Next Issue
Volume 12, April
Previous Issue
Volume 12, February

Diversity, Volume 12, Issue 3 (March 2020) – 35 articles

Cover Story (view full-size image): Oysters form considerable bioconstructions worldwide. Oyster reefs play a crucial role by enhancing biodiversity, especially in coastal environments, and are considered under several protection and management measures. Information on oyster reefs at mesophotic depths is rather scant with respect to coastal oyster reefs, but is growing thanks to the application of new technologies such as remote-operated vehicles. Their ecological role and ecosystemic importance calls for implementing investigations on deep-water oyster bioconstructions to better our knowledge of their diversity and ecosytemic functioning, useful also for maintaining and preserving these relevant habitats. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Article
Factors Influencing the Distribution of Invasive Hybrid (Myriophyllum Spicatum x M. Sibiricum) Watermilfoil and Parental Taxa in Minnesota
Diversity 2020, 12(3), 120; https://doi.org/10.3390/d12030120 - 24 Mar 2020
Cited by 1 | Viewed by 1170
Abstract
Eurasian watermilfoil (Myriophyllum spicatum L.) hybridizes with the native northern watermilfoil (M. sibiricum Kom.), which raises new issues regarding management strategies to control infestations. To determine the distribution of hybrid (and coincidentally Eurasian and northern) watermilfoil in Minnesota, we sampled lakes [...] Read more.
Eurasian watermilfoil (Myriophyllum spicatum L.) hybridizes with the native northern watermilfoil (M. sibiricum Kom.), which raises new issues regarding management strategies to control infestations. To determine the distribution of hybrid (and coincidentally Eurasian and northern) watermilfoil in Minnesota, we sampled lakes across the state during 2017–2018 for watermilfoil. A total of 62 lakes were sampled, spanning a range of sizes and duration of invasion. Forty-three lakes contained Eurasian, 28 contained hybrid and 21 contained northern watermilfoil. Eurasian watermilfoil populations were widespread throughout the state. Hybrid populations were more commonly found in lakes in the seven county Twin Cities Metro and northern watermilfoil populations were more commonly found in lakes outside of the Metro area. We found no evidence that hybrid watermilfoil occurred in lakes environmentally different than those with Eurasian and northern watermilfoil, suggesting that hybrid watermilfoil is not associated with a unique niche. Hybrid watermilfoil presence was significantly associated with the Metro area, which may likely be due to spatial and temporal factors associated with hybrid formation and spread. Hybrid watermilfoil presence was also significantly associated with lakes that had more parking spaces and older infestations, but this relationship was not significant when the effect of region was considered. Hybrid watermilfoil populations were the result of both in situ hybridization and clonal spread and continued assessment is needed to determine if particularly invasive or herbicide-resistant genotypes develop. Full article
(This article belongs to the Special Issue Ecology of Invasive Aquatic Plants)
Show Figures

Figure 1

Article
Trappings of Success: Predator Removal for Duck Nest Survival in Alberta Parklands
Diversity 2020, 12(3), 119; https://doi.org/10.3390/d12030119 - 24 Mar 2020
Viewed by 1054
Abstract
Nest survival is most limited by nest predation, which often is increased by anthropogenic causes including habitat fragmentation, mesopredator release and predator subsidies. In mallards and other upland-nesting duck species in the North American prairies, the rate of nest survival is the vital [...] Read more.
Nest survival is most limited by nest predation, which often is increased by anthropogenic causes including habitat fragmentation, mesopredator release and predator subsidies. In mallards and other upland-nesting duck species in the North American prairies, the rate of nest survival is the vital rate most influential to population dynamics, with 15%–20% survival required for maintenance of stable populations. Predator removal during the nesting season has increased duck nest survival on township-sized (9324 ha) areas of agricultural ecosystems in eastern locations of the prairie pothole region (PPR). However, predator removal has not been evaluated in western parkland habitats of the PPR where three-dimensional structure of vegetation is considerably greater. During 2015–2017, we evaluated nest survival on control and predator-removal plots at two study areas in the parklands of central Alberta, Canada. In the second year of the study, we transposed predator removal to control for habitat effects. Estimates of 34-day nest survival did not significantly differ between trapped ( x ¯ = 20.9%, 95% CI = 13.2%–33.7%) and control ( x ¯ = 17.8%, 95% CI = 10.5%–30.0%) plots in any year. We do not recommend predator removal be continued in Alberta parklands due to its ineffectiveness at improving duck nest survival at the local scale. Full article
Show Figures

Figure 1

Article
Evidence for Plio-Pleistocene Duck Mussel Refugia in the Azov Sea River Basins
Diversity 2020, 12(3), 118; https://doi.org/10.3390/d12030118 - 23 Mar 2020
Cited by 7 | Viewed by 1407
Abstract
Freshwater mussels (Bivalvia: Unionoida) play an important role in freshwater habitats as ecosystem engineers of the water environment. Duck mussel Anodonta anatina is widely distributed throughout Europe, Siberia, and Western and Central Asia, which makes it a convenient object for biogeographic studies. In [...] Read more.
Freshwater mussels (Bivalvia: Unionoida) play an important role in freshwater habitats as ecosystem engineers of the water environment. Duck mussel Anodonta anatina is widely distributed throughout Europe, Siberia, and Western and Central Asia, which makes it a convenient object for biogeographic studies. In this study, we analyzed the divergence of A. anatina populations and discovered a separate genetic lineage distributed in rivers of the Azov Sea basin. This was confirmed by the high genetic distances between this group and previously defined populations, and by the position of this clade in the Bayesian phylogeny calibrated by an external substitution rate. Based on our approximate Bayesian computation (ABC) analysis, biogeographic scenarios of A. anatina dispersal in Europe and Northern, Western, and Central Asia over the Neogene–Quaternary were simulated. The haplogroup’s isolation in the rivers of the Azov Sea basin most likely occurred in the Late Pliocene that was probably facilitated by rearrangement of freshwater basins boundaries in the Ponto-Caspian Region. Population genetic indices show the stability of this group, which allowed it to exist in the river basins of the region for a long time. The discovery of a long-term refugium in the rivers of the Azov Sea led to a better understanding of freshwater fauna evolution in the Neogene–Quaternary and highlighted the importance of conservation of these freshwater animals in the region as a source of unique genetic diversity. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Graphical abstract

Article
Middle Eocene Rhodoliths from Tropical and Mid-Latitude Regions
Diversity 2020, 12(3), 117; https://doi.org/10.3390/d12030117 - 23 Mar 2020
Cited by 2 | Viewed by 1368
Abstract
During the greenhouse conditions prevailing in the early–middle Eocene, larger benthic foraminifers (LBF) spread out on carbonate platforms worldwide while rhodolith beds were scarcely represented. This reduction in rhodolith beds coincided with a relative decrease in coralline algal diversity and with a drastic [...] Read more.
During the greenhouse conditions prevailing in the early–middle Eocene, larger benthic foraminifers (LBF) spread out on carbonate platforms worldwide while rhodolith beds were scarcely represented. This reduction in rhodolith beds coincided with a relative decrease in coralline algal diversity and with a drastic decline of coral reef abundance. Middle Eocene rhodoliths from two tropical (San Jacinto Fold Belt in northern Colombia and Bahoruco Peninsula in the Dominican Republic) and two mid-latitude (Salinas Menores Ravine and Sierra del Zacatín in Southern Spain) localities were studied. Rhodolith rudstones in the tropical areas accumulated on relatively deep (several tens of meters) platform environments and were also redeposited in deeper settings downslope. In Salinas Menores, rhodoliths are dispersed in planktic foraminifer-rich marls. Miliolids are common in the infilling of constructional voids in these rhodoliths, indicating that they originally grew in shallow-water inner-shelf settings and afterwards they were transported to deeper environments. In Sierra del Zacatín, rhodoliths are scarce and coralline algae mainly occur as crusts attached to and intergrowing with corals. Here, LBF dominated shallow-water carbonate platforms. In terms of taxonomic composition, coralline algae of the order Hapalidiales are the most abundant in the study areas, followed by Sporolithales. The order Corallinales is poorly represented except in Salinas Menores, where it is relatively abundant and diverse. The impact of high temperatures due to high levels of atmospheric CO2 during the Eocene and widespread oligotrophic conditions, which favored formation of LBF-rich lithofacies, might account for the low abundance of rhodolith beds at mid and high latitudes. In contrast, the more productive equatorial regions would have favored the formation of rhodolith beds. Full article
(This article belongs to the Special Issue Structure and Biodiversity of Rhodolith Seabeds)
Show Figures

Figure 1

Article
The Diversity Distribution Pattern of Ruderal Community under the Rapid Urbanization in Hangzhou, East China
Diversity 2020, 12(3), 116; https://doi.org/10.3390/d12030116 - 23 Mar 2020
Cited by 2 | Viewed by 1038
Abstract
The process of rapid urbanization has affected the composition and diversity of urban vegetation species. The process of urbanization from 2000 was analyzed in the area of "one major city with three vice cities and six groups", according to the urban master planning [...] Read more.
The process of rapid urbanization has affected the composition and diversity of urban vegetation species. The process of urbanization from 2000 was analyzed in the area of "one major city with three vice cities and six groups", according to the urban master planning of Hangzhou from 2001 to 2020. The results show that dramatic changes have occurred for land use types during the ten years from 2000 to 2010 in Hangzhou, of which urban land has become the main type of land use and the area of arable land has presented serious loss. This study found that the Gramineae and Compositae species were the main groups of ruderals in 1665 quadrats, which reflected the characteristics of a few large families. The number of Monotypic and Oligotypic family/genera accounted for 67.3% of the total number of families and 97.5% of the total number of genera. The ruderals were dominated by annual life forms with strong adaptability and high plasticity. The ruderal communities in the study areas were divided into 125 community types based on clustering analysis of the dominance of ruderal species. The proportion of summer annual ruderals in the dominant species of ruderal communities gradually decreased along the group-vice city-major city gradient. The percentage of winter annual ruderals was the highest and the percentage of perennials was the lowest in the groups. The number of ruderal community types showed a nonlinear decreasing trend along the urbanization gradient of the group-vice city-major city. The number of ruderal communities in the vice cities and the groups was similar, which was higher than that in the major city. Only species that are highly tolerant to urban habitats can be distributed under frequent and high-intensity human disturbances in the major city. Therefore, the number of ruderal communities in the major city was minimal and it had low diversity. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

Interesting Images
Extension of the Recorded Host Range of Caribbean Christmas Tree Worms (Spirobranchus spp.) with Two Scleractinians, a Zoantharian, and an Ascidian
Diversity 2020, 12(3), 115; https://doi.org/10.3390/d12030115 - 21 Mar 2020
Cited by 3 | Viewed by 1305
Abstract
Caribbean Christmas tree worms (Annelida: Polychaeta: Serpulidae: Spirobranchus) are considered host generalists in their associations with anthozoan (Scleractinia) and hydrozoan (Millepora) stony corals [...] Full article
(This article belongs to the Special Issue Diversity of Coral-Associated Fauna)
Show Figures

Graphical abstract

Article
Variability and Community Composition of Marine Unicellular Eukaryote Assemblages in a Eutrophic Mediterranean Urban Coastal Area with Marked Plankton Blooms and Red Tides
Diversity 2020, 12(3), 114; https://doi.org/10.3390/d12030114 - 21 Mar 2020
Cited by 2 | Viewed by 1344
Abstract
The Thessaloniki Bay is a eutrophic coastal area which has been characterized in recent years by frequent and intense phytoplankton blooms and red tides. The aim of the study was to investigate the underexplored diversity of marine unicellular eukaryotes in four different sampling [...] Read more.
The Thessaloniki Bay is a eutrophic coastal area which has been characterized in recent years by frequent and intense phytoplankton blooms and red tides. The aim of the study was to investigate the underexplored diversity of marine unicellular eukaryotes in four different sampling sites in Thessaloniki Bay during a year of plankton blooms, red tides, and mucilage aggregates. High-Throughput Sequencing (HTS) was applied in extracted DNA from weekly water samples targeting the 18S rRNA gene. In almost all samples, phytoplankton blooms and/or red tides and mucilage aggregates were observed. The metabarcoding analysis has detected the known unicellular eukaryotic groups frequently observed in the Bay, dominated by Bacillariophyta and Dinoflagellata, and revealed taxonomic groups previously undetected in the study area (MALVs, MAST, and Cercozoa). The dominant OTUs were closely related to species known to participate in red tides, harmful blooms, and mucilage aggregates. Other OTUs, present also during the blooms in low abundance (number of reads), were closely related to known harmful species, suggesting the occurrence of rare taxa with potential negative impacts on human health not detectable with classical microscopy. Overall, the unicellular eukaryote assemblages showed temporal patterns rather than small-scale spatial separation responding to the variability of physical and chemical factors. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Graphical abstract

Article
Responses of Rotifer Community to Microhabitat Changes Caused by Summer-Concentrated Rainfall in a Shallow Reservoir, South Korea
Diversity 2020, 12(3), 113; https://doi.org/10.3390/d12030113 - 21 Mar 2020
Cited by 11 | Viewed by 965
Abstract
Empirical studies suggest that the structural heterogeneity of aquatic ecosystem microhabitat is determined by the diversity and abundance of macrophytes. However, excessive accumulation of free-floating macrophytes on the water surface can reduce the biomass of submerged macrophytes, resulting in a relatively simplified habitat [...] Read more.
Empirical studies suggest that the structural heterogeneity of aquatic ecosystem microhabitat is determined by the diversity and abundance of macrophytes. However, excessive accumulation of free-floating macrophytes on the water surface can reduce the biomass of submerged macrophytes, resulting in a relatively simplified habitat structure. We hypothesized that heavy summer rainfall disrupts the growth of free-floating macrophytes covering much of the Jangcheok Reservoir’s water surface, thereby resulting in a more complex habitat structure by allowing development of a more diverse of macrophytic community. We divided long-term (2008–2017) monitoring data (rainfall, macrophytes, and rotifers) into two groups: Rainy and Dry years, corresponding to years with annual rainfall higher and lower than the total annual average, respectively. We found that summer densities of rotifers fell sharply in Rainy years, but increased continuously in Dry years. This trend resulted in greater autumn densities in Rainy relative to Dry years, which we attributed to changes in habitat related to differential macrophyte development. Moderate disturbance of the water surface caused by high summer rainfall can promote growth of submerged macrophytes by creating large areas of open water and therefore a more complex autumnal microhabitat structure, resulting in seasonal variations in rotifer community structures and populations. Moreover, a highly complex microhabitat structure restricts foraging activity of fish (i.e., Lepomis macrochirus) that prey on rotifers. Based on these findings, we suggest that summer-concentrated rainfall plays an important role in supporting the density and species diversity of rotifers. Full article
(This article belongs to the Section Biodiversity Loss & Dynamics)
Show Figures

Figure 1

Article
Plant Invasion Has Limited Impact on Soil Microbial α-Diversity: A Meta-Analysis
Diversity 2020, 12(3), 112; https://doi.org/10.3390/d12030112 - 20 Mar 2020
Cited by 2 | Viewed by 2029
Abstract
Plant invasion has proven to be a significant driver of ecosystem change, and with the increased probability of invasion due to globalization, agricultural practices and other anthropogenic causes, it is crucial to understand its impact across multiple trophic levels. With strong linkages between [...] Read more.
Plant invasion has proven to be a significant driver of ecosystem change, and with the increased probability of invasion due to globalization, agricultural practices and other anthropogenic causes, it is crucial to understand its impact across multiple trophic levels. With strong linkages between above and belowground processes, the response of soil microorganisms to plant invasion is the next logical step in developing our conceptual understanding of this complex system. In our study, we utilized a meta-analytical approach to better understand the impacts of plant invasion on soil microbial diversity. We synthesized 70 independent studies with 23 unique invaders across multiple ecosystem types to search for generalizable trends in soil microbial α-diversity following invasion. When possible, soil nutrient metrics were also collected in an attempt to understand the contribution of nutrient status shifts on microbial α-diversity. Our results show plant invasion to have highly heterogenous and limited impacts on microbial α-diversity. When taken together, our study indicates soil microbial α-diversity to remain constant following invasion, contrary to the aboveground counterparts. As our results suggest a decoupling in patterns of below and aboveground diversity, future work is needed to examine the drivers of microbial diversity patterns following invasion. Full article
(This article belongs to the Special Issue Microbial Interactions with Invasive Plant Species)
Show Figures

Figure 1

Article
Do Invasive Mosquito and Bird Species Alter Avian Malaria Parasite Transmission?
Diversity 2020, 12(3), 111; https://doi.org/10.3390/d12030111 - 20 Mar 2020
Cited by 7 | Viewed by 1945
Abstract
Alien mosquito and vertebrate host species may create novel epidemiological scenarios for the transmission of pathogens naturally circulating in the invaded area. The exotic Monk parakeet (Myiopsitta monachus) has established populations in Europe and is currently considered an invasive pest. Due [...] Read more.
Alien mosquito and vertebrate host species may create novel epidemiological scenarios for the transmission of pathogens naturally circulating in the invaded area. The exotic Monk parakeet (Myiopsitta monachus) has established populations in Europe and is currently considered an invasive pest. Due to their high abundance in urban areas, Monk parakeets could be involved in the transmission of pathogens, potentially affecting wildlife and livestock. To test this hypothesis, we determined the prevalence and diversity of three vector-borne parasites, namely Plasmodium, Haemoproteus and Leucocytozoon, in Monk parakeets from Barcelona. Many areas of southern Europe shelter high densities of the invasive Asian tiger mosquito Aedes albopictus, which in addition to native mosquito species could affect the transmission of mosquito-borne parasites, such as avian Plasmodium. Thus, we also sampled mosquitoes in the area to trace their blood-feeding hosts and determine the presence of Plasmodium parasites. Monk parakeets were neither infected by Plasmodium nor by Haemoproteus parasites, and only five individuals (3.13%; n = 160) were infected by Leucocytozoon. Monk parakeets were bitten by Culiseta longiareolata and represented 9.5% of Culex pipiens blood meals. The invasive Ae. albopictus showed a clear anthropophilic feeding pattern, with humans dominating its diet. Three Plasmodium lineages were detected in pools of Cx pipiens. These results suggest that Plasmodium circulating in the area cannot develop in the invasive Monk parakeet, in spite of the relatively high fraction of native mosquito vectors feeding on this species in its invaded distribution range. Full article
(This article belongs to the Section Animal Diversity)
Article
Simultaneous Metabarcoding of Eukaryotes and Prokaryotes to Elucidate the Community Structures within Tardigrade Microhabitats
Diversity 2020, 12(3), 110; https://doi.org/10.3390/d12030110 - 20 Mar 2020
Cited by 3 | Viewed by 1725
Abstract
Tardigrades are microscopic invertebrates that can withstand complete desiccation, but their interspecies interactions with prokaryotes and eukaryotes within their microhabitat remain relatively unexplored. Here, I utilized combined metabarcoding of eukaryotes and prokaryotes to simultaneously identify entire community structures within xeric and mesic mosses [...] Read more.
Tardigrades are microscopic invertebrates that can withstand complete desiccation, but their interspecies interactions with prokaryotes and eukaryotes within their microhabitat remain relatively unexplored. Here, I utilized combined metabarcoding of eukaryotes and prokaryotes to simultaneously identify entire community structures within xeric and mesic mosses that harbor tardigrades. The populations of organisms within the microecosystems were successfully determined in 45 xeric moss samples and 47 mesic moss samples. Organismal composition was largely consistent regardless of the moss/lichen substrate, but significantly varied in the two tested locations, possibly because of the differences in environmental humidity. Xeric mosses containing xerophilic tardigrades and other anhydrobiotic invertebrates tended to have significantly limited biological diversity and prokaryotic population dominated by cyanobacteria, suggesting a selection due to extreme desiccation. A combined metabarcoding approach to identify both eukaryotes and prokaryotes can successfully elucidate community structures within microscopic ecosystems, and this can be a potential approach to study the microecology of meiofauna, including tardigrades. Full article
(This article belongs to the Special Issue Tardigrades Taxonomy, Biology and Ecology)
Show Figures

Figure 1

Article
The Legacy of the Past Logging: How Forest Structure Affects Different Facets of Understory Plant Diversity in Abandoned Coppice Forests
Diversity 2020, 12(3), 109; https://doi.org/10.3390/d12030109 - 20 Mar 2020
Cited by 5 | Viewed by 906
Abstract
Predicting how biodiversity affects ecosystem functioning requires a multifaceted approach based on the partitioning of diversity into its taxonomic and functional facets and thus redundancy. Here, we investigated how species richness (S), functional diversity (FD) and functional redundancy (FR) are affected by forest [...] Read more.
Predicting how biodiversity affects ecosystem functioning requires a multifaceted approach based on the partitioning of diversity into its taxonomic and functional facets and thus redundancy. Here, we investigated how species richness (S), functional diversity (FD) and functional redundancy (FR) are affected by forest structure. Sixty-eight abandoned coppice-with-standards plots were selected in two mountain areas of the Apennine chain. We performed linear models to quantify the influence of structural parameters on S, FD and FR of clonal traits. Each diversity facet was affected differently by structural parameters, suggesting a complex interweaving of processes that influence the understory layer. Namely, tree layer density influences S, the height of the standards affects the lateral spread and persistence of clonal growth organs, and diameter of standards affects the FD of the number of clonal offspring. Opposite relationships compared to FD was found for the FR, suggesting how clonal traits play a key role in species assemblage. The observation that structural parameters exert opposite impact on FR seems to indicate a counterbalance effect on ecosystem stability. Multifaceted approaches yield a better understanding of relationship between forest structure and understory, and this knowledge can be exploited to formulate indications for more sustainable management practices. Full article
Show Figures

Figure 1

Article
New Records of Antarctic Tardigrada with Comments on Interpopulation Variability of the Paramacrobiotus fairbanksi Schill, Förster, Dandekar and Wolf, 2010
Diversity 2020, 12(3), 108; https://doi.org/10.3390/d12030108 - 20 Mar 2020
Cited by 7 | Viewed by 1577
Abstract
Studies on Antarctic tardigrades started at the beginning of the twentieth century and have progressed very slowly and ca. 75 tardigrade species are known from this region. Paramacrobiotus fairbanksi was described from USA based on genetic markers and later reported from Italy, Poland, [...] Read more.
Studies on Antarctic tardigrades started at the beginning of the twentieth century and have progressed very slowly and ca. 75 tardigrade species are known from this region. Paramacrobiotus fairbanksi was described from USA based on genetic markers and later reported from Italy, Poland, and Spain. The “everything is everywhere” hypothesis suggests that microscopic organisms have specific features which help them to inhabit most of environments and due to this they can be considered cosmopolitan. In the present paper, we report eight tardigrade taxa from Antarctic, including the first report of Pam. fairbanksi from Southern Hemisphere, which could suggest that the “everything is everywhere” hypothesis could be true, at least for some tardigrade species. Moreover, we also genetically and morphologically compare a few different populations of Pam. fairbanksi. The p-distances between COI haplotypes of all sequenced Pam. fairbanksi populations from Antarctica, Italy, Spain, USA and Poland ranged from 0.002% to 0.005%. In the case of COI polymorphism analyses, only one haplotype was observed in populations from Antarctica, USA and Poland, two haplotypes were found in population from Spain, and six haplotypes were observed in population from Italy. We also found some statistically significant morphometrical differences between the populations of Pam. fairbanksi from different regions and designed a new specific primers for Paramacrobiotus taxa. Full article
(This article belongs to the Special Issue Tardigrades Taxonomy, Biology and Ecology)
Show Figures

Figure 1

Article
DNA Barcoding for Delimitation of Putative Mexican Marine Nematodes Species
Diversity 2020, 12(3), 107; https://doi.org/10.3390/d12030107 - 19 Mar 2020
Cited by 6 | Viewed by 1368
Abstract
Nematode biodiversity is mostly unknown; while about 20,000 nematode species have been described, estimates for species diversity range from 0.1 to 100 million. The study of nematode diversity, like that of meiofaunal organisms in general, has been mostly based on morphology-based taxonomy, a [...] Read more.
Nematode biodiversity is mostly unknown; while about 20,000 nematode species have been described, estimates for species diversity range from 0.1 to 100 million. The study of nematode diversity, like that of meiofaunal organisms in general, has been mostly based on morphology-based taxonomy, a time-consuming and costly task that requires well-trained specialists. This work represents the first study on the taxonomy of Mexican nematodes that integrates morphological and molecular data. We added eleven new records to the Mexican Caribbean nematode species list: Anticomidae sp.1, Catanema sp.1, Enoploides gryphus, Eurystomina sp.1, Haliplectus bickneri, Metachromadora sp.1, Odontophora bermudensis, Oncholaimus sp.1, Onyx litorale, Proplatycoma fleurdelis, and Pontonema cf. simile. We improved the COI database with 57 new sequences from 20 morphotypes. All COI sequences obtained in this work are new entries for the international genetic databases GenBank and BOLD. Among the studied sites, we report the most extensive species record (12 species) at Cozumel. DNA barcoding and species delineation methods supported the occurrence of 20 evolutionary independent entities and confirmed the high taxonomic resolution of the COI gene. Different approaches provided consistent results: ABGD and mPTP methods disentangled 20 entities, whereas Barcode Index Numbers (BINs) recovered 22 genetic species. Results support DNA barcoding being an efficient, fast, and low-cost method to integrate into morphological observations in order to address taxonomical shortfalls in meiofaunal organisms. Full article
(This article belongs to the Special Issue Meiofauna Biodiversity and Ecology)
Show Figures

Figure 1

Article
Citizen Science Confirms the Rarity of Fruit Bat Pollination of Baobab (Adansonia digitata) Flowers in Southern Africa
Diversity 2020, 12(3), 106; https://doi.org/10.3390/d12030106 - 19 Mar 2020
Cited by 4 | Viewed by 1594
Abstract
The iconic African baobab tree (Adansonia digitata) has “chiropterophilous” flowers that are adapted for pollination by fruit bats. Although bat pollination of baobabs has been documented in east and west Africa, it has not been confirmed in southern Africa where it [...] Read more.
The iconic African baobab tree (Adansonia digitata) has “chiropterophilous” flowers that are adapted for pollination by fruit bats. Although bat pollination of baobabs has been documented in east and west Africa, it has not been confirmed in southern Africa where it has been suggested that hawk moths (Nephele comma) may also be involved in baobab pollination. We used a citizen science approach to monitor baobab tree and flower visitors from dusk till midnight at 23 individual baobab trees over 27 nights during the flowering seasons (November–December) of 2016 and 2017 in northern South Africa and southern Zimbabwe (about 1650 visitors). Insect visitors frequently visited baobab flowers, including hawk moths, but, with one exception in southeastern Zimbabwe, no fruit bats visited flowers. Citizen science enabled us to substantiate preliminary conclusions about the relative importance of moth versus bat pollination of baobabs in southern Africa, with important implications for resource management. Full article
Show Figures

Figure 1

Article
Do Geese Facilitate or Compete with Wintering Hooded Cranes (Grus monacha) for Forage Resources?
Diversity 2020, 12(3), 105; https://doi.org/10.3390/d12030105 - 18 Mar 2020
Cited by 3 | Viewed by 1107
Abstract
Foraging is the key behavior of waterbirds, which profoundly affects the survival of their population, and it is affected by interspecific interaction. At Shengjin Lake in China, owing to the reduced availability of suitable habitats for a large population of migratory waterbirds (especially [...] Read more.
Foraging is the key behavior of waterbirds, which profoundly affects the survival of their population, and it is affected by interspecific interaction. At Shengjin Lake in China, owing to the reduced availability of suitable habitats for a large population of migratory waterbirds (especially wild geese) over winter, mixed species foraging inevitably occurs. This study aimed to investigate whether mixed-species foraging affects the foraging of hooded cranes (Grus monacha). Fields surveys were carried out at Shengjin Lake from November 2018 to March 2019. Mixed-species foraging was surveyed between the flocks of hooded cranes and three species of geese, greater white-fronted geese (Anser albifrons), lesser white-fronted geese (Anser erythropus) and bean geese (Anser fabalis). Instantaneous scanning and focal animal methods were used to collect behavioral samples of hooded cranes. The quadrat method was used to survey the food density in three habitats: meadows, mudflats, and paddy fields. The results showed that the foraging success rate of hooded cranes was not significantly correlated with food density and the relative flock size in the mixed-species foraging flock in meadows, but a significant negative correlation with the relative flock size in mudflats. However in paddy fields it was a significant positive correlation with the relative flock size. Foraging efforts of hooded cranes were negatively correlated with food density and positively correlated with the relative flock size in meadows. In mudflats, foraging efforts of hooded cranes had a significant positively correlation with the relative flock size, however, there was a significant negative correlation with the relative flock size in paddy fields. To sum up, larger numbers of geese mixed with hooded cranes has a favorable effect on the foraging of hooded cranes in meadows and mudflats, however, the reverse was observed in the paddy fields. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

Article
The Presence of IUCN Red List Tree Species in Dependence of Site Characteristics in the Vietnamese Cat Ba National Park
Diversity 2020, 12(3), 104; https://doi.org/10.3390/d12030104 - 17 Mar 2020
Viewed by 839
Abstract
Rare or endangered tree species are important components of forest ecosystems and play a crucial role in management and conservation. Understanding what influences their presence is critical for managers, conservationists and planners. This study presents results of a comprehensive inventory of the tree [...] Read more.
Rare or endangered tree species are important components of forest ecosystems and play a crucial role in management and conservation. Understanding what influences their presence is critical for managers, conservationists and planners. This study presents results of a comprehensive inventory of the tree species and site characteristics in the Vietnamese Cat Ba National Park (CBNP). An adaptive cluster sampling technique was applied to study the effect of human disturbance, soil properties, and terrain conditions on the presence of IUCN Red List tree species (all individuals > 5 cm diameter at breast height) in three strictly protected areas in CBNP, which have varying levels of isolation. Data from 239 sample plots (500 m2 each) were analyzed. Tree species recorded during the inventory were assigned to two categories: IUCN Red List and other. Our results showed that site characteristics differed in the three protected areas along with the presence of IUCN Red List tree species. IUCN Red List tree species were more frequently found on less favorable soils (low soil depth) and in terrain with more pronounced slopes and with a higher rock surface area (%). However, there is no indication from existing information on the autecology of the different Red List species that the site conditions hosting the species are the ones favored by the species, even on the contrary for some. Although direct signs of human activity (paths, animal traps) could not be related to the presence of Red List tree species, the data suggest that the accessibility of the sites is a strong negative driver for the presence of Red List tree species. We conclude that protection of the forests of the Cat Ba Island should be stricter to allow the IUCN Red List tree species to grow under more appropriate conditions, which then would allow studying their ecology in more detail. This would further allow deriving more precise recommendations for their future protection. Full article
Show Figures

Figure 1

Article
Genetic Diversity and Population Structure in a Vitis spp. Core Collection Investigated by SNP Markers
Diversity 2020, 12(3), 103; https://doi.org/10.3390/d12030103 - 16 Mar 2020
Cited by 5 | Viewed by 1901
Abstract
Single nucleotide polymorphism (SNP) genotyping arrays are powerful tools to measure the level of genetic polymorphism within a population. The coming of next-generation sequencing technologies led to identifying thousands and millions of SNP loci useful in assessing the genetic diversity. The Vitis genotyping [...] Read more.
Single nucleotide polymorphism (SNP) genotyping arrays are powerful tools to measure the level of genetic polymorphism within a population. The coming of next-generation sequencing technologies led to identifying thousands and millions of SNP loci useful in assessing the genetic diversity. The Vitis genotyping array, containing 18k SNP loci, has been developed and used to detect genetic diversity of Vitis vinifera germplasm. So far, this array was not validated on non-vinifera genotypes used as grapevine rootstocks. In this work, a core collection of 70 grapevine rootstocks, composed of individuals belonging to Vitis species not commonly used in the breeding programs, was genotyped using the 18k SNP genotyping array. SNP results were compared to the established SSR (Simple Sequence Repeat) markers in terms of heterozygosity and genetic structure of the core collection. Genotyping array has proved to be a valuable tool for genotyping of grapevine rootstocks, with more than 90% of SNPs successfully amplified. Structure analysis detected a high degree of admixed genotypes, supported by the complex genetic background of non-vinifera germplasm. Moreover, SNPs clearly differentiated non-vinifera and vinifera germplasm. These results represent a first step in studying the genetic diversity of non-conventional breeding material that will be used to select rootstocks with high tolerance to limiting environmental conditions. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

Communication
The Minute Alga Schizocladia ischiensis (Schizocladiophyceae, Ochrophyta) Isolated by Germling Emergence from 24 m Depth off Rhodes (Greece)
Diversity 2020, 12(3), 102; https://doi.org/10.3390/d12030102 - 14 Mar 2020
Cited by 2 | Viewed by 1666
Abstract
Substratum collected during diving surveys of sublittoral communities off the Greek island of Rhodes (Dodecanese, South-East Aegean) in late 2015 was incubated in the laboratory. Among the emerging macroalgal germlings, there was the second-ever record and isolate of the small benthic multicellular alga [...] Read more.
Substratum collected during diving surveys of sublittoral communities off the Greek island of Rhodes (Dodecanese, South-East Aegean) in late 2015 was incubated in the laboratory. Among the emerging macroalgal germlings, there was the second-ever record and isolate of the small benthic multicellular alga Schizocladia ischiensis of the poorly known monotypic Schizocladiophyceae, the sister group of the brown algae (Phaeophyceae). Its nuclear ribosomal small subunit, Rubisco spacer (rbcL, psaA, and psbC sequences (in total 5237 bp)) were similar to those of the only previous isolate of the species from Ischia, western Mediterranean. Our new strain formed branched upright thalli attached to the substratum by an amorphous substance secreted at the bottom of the basal cell. It is possible that S. ischiensis is a common member of the infralittoral and circalittoral communities in the Mediterranean and generally overlooked because of its minute size. Germling emergence appears to represent the method of choice to reveal benthic algae of this small size. Full article
(This article belongs to the Special Issue Structure and Biodiversity of Rhodolith Seabeds)
Show Figures

Figure 1

Article
Austrian COLOSS Survey of Honey Bee Colony Winter Losses 2018/19 and Analysis of Hive Management Practices
Diversity 2020, 12(3), 99; https://doi.org/10.3390/d12030099 - 13 Mar 2020
Cited by 12 | Viewed by 2253
Abstract
We conducted a citizen science survey on overwinter honey bee colony losses in Austria. A total of 1534 beekeepers with 33,651 colonies reported valid loss rates. The total winter loss rate for Austria was 15.2% (95% confidence interval: 14.4–16.1%). Young queens showed a [...] Read more.
We conducted a citizen science survey on overwinter honey bee colony losses in Austria. A total of 1534 beekeepers with 33,651 colonies reported valid loss rates. The total winter loss rate for Austria was 15.2% (95% confidence interval: 14.4–16.1%). Young queens showed a positive effect on colony survival and queen-related losses. Observed queen problems during the season increased the probability of losing colonies to unsolvable queen problems. A notable number of bees with crippled wings during the foraging season resulted in high losses and could serve as an alarm signal for beekeepers. Migratory beekeepers and large operations had lower loss rates than smaller ones. Additionally, we investigated the impact of several hive management practices. Most of them had no significant effect on winter mortality, but purchasing wax from outside the own operation was associated with higher loss rates. Colonies that reported foraging on maize and late catch crop fields or collecting melezitose exhibited higher loss rates. The most common Varroa destructor control methods were a combination of long-term formic acid treatment in summer and oxalic acid trickling in winter. Biotechnical methods in summer had a favourable effect on colony survival. Full article
(This article belongs to the Special Issue Monitoring of Honey Bee Colony Losses)
Show Figures

Figure 1

Article
Unimodal Relationships of Understory Alpha and Beta Diversity along Chronosequence in Coppiced and Unmanaged Beech Forests
Diversity 2020, 12(3), 101; https://doi.org/10.3390/d12030101 - 13 Mar 2020
Cited by 5 | Viewed by 1125
Abstract
Patterns of diversity across spatial scales in forest successions are being overlooked, despite their importance for developing sustainable management practices. Here, we tested the recently proposed U-shaped biodiversity model of forest succession. A chronosequence of 11 stands spanning from 5 to 400 years [...] Read more.
Patterns of diversity across spatial scales in forest successions are being overlooked, despite their importance for developing sustainable management practices. Here, we tested the recently proposed U-shaped biodiversity model of forest succession. A chronosequence of 11 stands spanning from 5 to 400 years since the last disturbance was used. Understory species presence was recorded along 200 m long transects of 20 × 20 cm quadrates. Alpha diversity (species richness, Shannon and Simpson diversity indices) and three types of beta diversity indices were assessed at multiple scales. Beta diversity was expressed by a) spatial compositional variability (number and diversity of species combinations), b) pairwise spatial turnover (between plots Sorensen, Jaccard, and Bray–Curtis dissimilarity), and c) spatial variability coefficients (CV% of alpha diversity measures). Our results supported the U-shaped model for both alpha and beta diversity. The strongest differences appeared between active and abandoned coppices. The maximum beta diversity emerged at characteristic scales of 2 m in young coppices and 10 m in later successional stages. We conclude that traditional coppice management maintains high structural diversity and heterogeneity in the understory. The similarly high beta diversities in active coppices and old-growth forests suggest the presence of microhabitats for specialist species of high conservation value. Full article
Show Figures

Figure 1

Article
Exquisitely Preserved Fossil Snakes of Messel: Insight into the Evolution, Biogeography, Habitat Preferences and Sensory Ecology of Early Boas
Diversity 2020, 12(3), 100; https://doi.org/10.3390/d12030100 - 13 Mar 2020
Cited by 6 | Viewed by 5059
Abstract
Our knowledge of early evolution of snakes is improving, but all that we can infer about the evolution of modern clades of snakes such as boas (Booidea) is still based on isolated bones. Here, we resolve the phylogenetic relationships of Eoconstrictor fischeri comb. [...] Read more.
Our knowledge of early evolution of snakes is improving, but all that we can infer about the evolution of modern clades of snakes such as boas (Booidea) is still based on isolated bones. Here, we resolve the phylogenetic relationships of Eoconstrictor fischeri comb. nov. and other booids from the early-middle Eocene of Messel (Germany), the best-known fossil snake assemblage yet discovered. Our combined analyses demonstrate an affinity of Eoconstrictor with Neotropical boas, thus entailing a South America-to-Europe dispersal event. Other booid species from Messel are related to different New World clades, reinforcing the cosmopolitan nature of the Messel booid fauna. Our analyses indicate that Eoconstrictor was a terrestrial, medium- to large-bodied snake that bore labial pit organs in the upper jaw, the earliest evidence that the visual system in snakes incorporated the infrared spectrum. Evaluation of the known palaeobiology of Eoconstrictor provides no evidence that pit organs played a role in the predator–prey relations of this stem boid. At the same time, the morphological diversity of Messel booids reflects the occupation of several terrestrial macrohabitats, and even in the earliest booid community the relation between pit organs and body size is similar to that seen in booids today. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Graphical abstract

Article
USA Wind Energy-Caused Bat Fatalities Increase with Shorter Fatality Search Intervals
Diversity 2020, 12(3), 98; https://doi.org/10.3390/d12030098 - 12 Mar 2020
Cited by 1 | Viewed by 1164
Abstract
Wind turbine collision fatalities of bats have likely increased with the rapid expansion of installed wind energy capacity in the USA since the last national-level fatality estimates were generated in 2012. An assumed linear increase of fatalities with installed capacity would expand my [...] Read more.
Wind turbine collision fatalities of bats have likely increased with the rapid expansion of installed wind energy capacity in the USA since the last national-level fatality estimates were generated in 2012. An assumed linear increase of fatalities with installed capacity would expand my estimate of bat fatalities across the USA from 0.89 million in 2012 to 1.11 million in 2014 and to 1.72 million in 2019. However, this assumed linear relationship could have been invalidated by shifts in turbine size, tower height, fatality search interval during monitoring, and regional variation in bat fatalities. I tested for effects of these factors in fatality monitoring reports through 2014. I found no significant relationship between bat fatality rates and wind turbine size. Bat fatality rates increased with increasing tower height, but this increase mirrored the increase in fatality rates with shortened fatality search intervals that accompanied the increase in tower heights. Regional weighting of mean project-level bat fatalities increased the national-level estimate 17% to 1.3 (95% CI: 0.15–3.0) million. After I restricted the estimate’s basis to project-level fatality rates that were estimated from fatality search intervals <10 days, my estimate increased by another 71% to 2.22 (95% CI: 1.77–2.72) million bat fatalities in the USA’s lower 48 states in 2014. Project-level fatality estimates based on search intervals <10 days were, on average, eight times higher than estimates based on longer search intervals. Shorter search intervals detected more small-bodied species, which contributed to a larger all-bat fatality estimate. Full article
(This article belongs to the Special Issue Impacts of Pressure on Bat Populations)
Show Figures

Figure 1

Review
Taxonomy, Evolution, and Biogeography of the Rhodniini Tribe (Hemiptera: Reduviidae)
Diversity 2020, 12(3), 97; https://doi.org/10.3390/d12030097 - 11 Mar 2020
Cited by 4 | Viewed by 1539
Abstract
The Triatominae subfamily includes 151 extant and three fossil species. Several species can transmit the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, significantly impacting public health in Latin American countries. The Triatominae can be classified into five tribes, of [...] Read more.
The Triatominae subfamily includes 151 extant and three fossil species. Several species can transmit the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, significantly impacting public health in Latin American countries. The Triatominae can be classified into five tribes, of which the Rhodniini is very important because of its large vector capacity and wide geographical distribution. The Rhodniini tribe comprises 23 (without R. taquarussuensis) species and although several studies have addressed their taxonomy using morphological, morphometric, cytogenetic, and molecular techniques, their evolutionary relationships remain unclear, resulting in inconsistencies at the classification level. Conflicting hypotheses have been proposed regarding the origin, diversification, and identification of these species in Latin America, muddying our understanding of their dispersion and current geographic distribution. Clarifying these factors can help for the design of vector control strategies. The aim of this review is to depict the different approaches used for taxonomy of the Rhodniini and to shed light on their evolution and biogeography. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

Article
Spatial Pattern of Species Richness among Terrestrial Mammals in China
Diversity 2020, 12(3), 96; https://doi.org/10.3390/d12030096 - 06 Mar 2020
Cited by 3 | Viewed by 945
Abstract
We describe large-scale patterns of terrestrial mammal distribution in China by using geographical information system (GIS) spatial analysis. Mammal taxa, examined by species, family, and order, were binned into 10 km × 10 km grids to explore the relationship between their spatial distribution [...] Read more.
We describe large-scale patterns of terrestrial mammal distribution in China by using geographical information system (GIS) spatial analysis. Mammal taxa, examined by species, family, and order, were binned into 10 km × 10 km grids to explore the relationship between their spatial distribution and geographical factors potentially affecting the same. The spatial pattern of species richness revealed four agglomerations: high richness in the south, low in north, and two low richness areas in eastern and western China. Species richness patterns in Carnivora was the most similar to overall terrestrial mammals’ richness; however, species richness in different orders exhibited distributions distinct from the overall pattern. We found a negative relationship between richness and latitude gradient. Species richness was most strongly correlated with forested ecosystems, and was found to be higher at an elevation of 2000~2200 m, with greater altitudinal variation indicative of higher species richness. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

Article
Contribution to the Knowledge on Distribution of Tardigrada in Turkey
Diversity 2020, 12(3), 95; https://doi.org/10.3390/d12030095 - 06 Mar 2020
Cited by 2 | Viewed by 1178
Abstract
Tardigrades have been occasionally studied in Turkey since 1973. However, species number and distribution remain poorly known. In this study, distribution of Tardigrades in the province of Karabük, which is located in northern coast (West Black Sea Region) of Turkey, was carried out. [...] Read more.
Tardigrades have been occasionally studied in Turkey since 1973. However, species number and distribution remain poorly known. In this study, distribution of Tardigrades in the province of Karabük, which is located in northern coast (West Black Sea Region) of Turkey, was carried out. Two moss samples were collected from the entrance of the Bulak (Mencilis) Cave. A total of 30 specimens and 14 eggs were extracted. Among the specimens; Echiniscus granulatus (Doyère, 1840) and Diaforobiotus islandicus islandicus (Richters, 1904) are new records for Karabük. Furthermore, this study also provides a current checklist of tardigrade species reported from Turkey, indicating their localities, geographic distribution and taxonomical comments. Full article
(This article belongs to the Special Issue Tardigrades Taxonomy, Biology and Ecology)
Show Figures

Figure 1

Article
Urban Sprawl, Food Subsidies and Power Lines: An Ecological Trap for Large Frugivorous Bats in Sri Lanka?
Diversity 2020, 12(3), 94; https://doi.org/10.3390/d12030094 - 06 Mar 2020
Cited by 7 | Viewed by 1511
Abstract
Electrocution is one of the less known anthropogenic impacts likely affecting the bat population. We surveyed 925 km of overhead distribution power lines that supply energy to spreading urbanized areas in Sri Lanka, recording 300 electrocuted Indian flying foxes (Pteropus giganteus). [...] Read more.
Electrocution is one of the less known anthropogenic impacts likely affecting the bat population. We surveyed 925 km of overhead distribution power lines that supply energy to spreading urbanized areas in Sri Lanka, recording 300 electrocuted Indian flying foxes (Pteropus giganteus). Electrocutions were recorded up to 58 km from the nearest known colony, and all of them were in urbanized areas and very close ( X ¯ = 4.8 m) to the exotic fruiting trees cultivated in gardens. Predictable anthropogenic food subsidies, in the form of cultivated fruits and flowers, seem to attract flying foxes to urban habitats, which in turn become ecological traps given their high electrocution risk. However, electrocution rates greatly varied among the 352 power lines surveyed (0.00–24.6 indiv./km), being highest in power lines with four wires oriented vertically ( X ¯ = 0.92 indiv./km) and almost zero in power lines with wires oriented horizontally. Therefore, the latter design should be applied to projected new power lines and old vertically oriented lines in electrocution hotspots should be substituted. Given that flying foxes are key seed dispersers and pollinators, their foraging habitat selection change toward urban habitats together with high electrocution risk not only may contribute to their population decline but also put their ecosystem services at risk. Full article
(This article belongs to the Special Issue Impacts of Pressure on Bat Populations)
Show Figures

Figure 1

Article
Photosynthetic Picoeukaryotes Diversity in the Underlying Ice Waters of the White Sea, Russia
Diversity 2020, 12(3), 93; https://doi.org/10.3390/d12030093 - 05 Mar 2020
Cited by 4 | Viewed by 1049
Abstract
The White Sea is a unique basin combining features of temperate and arctic seas. The current state of its biocenoses can serve as a reference point in assessing the expected desalination of the ocean as a result of climate change. A metagenomic study [...] Read more.
The White Sea is a unique basin combining features of temperate and arctic seas. The current state of its biocenoses can serve as a reference point in assessing the expected desalination of the ocean as a result of climate change. A metagenomic study of under-ice ice photosynthetic picoeukaryotes (PPEs) was undertaken by Illumina high-throughput sequencing of the 18S rDNA V4 region from probes collected in March 2013 and 2014. The PPE biomass in samples was 0.03–0.17 µg C·L−1 and their abundance varied from 10 cells·mL−1 to 140 cells·mL−1. There were representatives of 16 algae genera from seven classes and three supergroups, but Chlorophyta, especially Mamiellophyceae, dominated. The most represented genera were Micromonas and Mantoniella. For the first time, the predominance of Mantoniella (in four samples) and Bolidophyceae (in one sample) was observed in under-ice water. It can be assumed that a change in environmental conditions will lead to a considerable change in the structure of arctic PPE communities. Full article
(This article belongs to the Special Issue Biodiversity of Marine Microbes)
Show Figures

Figure 1

Article
Offshore Neopycnodonte Oyster Reefs in the Mediterranean Sea
Diversity 2020, 12(3), 92; https://doi.org/10.3390/d12030092 - 05 Mar 2020
Cited by 4 | Viewed by 1178
Abstract
Oysters are important ecosystem engineers best known to produce large bioconstructions at shallow depth, whilst offshore deep-subtidal oyster reefs are less widely known. Oyster reefs engineered by Neopycnodonte cochlear (family Gryphaeidae) occur at various sites in the Mediterranean Sea, between 40 and 130 [...] Read more.
Oysters are important ecosystem engineers best known to produce large bioconstructions at shallow depth, whilst offshore deep-subtidal oyster reefs are less widely known. Oyster reefs engineered by Neopycnodonte cochlear (family Gryphaeidae) occur at various sites in the Mediterranean Sea, between 40 and 130 m water depths. Remotely Operated Vehicle surveys provide new insights on this rather neglected reef types with respect to their shape, dimensions and associated biodiversity. We suggest that these little contemplated reefs should be taken in due consideration for protection. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

Article
Patterns of Understory Community Assembly and Plant Trait-Environment Relationships in Temperate SE European Forests
Diversity 2020, 12(3), 91; https://doi.org/10.3390/d12030091 - 04 Mar 2020
Cited by 8 | Viewed by 1492
Abstract
We analyzed variation in the functional composition and diversity of understory plant communities across different forest vegetation types in Slovenia. The study area comprises 10 representative forest sites covering broad gradients of environmental conditions (altitude, geology, light availability, soil type and reaction, nutrient [...] Read more.
We analyzed variation in the functional composition and diversity of understory plant communities across different forest vegetation types in Slovenia. The study area comprises 10 representative forest sites covering broad gradients of environmental conditions (altitude, geology, light availability, soil type and reaction, nutrient availability, soil moisture), stand structural features and community attributes. The mean and variation of the trait values were quantified by community-weighted means and functional dispersion for four key plant functional traits: plant height, seed mass, specific leaf area and leaf dry matter content. At each study site, forest vegetation was surveyed at two different spatial scales (4 and 100 m2) in order to infer scale-dependent assembly rules. Patterns of community assembly were tested with a null model approach. We found that both trait means and diversity values responded to conspicuous gradients in environmental conditions and species composition across the studied forests. Our results mainly support the idea of abiotic filtering: more stressful environmental conditions (e.g., high altitude, low soil pH and low nutrient content) were occupied by communities of low functional diversity (trait convergence), which suggests a selective effect for species with traits adapted to such harsh conditions. However, trait convergence was also detected in some more resource-rich forest sites (e.g., low altitude, high soil productivity), most likely due to the presence of competitive understory species with high abundance domination. This could, at least to some extent, indicate the filtering effect of competitive interactions. Overall, we observed weak and inconsistent patterns regarding the impact of spatial scale, suggesting that similar assembly mechanisms are operating at both investigated spatial scales. Our findings contribute to the baseline understanding of the role of both abiotic and biotic constraints in forest community assembly, as evidenced by the non-random patterns in the functional structure of distinct temperate forest understories. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop