Computational Design of High-Affinity Blockers for Sodium Channel NaV1.2 from μ-Conotoxin KIIIA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Critical Interaction Networks Identified from the NaV1.2–KIIIA Complex
2.2. MD Simulations of the KIIIA[S5R] Analogue
2.3. MD Simulations of the KIIIA[S5R, S13K] Analogue
2.4. MD Simulations of the KIIIA[S5R, S6D, S13K] Analogue
2.5. Blocking of Sodium Channel NaV1.2
3. Methods
3.1. Modelling of NaV1.2 Channel
3.2. Search for KIIIA Mutations to Improve Its Affinity for NaV1.2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodgkin, A.L.; Huxley, A.F. Resting and action potentials in single nerve fibres. J. Physiol. 1945, 104, 176–195. [Google Scholar] [CrossRef] [PubMed]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544. [Google Scholar] [CrossRef] [PubMed]
- Ahern, C.A.; Payandeh, J.; Bosmans, F.; Chanda, B. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol. 2016, 147, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldin, A.L.; Barchi, R.L.; Caldwell, J.H.; Hofmann, F.; Howe, J.R.; Hunter, J.C.; Kallen, R.G.; Mandel, G.; Meisler, M.H.; Netter, Y.B.; et al. Nomenclature of voltage-gated sodium channels. Neuron 2000, 28, 365–368. [Google Scholar] [CrossRef] [Green Version]
- O’Malley, H.A.; Isom, L.L. Sodium channel β subunits: Emerging targets in channelopathies. Annu. Rev. Physiol. 2015, 77, 481–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartshorne, R.P.; Catterall, W.A. Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc. Natl. Acad. Sci. USA 1981, 78, 4620–4624. [Google Scholar] [CrossRef] [Green Version]
- Hartshorne, R.P.; Messner, D.J.; Coppersmith, J.C.; Catterall, W.A. The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits. J. Biol. Chem. 1982, 257, 13888–13891. [Google Scholar] [CrossRef]
- Schwarz, N.; Hahn, A.; Bast, T.; Müller, S.; Löffler, H.; Maljevic, S.; Gaily, E.; Prehl, I.; Biskup, S.; Joensuu, T.; et al. Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia. J. Neurol. 2016, 263, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.J.; Yoshikami, D.; Azam, L.; Gajewiak, J.; Olivera, B.M.; Bulaj, G.; Zhang, M.-M. μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 10302–10307. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, J.; Olivera, B.M.; Bosmans, F. Animal toxins influence voltage-gated sodium channel function. Volt. Gated Sodium Channels 2014, 221, 203–229. [Google Scholar] [CrossRef] [Green Version]
- French, R.J.; Yoshikami, D.; Sheets, M.F.; Olivera, B.M. The tetrodotoxin receptor of voltage-gated sodium channels—Perspectives from interactions with micro-conotoxins. Mar. Drugs 2010, 8, 2153–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulaj, G.; West, P.J.; Garrett, J.E.; Watkins, M.; Zhang, M.-M.; Norton, R.S.; Smith, B.J.; Yoshikami, D.; Olivera, B.M. Novel conotoxins from Conus striatus and Conus kinoshitai selectively block TTX-resistant sodium channels. Biochemistry 2005, 44, 7259–7265. [Google Scholar] [CrossRef] [PubMed]
- Khoo, K.K.; Gupta, K.; Green, B.R.; Zhang, M.-M.; Watkins, M.; Olivera, B.M.; Balaram, P.; Yoshikami, D.; Bulaj, G.; Norton, R.S. Distinct disulfide isomers of μ-conotoxins KIIIA and KIIIB block voltage-gated sodium channels. Biochemistry 2012, 51, 9826–9835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.-M.; Green, B.R.; Catlin, P.; Fiedler, B.; Azam, L.; Chadwick, A.; Terlau, H.; McArthur, J.R.; French, R.J.; Gulyas, J.; et al. Structure/function characterization of µ-conotoxin KIIIA, an analgesic, nearly irreversible blocker of mammalian neuronal sodium channels. J. Biol. Chem. 2007, 282, 30699–30706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McArthur, J.R.; Singh, G.; McMaster, D.; Winkfein, R.; Tieleman, D.P.; French, R.J. Interactions of key charged residues contributing to selective block of neuronal sodium channels by μ-conotoxin KIIIA. Mol. Pharmacol. 2011, 80, 573–584. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.-M.; McArthur, J.R.; Azam, L.; Bulaj, G.; Olivera, B.M.; French, R.J.; Yoshikami, D. Synergistic and antagonistic interactions between tetrodotoxin and μ-conotoxin in blocking voltage-gated sodium channels. Channels 2009, 3, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Li, Z.; Huang, X.; Huang, G.; Gao, S.; Shen, H.; Liu, L.; Lei, J.; Yan, N. Molecular basis for pore blockade of human Na+ channel NaV1.2 by the μ-conotoxin KIIIA. Science 2019, 363, 1309–1313. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Steinegger, M.; Meier, M.; Mirdita, M.; Vöhringer, H.; Haunsberger, S.J.; Söding, J. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinform. 2019, 20, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studer, G.; Tauriello, G.; Bienert, S.; Biasini, M.; Johner, N.; Schwede, T. ProMod3-A versatile homology modelling toolbox. PLoS Comput. Biol. 2021, 17, e1008667. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdavi, S.; Kuyucak, S. Molecular dynamics study of binding of µ-conotoxin GIIIA to the voltage-gated sodium channel NaV1.4. PLoS ONE 2014, 9, e105300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
KIIIA | NaV1.2 | Exp (Å) | MD (Å) | ||
---|---|---|---|---|---|
N3 | ND2 | E330 | OE1 | 2.8 | 4.4 ± 1.3 |
OE2 | 4.3 | 5.6 ± 1.0 | |||
K7 | NZ | E945 | OE1 | 2.5 | 2.7 ± 0.1 |
OE2 | 4.4 | 3.1 ± 0.3 | |||
W8 | NE1 | Y362 | OH | 3.4 | 3.0 ± 0.2 |
R10 | NH1 | D1426 | OD1 | 4.6/5.5 | 4.8 ± 0.4 |
OD2 | 6.4/5.7 | 5.1 ± 0.4 | |||
NH2 | OD1 | 2.5/4.0 | 2.9 ± 0.4 | ||
OD2 | 4.2/4.4 | 3.3 ± 0.4 | |||
D11 | O | R922 | N | 3.1 | 3.1 ± 0.2 |
OD1 | Y1429 | OH | 2.6 | 3.0 ± 0.5 | |
OD2 | 4.4 | 4.9 ± 0.4 | |||
H12 | NE2 | D949 | OD1 | 3.1 | 2.7 ± 0.1 |
OD2 | 3.2 | 3.1 ± 0.2 | |||
Y362 | OH | 4.3 | 3.8 ± 0.4 | ||
ND1 | D949 | OD1 | 5.0 | 4.7 ± 0.1 | |
OD2 | 5.0 | 5.0 ± 0.2 | |||
Y362 | OH | 5.3 | 5.4 ± 0.3 | ||
O | N916 | N | 3.2 | 4.7 ± 0.4 | |
R14 | NH1 | L920 | O | 3.3 | 3.2 ± 0.7 |
NH2 | 5.4 | 4.8 ± 0.5 | |||
NH1 | E919 | OE1 | 5.0 | 6.9 ± 1.4 | |
OE2 | 5.7 | 6.7 ± 1.3 | |||
NH2 | OE1 | 4.5 | 7.5 ± 1.3 | ||
OE2 | 5.4 | 7.2 ± 1.2 | |||
NH1 | E1444 | OE1 | 6.2 | 3.8 ± 1.1 | |
OE2 | 6.7 | 3.7 ± 1.2 | |||
NH2 | OE1 | 6.4 | 3.5 ± 0.6 | ||
OE2 | 7.3 | 3.4 ± 0.8 | |||
NH1 | Y1443 | Center | 4.0 | 5.6 ± 0.7 | |
NH2 | 4.6 | 7.1 ± 0.7 | |||
C15 | O | M1374 | N | 3.1 | 3.0 ± 0.4 |
Toxin | Nav1.2 | WT | S5R, S6D, S13K | ||
---|---|---|---|---|---|
R5 | NH1 | D1692 | OD2 | / | 2.7 ± 0.1 |
NH2 | OD1 | / | 2.8 ± 0.2 | ||
NH1 | V1689 | O | / | 4.9 ± 0.2 | |
NH2 | / | 2.9 ± 0.3 | |||
D6 | OD1 | N333 | ND2 | / | 3.4 ± 0.4 |
OD2 | / | 4.9 ± 0.2 | |||
K7 | NZ | E945 | OE1 | 2.7 ± 0.1 | 2.7 ± 0.1 |
OE2 | 3.1 ± 0.3 | 4.2 ± 0.6 | |||
E942 | OE1 | / | 2.7 ± 0.2 | ||
OE2 | / | 4.2 ± 0.4 | |||
W8 | NE1 | Y362 | OH | 3.0 ± 0.2 | 3.2 ± 0.4 |
R10 | NH1 | D1426/E942 | OD1/OE1 | 4.8 ± 0.4 | 3.6 ± 0.5 |
OD2/OE2 | 5.1 ± 0.4 | 3.9 ± 0.3 | |||
NH2 | OD1/OE1 | 2.9 ± 0.4 | 2.8 ± 0.2 | ||
OD2/OE2 | 3.3 ± 0.4 | 3.5 ± 0.4 | |||
D11 | O | R922 | N | 3.1 ± 0.2 | 2.9 ± 0.1 |
OD1 | Y1429 | OH | 3.0 ± 0.5 | 2.7 ± 0.1 | |
OD2 | 4.9 ± 0.4 | 4.0 ± 0.3 | |||
H12 | NE2 | D949 | OD1 | 2.7 ± 0.1 | 2.8 ± 0.1 |
OD2 | 3.1 ± 0.2 | 3.0 ± 0.1 | |||
Y362 | OH | 3.8 ± 0.4 | 3.5 ± 0.3 | ||
K13 | NZ | D917 | OD1 | / | 2.7 ± 0.3 |
OD2 | / | 4.5 ± 0.4 | |||
E919 | OE1 | / | 2.7 ± 0.1 | ||
OE2 | / | 4.0 ± 0.6 | |||
R14 | NH1 | L920 | O | 3.2 ± 0.7 | 2.8 ± 0.1 |
NH2 | 4.8 ± 0.5 | 4.0 ± 0.4 | |||
NH1 | E1444 | OE1 | 3.0 ± 0.8 | 4.7 ± 0.4 | |
OE2 | 4.5 ± 0.9 | 5.7 ± 0.6 | |||
NH2 | OE1 | 3.0 ± 0.4 | 2.9 ± 0.4 | ||
OE2 | 3.9 ± 0.7 | 3.8 ± 0.6 | |||
C15 | O | M1374 | N | 3.0 ± 0.4 | 6.3 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, G.; Kuyucak, S. Computational Design of High-Affinity Blockers for Sodium Channel NaV1.2 from μ-Conotoxin KIIIA. Mar. Drugs 2022, 20, 154. https://doi.org/10.3390/md20020154
Meng G, Kuyucak S. Computational Design of High-Affinity Blockers for Sodium Channel NaV1.2 from μ-Conotoxin KIIIA. Marine Drugs. 2022; 20(2):154. https://doi.org/10.3390/md20020154
Chicago/Turabian StyleMeng, Guangsi, and Serdar Kuyucak. 2022. "Computational Design of High-Affinity Blockers for Sodium Channel NaV1.2 from μ-Conotoxin KIIIA" Marine Drugs 20, no. 2: 154. https://doi.org/10.3390/md20020154
APA StyleMeng, G., & Kuyucak, S. (2022). Computational Design of High-Affinity Blockers for Sodium Channel NaV1.2 from μ-Conotoxin KIIIA. Marine Drugs, 20(2), 154. https://doi.org/10.3390/md20020154