelida. Here we provide the first overview of the repertoire of the secretory lectin-like molecules encoded by the genomes of six target rotifer species: Brachionus calyciflorus, Brachionus plicatilis, Proales similis (class Monogononta), Adineta ricciae, Didymodactylos carnosus and Rotaria sordida (class Bdelloidea). Overall, while rotifer secretory lectins display a high molecular diversity and belong to nine different structural classes, their total number is significantly lower than for other groups of lophotrochozoans, with no evidence of lineage-specific expansion events. Considering the high evolutionary divergence between rotifers and the other major sister phyla, their widespread distribution in aquatic environments and the ease of their collection and rearing in laboratory conditions, these organisms may represent interesting targets for glycobiological studies, which may allow the identification of novel carbohydrate-binding proteins with peculiar biological properties. Full article
(This article belongs to the Special Issue Marine Glycomics)
Show Figures

Figure 1

20 pages, 6386 KiB  
Article
Predicting Antifouling Activity and Acetylcholinesterase Inhibition of Marine-Derived Compounds Using a Computer-Aided Drug Design Approach
by Susana P. Gaudêncio and Florbela Pereira
Mar. Drugs 2022, 20(2), 129; https://doi.org/10.3390/md20020129 - 8 Feb 2022
Cited by 12 | Viewed by 4039
Abstract
Biofouling is the undesirable growth of micro- and macro-organisms on artificial water-immersed surfaces, which results in high costs for the prevention and maintenance of this process (billion €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructure. To date, [...] Read more.
Biofouling is the undesirable growth of micro- and macro-organisms on artificial water-immersed surfaces, which results in high costs for the prevention and maintenance of this process (billion €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructure. To date, there are still no sustainable, economical and environmentally safe solutions to overcome this challenging phenomenon. A computer-aided drug design (CADD) approach comprising ligand- and structure-based methods was explored for predicting the antifouling activities of marine natural products (MNPs). In the CADD ligand-based method, 141 organic molecules extracted from the ChEMBL database and literature with antifouling screening data were used to build the quantitative structure–activity relationship (QSAR) classification model. An overall predictive accuracy score of up to 71% was achieved with the best QSAR model for external and internal validation using test and training sets. A virtual screening campaign of 14,492 MNPs from Encinar’s website and 14 MNPs that are currently in the clinical pipeline was also carried out using the best QSAR model developed. In the CADD structure-based approach, the 125 MNPs that were selected by the QSAR approach were used in molecular docking experiments against the acetylcholinesterase enzyme. Overall, 16 MNPs were proposed as the most promising marine drug-like leads as antifouling agents, e.g., macrocyclic lactam, macrocyclic alkaloids, indole and pyridine derivatives. Full article
(This article belongs to the Special Issue Marine Drug Discovery through Computer-Aided Approaches)
Show Figures

Graphical abstract

18 pages, 2987 KiB  
Article
Micrococcin P1 and P2 from Epibiotic Bacteria Associated with Isolates of Moorea producens from Kenya
by Thomas Dzeha, Michael John Hall and James Grant Burgess
Mar. Drugs 2022, 20(2), 128; https://doi.org/10.3390/md20020128 - 7 Feb 2022
Cited by 1 | Viewed by 3113
Abstract
Epibiotic bacteria associated with the filamentous marine cyanobacterium Moorea producens were explored as a novel source of antibiotics and to establish whether they can produce cyclodepsipeptides on their own. Here, we report the isolation of micrococcin P1 (1) (C48H [...] Read more.
Epibiotic bacteria associated with the filamentous marine cyanobacterium Moorea producens were explored as a novel source of antibiotics and to establish whether they can produce cyclodepsipeptides on their own. Here, we report the isolation of micrococcin P1 (1) (C48H49N13O9S6; obs. m/z 1144.21930/572.60381) and micrococcin P2 (2) (C48H47N13O9S6; obs. m/z 1142.20446/571.60370) from a strain of Bacillus marisflavi isolated from M. producens’ filaments. Interestingly, most bacteria isolated from M. producens’ filaments were found to be human pathogens. Stalked diatoms on the filaments suggested a possible terrestrial origin of some epibionts. CuSO4·5H2O assisted differential genomic DNA isolation and phylogenetic analysis showed that a Kenyan strain of M. producens differed from L. majuscula strain CCAP 1446/4 and L. majuscula clones. Organic extracts of the epibiotic bacteria Pseudoalteromonas carrageenovora and Ochrobactrum anthropi did not produce cyclodepsipeptides. Further characterization of 24 Firmicutes strains from M. producens identified extracts of B. marisflavi as most active. Our results showed that the genetic basis for synthesizing micrococcin P1 (1), discovered in Bacillus cereus ATCC 14579, is species/strain-dependent and this reinforces the need for molecular identification of M. producens species worldwide and their epibionts. These findings indicate that M. producens-associated bacteria are an overlooked source of antimicrobial compounds. Full article
(This article belongs to the Special Issue Natural Product Genomics and Metabolomics of Marine Bacteria)
Show Figures

Figure 1

19 pages, 1812 KiB  
Article
Supercritical Fluid Extraction of Fucoxanthin from the Diatom Phaeodactylum tricornutum and Biogas Production through Anaerobic Digestion
by Mari Carmen Ruiz-Domínguez, Francisca Salinas, Elena Medina, Bárbara Rincón, Marí Ángeles Martín, Marí Carmen Gutiérrez and Pedro Cerezal-Mezquita
Mar. Drugs 2022, 20(2), 127; https://doi.org/10.3390/md20020127 - 7 Feb 2022
Cited by 12 | Viewed by 3550
Abstract
Phaeodactylum tricornutum is the marine diatom best known for high-value compounds that are useful in aquaculture and food area. In this study, fucoxanthin was first extracted from the diatom using supercritical fluid extraction (SFE) and then using the extracted diatom-like substrate to produce [...] Read more.
Phaeodactylum tricornutum is the marine diatom best known for high-value compounds that are useful in aquaculture and food area. In this study, fucoxanthin was first extracted from the diatom using supercritical fluid extraction (SFE) and then using the extracted diatom-like substrate to produce bioenergy through anaerobic digestion (AD) processes. Factors such as temperature (30 °C and 50 °C), pressure (20, 30, and 40 MPa), and ethanol (co-solvent concentration from 10% to 50% v/v) were optimized for improving the yield, purity, and recovery of fucoxanthin extracted using SFE. The highest yield (24.41% w/w) was obtained at 30 MPa, 30 °C, and 30% ethanol but the highest fucoxanthin purity and recovery (85.03mg/g extract and 66.60% w/w, respectively) were obtained at 30 MPa, 30 °C, and 40%ethanol. Furthermore, ethanol as a factor had the most significant effect on the overall process of SFE. Subsequently, P.tricornutum biomass and SFE-extracted diatom were used as substrates for biogas production through AD. The effect of fucoxanthin was studied on the yield of AD, which resulted in 77.15 ± 3.85 LSTP CH4/kg volatile solids (VS) and 56.66 ± 1.90 LSTP CH4/kg VS for the whole diatom and the extracted P.tricornutum, respectively. Therefore, P.tricornutuman can be considered a potential source of fucoxanthin and methane and both productions will contribute to the sustainability of the algae-biorefinery processes. Full article
(This article belongs to the Special Issue Green Chemistry in Marine Natural Product Research)
Show Figures

Graphical abstract

17 pages, 4548 KiB  
Article
Biochemical Characterization and Cold-Adaption Mechanism of a PL-17 Family Alginate Lyase Aly23 from Marine Bacterium Pseudoalteromonas sp. ASY5 and Its Application for Oligosaccharides Production
by Xiang Tang, Chao Jiao, Yi Wei, Xiao-Yan Zhuang, Qiong Xiao, Jun Chen, Fu-Quan Chen, Qiu-Ming Yang, Hui-Fen Weng, Bai-Shan Fang, Yong-Hui Zhang and An-Feng Xiao
Mar. Drugs 2022, 20(2), 126; https://doi.org/10.3390/md20020126 - 6 Feb 2022
Cited by 12 | Viewed by 3127
Abstract
As an important enzyme involved in the marine carbon cycle, alginate lyase has received extensive attention because of its excellent degradation ability on brown algae, which is widely utilized for alginate oligosaccharide preparation or bioethanol production. In comparison with endo-type alginate lyases (PL-5, [...] Read more.
As an important enzyme involved in the marine carbon cycle, alginate lyase has received extensive attention because of its excellent degradation ability on brown algae, which is widely utilized for alginate oligosaccharide preparation or bioethanol production. In comparison with endo-type alginate lyases (PL-5, PL-7, and PL-18 families), limited studies have focused on PL-17 family alginate lyases, especially for those with special characteristics. In this study, a novel PL-17 family alginate lyase, Aly23, was identified and cloned from the marine bacterium Pseudoalteromonas carrageenovora ASY5. Aly23 exhibited maximum activity at 35 °C and retained 48.93% of its highest activity at 4 °C, representing an excellent cold-adaptation property. Comparative molecular dynamics analysis was implemented to explore the structural basis for the cold-adaptation property of Aly23. Aly23 had a high substrate preference for poly β-D-mannuronate and exhibited both endolytic and exolytic activities; its hydrolysis reaction mainly produced monosaccharides, disaccharides, and trisaccharides. Furthermore, the enzymatic hydrolyzed oligosaccharides displayed good antioxidant activities to reduce ferric and scavenge radicals, such as hydroxyl, ABTS+, and DPPH. Our work demonstrated that Aly23 is a promising cold-adapted biocatalyst for the preparation of natural antioxidants from brown algae. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop