The Presence of IUCN Red List Tree Species in Dependence of Site Characteristics in the Vietnamese Cat Ba National Park
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling Design
2.3. Data Collection
2.3.1. Standing Tree Layer
2.3.2. Growth Site Characteristics
Terrain Data
Soil Conditions
Human Impact
2.4. Data Analysis
3. Results
3.1. Site Characteristics and Forest Structural Characteristics
3.2. IUCN Red List Tree Species Identification
3.3. Site Characteristics and Human Activities in Relationship to Abundances of the Red List Tree Species
4. Discussion
4.1. Site Characteristics of the Three Study Areas
4.2. Distribution and Abundance of IUCN Red List Tree Species in Relation to Site Characteristics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Name | Vietnamese Name | Family | Light Requirement Mature Trees | Fruit Type | Distribution | Light Requirement Regeneration | Habitat | Regener-Ation Status | Main Use | Type of Rarity | Rare Species Categories | Area Distribution | Site Position |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aglaia spectabilis (Miq.) Jain and Bennet | Gội nếp | Meliaceae | Light demanding | spherical or invert-oval | Endemic tree of Vietnam, below 800 m elevation | shade tolerant | deep clay, medium humid, well-drained soil | Good under forest cover | well wood, furniture, construction | Heavy exploitation, loss habitat | IUCN low risk | LLA | Foot |
Chukrasia tabularis A. Juss | Lát hoa | Meliaceae | Light demanding | spherical | Vietnam, China, Laos, India | slightly shade demanding | primary forest, moist forest, valley in limestone forest | Moderate, narrow | precious and beautiful wood, furniture | Heavy exploitation, loss habitat | IUCN low risk | Mostly in LLA | Almost in foot, and a few in middle |
Sindora tonkinensis A. Chev. ex K. S. Larsen | Gụ lau | Caesalpiniaceae | Light demanding | flat legume, lignified, subrounded or oval | Endemic tree of Vietnam, below 600 m elevation | slightly shade demanding | deep soil, moist, well-drained soil, slightly slope | Sparely | furniture, fine art, beautiful polish | High habitat specificity, heavy exploitation. | IUCN low risk | LLA | Half in top, the rest in foot and middle |
Canthium dicoccum (Gaertn.) Teysm. and Binn | Xương cá | Rubiaceae | Humid and light demanding | drupe, ovate | Vietnam, China | slightly shade demanding | deep soil, coastal region | Good | construction, furniture-making, medicine, carving | High habitat specificity, heavy exploitation. | IUCN high risk | MSA | Top |
Hydnocarpus hainanensis (Merr.) Sleum | Nang trứng hải nam | Flacourtiaceae | Shade tolerant | globose berry | Vietnam, China, Laos; below 700 m elevation | shade tolerant | wet, deep soil | Poor and sparely | for vehicles, agricultural tools, pit props, medicine | High habitat specificity, heavy exploitation. | IUCN high risk | Mostly in MSA and ISA | Mostly in middle and top |
Goniothalamus macrocalyx Ban | Màu cau trắng | Annonaceae | Shade tolerant | berry | Endemic species of Vietnam, below 300 m elevation | shade tolerant | humidity, deep soil | Sparely | Furniture, clogs-making, box-packaging | High habitat specificity, heavy exploitation. | IUCN high risk | LLA | Top |
Tsoongiodendron odorum Chun | Giổi thơm | Magnoliaceae | Light demanding | oval fruit | Vietnam, China | shade tolerant | sparse in primary forest, humid soil, well-drained, rich humus, form 300 m to 1000 m | Moderate, narrow | Precious wood, construction, furniture | Heavy exploitation, loss habitat | IUCN high risk | Mostly in MSA and ISA | Mostly in middle and top |
Bursera tonkinensis Guillaum | Rẫm | Burseraceae | Light demanding | pyriform, dry | Vietnam | shade tolerant | limestone soil | Moderate, narrow | sparse and household utensils, housing-pillars | High habitat specificity, heavy exploitation. | IUCN high risk | Mostly in LLA and MSA | Foot and middle |
Erythrophleum fordii Oliv | Lim xanh | Caesalpiniaceae | Light demanding | legumes, long oval shape | Vietnam, China | shade tolerant | primary rain forest, thick clay, humid soil | Good | Precious wood, construction, famous hardwood, resin use for dyeing | Heavy exploitation, loss habitat | IUCN high risk | Mostly in MSA and ISA | Middle and top |
References
- Ruprecht, H.; Dhar, A.; Aigner, B.; Oitzinger, G.; Klumpp, R.; Vacik, H. Structural diversity of English yew (Taxus baccata L.) populations. Eur. J. For. Res. 2010, 129, 189–198. [Google Scholar] [CrossRef]
- Pacifici, K.; Reich, B.J.; M.Dorazio, R.J.; Conroy, M. Occupancy estimation for rare species using a spatially-adaptive sampling design. Methods Ecol. Evol. 2016, 7, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, P.; Bown, D.; Hedegbetan, G.C.; Adomou, A. Long-term conservation and rehabilitation of threatened rain forest patches under different human population pressures in West Africa. Nat. Conserv.-Bulgaria 2015, 13, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Honkanen, M.; Roberge, J.M.; Rajasarkka, A.; Monkkonen, M. Disentangling the effects of area, energy and habitat heterogeneity on boreal forest bird species richness in protected areas. Glob. Ecol. Biogeogr. 2010, 19, 61–71. [Google Scholar] [CrossRef]
- McNicol, I.M.; Ryan, C.M.; Dexter, K.G.; Ball, S.M.J.; Williams, M. Aboveground Carbon Storage and Its Links to Stand Structure, Tree Diversity and Floristic Composition in South-Eastern Tanzania. Ecosystems 2018, 21, 740–754. [Google Scholar] [CrossRef] [Green Version]
- Calvache, M.F.; Prados, M.J.; Lourenco, J.M. Assessment of National Parks affected by naturbanization processes in Southern Europe. J. Environ. Manag. 2016, 59, 1629–1655. [Google Scholar] [CrossRef]
- Naughton-Treves, L.; Holland, M.B.; Brandon, K. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu. Rev. Environ. Resour. 2005, 30, 219–252. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Marin, J.M.; Gutierrez-Canovas, C.; Abellan, P.; Millan, A. The role of protected areas in representing aquatic biodiversity: A test using alpha, beta and gamma diversity of water beetles from the Segura River Basin (SE Spain). Limnetica 2016, 35, 179–192. [Google Scholar]
- Attorre, F.; Alfo, M.; Sanctis, M.D.; Francesconi, F.; Valenti, R.; Vitale, M.; Bruno, F. Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl. Veg. Sci. 2011, 14, 242–255. [Google Scholar] [CrossRef]
- Bachelot, B.; Uriarte, M.; Thompson, J.; Zimmerman, J.K. The advantage of the extremes: Tree seedlings at intermediate abundance in a tropical forest have the highest richness of above-ground enemies and suffer the most damage. J. Ecol. 2016, 104, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Kubota, Y.; Kusumoto, B.; Shiono, T.; Ulrich, W.; Jabot, F. Non-neutrality in forest communities: Evolutionary and ecological determinants of tree species abundance distributions. Oikos 2016, 125, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Reyes, G.P.; Kneeshaw, D.; Grandpre, L.D.; Le, D.A. Changes in woody vegetation abundance and diversity after natural disturbances causing different levels of mortality. J. Veg. Sci. 2010, 21, 406–417. [Google Scholar] [CrossRef]
- Lan, G.Y.; Hu, Y.H.; Cao, M.; Zhu, H. Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. For. Ecol. Manag. 2011, 262, 1507–1513. [Google Scholar] [CrossRef]
- Liu, J.; Tan, Y.H.; Slik, J.W.F. Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. For. Ecol. Manag. 2014, 330, 75–81. [Google Scholar] [CrossRef]
- Poulos, H.M.; Camp, A.E. Topographic influences on vegetation mosaics and tree diversity in the Chihuahuan Desert Borderlands. Ecology 2010, 91, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Roland, C.A.; Schmidt, J.H.; Nicklen, E.F. Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska. Ecol. Monogr. 2013, 83, 19–48. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Mitlohner, R.; Nguyen, V.B.; Tran, V.D. Environmental Factors Affecting the Abundance and Presence of Tree Species in a Tropical Lowland Limestone and Non-limestone Forest in Ben En National Park, Vietnam. J. For. Environ. Sci. 2015, 31, 177–191. [Google Scholar] [CrossRef]
- Schall, P.; Ammer, C. How to quantify forest management intensity in Central European forests. Eur. J. For. Res. 2013, 132, 379–396. [Google Scholar] [CrossRef] [Green Version]
- PRO_SILVA. Prof Silva Forestry Principles; 2012; p. 69. Available online: https://www.prosilva.org/close-to-nature-forestry/ (accessed on 19 May 2018).
- Larsen, J.B. Close-to-Nature Forest Management: The Danish Approach to Sustainable Forestry. Available online: http://www.intechopen.com/books/sustainable-forest-management-current-research/sustainable-forestry-through-close-to-nature-management (accessed on 15 October 2017).
- Grell, A.G.; Shelton, M.G.; Heitzman, E. Changes in plant species composition along an elevation gradient in an old-growth bottomland hardwood-Pinus taeda forest in southern Arkansas. J. Torrey Bot. Soc. 2005, 132, 72–89. [Google Scholar] [CrossRef]
- Hoang, V.H. Evaluation of the Conservation Status and Risks for Some Endangered Plant Species in Ba Be National Park, Backan Province, Vietnam. Ph.D. Thesis, University of Technology, Sydney, Australia, September 2010. [Google Scholar]
- Ceschin, S.; Salerno, G.; Bisceglie, S.; Kumbaric, A. Temporal floristic variations as indicator of environmental changes in the Tiber River in Rome. Aquat. Ecol. 2010, 44, 93–100. [Google Scholar] [CrossRef]
- Bleher, B.; Uster, D.; Bergsdorf, T. Assessment of threat status and management effectiveness in Kakamega forest, Kenya. Biodivers. Conserv. 2006, 15, 1159–1177. [Google Scholar] [CrossRef]
- Dao, T.H.H.; Hölscher, D. Red-listed tree species abundance in montane forest areas with differing levels of statutory protection in north-western Vietnam. Trop. Conserv. Sci. 2015, 8, 479–490. [Google Scholar]
- Hoang, V.S.; Baas, P.; Kessler, P.J.A.; Slik, J.W.F.; Steege, H.T.; Raes, N. Human and Environmental Influences on Plant Diversity and Composition in Ben En National Park, Vietnam. J. Trop. For. Sci. 2011, 23, 328–337. [Google Scholar]
- Shannon, G.; Cordes, L.S.; Hardy, A.R.; Angeloni, L.M.; Crooks, K.R. Behavioral Responses Associated with a Human-Mediated Predator Shelter. PLoS ONE 2014, 9, e94630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiersma, Y.F.; Nudds, T.D.; Rivard, D.H. Models to distinguish effects of landscape patterns and human population pressures associated with species loss in Canadian national parks. Landsc. Ecol. 2004, 19, 773–786. [Google Scholar] [CrossRef]
- Chien, P.D. Demography of Threatened Tree Species in Vietnam; Utrecht University: Utrecht, The Netherlands, 2006; p. 157. [Google Scholar]
- Pham, H.H. An Illustrated Flora of Vietnam; Young Publisher: Hanoi, Vietnam, 1999. [Google Scholar]
- Dao, T.H.H.; Hölscher, D. Fujian cypress and two other threatened tree species in three conservation zones of a nature reserve in north-western Vietnam. For. Ecosyst. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Pham, V.T.; Nguyen, D.A. Biodiversity and Conservation Vietnam. Available online: http://www.biodivn.com/2014/08/cac-vuon-quoc-gia-va-khu-bao-ton-thien-nhien-viet-nam.html (accessed on 20 May 2018).
- Le, M.T. Flora in Cat Ba National Park; Forest Inventory and Planning Institute: Hanoi, Vietnam, 2006; p. 17. [Google Scholar]
- CatBa, N.P. Biodiversity Information of Cat Ba National Park, Vietnam; Institute of Ecology and Resources: Haiphong, Vietnam, 2007. [Google Scholar]
- VACNE (Vietnam Association for Conservation of Nature and Environment). Cat Ba National Park. Available online: http://www.vacne.org.vn/vuon-quoc-gia-cat-ba/2842.html (accessed on 15 May 2018).
- CatBa, N.P. Inventory and Planning for Cat Ba National Park from 2006 to 2010 and Vision to 2020; Cat Ba National Park: Haiphong, Vietnam, 2005; p. 123. [Google Scholar]
- Hoang, V.T. Research on the Current Status of Poor Secondary Forest and Restoration Activities in Cat Ba National Park; Cat Ba National Park: Haiphong, Vietnam, 2018. [Google Scholar]
- Carle, J.; Holmgren, P. Definitions Related to Planted Forests. Forest Resources Assessment WP 79. 2003, p. 16. Available online: http://www.fao.org/3/ae347e/AE347E00.htm#TopOfPage (accessed on 20 May 2019).
- Le, M.C.; Le, T.H. Resulting from Investigating Plant Components in Cat Ba National Park; Vietnam Forestry University: Hanoi, Vietnam, 2000. [Google Scholar]
- Kleinn, C. Forest Inventory; Georg-August-Universität-Geottingen: Göttingen, Germany, 2009; p. 189. [Google Scholar]
- Abrahamson, I.L.; Nelson, C.R.; Affleck, D.L.R. Assessing the performance of sampling designs for measuring the abundance of understory plants. Ecol. Appl. 2011, 21, 452–464. [Google Scholar] [CrossRef]
- Brown, J.A. Designing an efficient adaptive cluster sample. Environ. Ecol. Stat. 2003, 10, 95–105. [Google Scholar] [CrossRef]
- Philippi, T. Adaptive cluster sampling for estimation of abundances within local populations of low-abundance plants. Ecology 2005, 86, 1091–1100. [Google Scholar] [CrossRef]
- Yang, H.J.; Kleinn, C.; Fehrmann, L.; Tang, S.Z.; Magnussen, S. A new design for sampling with adaptive sample plots. Environ. Ecol. Stat. 2011, 18, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.A. Comparison of two adaptive sampling designs. Aust. N. Z. J. Stat. 1999, 41, 395–403. [Google Scholar] [CrossRef]
- Gattone, S.A.; Esha, M.; Mwangi, J.W. Application of Adaptive Cluster Sampling with a Data-Driven Stopping Rule to Plant Disease Incidence. J. Phytopathol. 2013, 161, 632–641. [Google Scholar] [CrossRef]
- Thompson, S.K. Adaptive web sampling in ecology. Stat. Methods Appt. 2013, 22, 33–43. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. Available online: http://www.iucnredlist.org/ (accessed on 20 October 2017).
- Phung, M.T.; Nguyen, Q.T.; Nguyen, T.L.P.; Do, X.C.; Vo, S.N.; Nguyen, T.B. Vietnam Forest Creatures. Available online: http://www.vncreatures.net/e_tracuu.php (accessed on 28 May 2018).
- Vu, A.T.; Ngo, T.G.; Tran, T.H.; Nguyen, T.T.; Ngo, D.P.; Hoang, G.T.; Nguyen, Q.N.; Nguyen, A.D.; Bui, V.T.; Can, M.H. Vietnam Plant Data Center. Available online: http://www.botanyvn.com/?lg=en (accessed on 20 May 2017).
- Nguyen, T.B.; Tran, D.L.; Nguyen, T.; Vu, V.D.; Nguyen, N.T.; Nguyen, V.T.; Nguyen, K.K. Vietnam Red Data Book—Part II. In Plant Vietnam Red Data Book, Vol. II; Publisher of Science and Technology: Hanoi, Vietnam, 2007; p. 612. [Google Scholar]
- Delgado, A.; Gómez, J.A. Chapter 2 The Soil. Physical, Chemical and Biological Properties. In Principles of Agronomy for Sustainable Agriculture; Springer: Cham, Switzerland, 2016; pp. 13–26. [Google Scholar] [CrossRef]
- Le, V.D. Soil Science; Nong Lam University: Ho Chi Minh City, Vietnam, 2009; p. 151. [Google Scholar]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; Taylor & Francis Group: Abingdon, UK, 2006; p. 1240. [Google Scholar]
- Le, T.B. Soil Science; University of Agriculture and Forestry, Hue University: Hue, Vietnam, 2009; p. 151. [Google Scholar]
- Ha, Q.K. Forest Soil Science; Vietnam National University of Forestry: Hanoi, Vietnam, 2002; p. 319. [Google Scholar]
- Beretta, A.N.; Silbermann, A.V.; Musselli, R.; Paladino, L.; Torres, D.; Bassahun, D.; Musselli, R.; García-Lamohte, A. Soil texture analyses using a hydrometer: Modification of the Bouyoucos method. Cien. Inv. Agric. 2014, 41, 263–271. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2017. Available online: http://www.R-project.org (accessed on 28 September 2017).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Community Ecology Package. 2019. Available online: https://cran.r-project.org, https://github.com/vegandevs/vegan (accessed on 14 April 2018).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Kassambara, A. Principal Component Methods in R: Practical Guide. 2018. Available online: http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/ (accessed on 16 April 2018).
- Husson, F.; Josse, J.; Le, S.; Mazet, J. Package ‘FactoMineR’. 2017. Available online: http://factominer.free.fr (accessed on 10 November 2017). [CrossRef]
- Abdi, H.; Williams, L.J.; Valentin, D. Multiple factor analysis: Principal component analysis for multitable and multiblock data sets. Wiley Interdiscip. Rev. Comput. Stat. 2013, 5, 149–179. [Google Scholar] [CrossRef]
- Pagès, J. Multiple Factor Analysis: Main features and application to sensory data. Revista Colombiana de Estad’ıstica 2004, 27, 1–26. [Google Scholar]
- Pagès, J. Multiple Factor Analysis by Example Using R; Agrocampus-Ouest Rennes: Rennes, France; Taylor & Francis Group: Abingdon, UK, 2014; p. 268. [Google Scholar]
- Sieben, E.J.J. Plant functional composition and ecosystem properties: The case of peatlands in South Africa. Plant Ecol. 2012, 213, 809–820. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, B.; Li, D.; Mallik, A.U.; Xiang, W.; Ding, T.; Wen, S.; Lu, S.; Huang, F.; He, Y.; et al. Effects of topography and spatial processes on structuring tree species composition in a diverse heterogeneous tropical karst seasonal rainforest. Flora 2017, 231, 21–28. [Google Scholar] [CrossRef]
- Do, H.T.T.; Grant, J.C.; Trinh, B.N.; Zimmer, H.C.; Nichols, J.D. Diversity depends on scale in the forests of the Central Highlands of Vietnam. J. ASIA-PAC Biodivers. 2017, 10, 472–488. [Google Scholar] [CrossRef]
- Zhang, J.T.; Xu, B.; Li, M. Vegetation Patterns and Species Diversity Along Elevational and Disturbance Gradients in the Baihua Mountain Reserve, Beijing, China. Mt. Res. Dev. 2013, 33, 170–178. [Google Scholar] [CrossRef]
- Cochard, R.; Ngo, D.T.; Waeber, P. Extent and causes of forest cover changes in Vietnam’s provinces 1993–2013: A review and analysis of official data. Environ. Rev. 2017, 25, 199–217. [Google Scholar] [CrossRef] [Green Version]
Groups | Variable | Acronym | LLA | MSA | ISA |
---|---|---|---|---|---|
Forest structures | Diameter at breast height (cm) | DBH | 23.77 ± 3.57 b | 18.94 ± 3.91 a | 18.71 ± 4.10 a |
Height (m) | Ht | 11.35 ± 1.63 b | 10.6 ± 1.35 a | 10.24 ± 1.44 a | |
Basal area (m2) | BA | 34.26 ± 16.36 b | 20.47 ± 12.69 a | 21.01 ± 12.89 a | |
Volume (m3) | V | 265.57 ± 170.58 b | 147.25 ± 129.44 a | 148.23 ± 118.74 a | |
Tree density (trees ha−1) | N | 540.40 ± 89.40 a | 505.28 ± 73.08 c | 549.55 ± 164.39 b | |
Species (no. area−1) | Spe | 100 ± 4.47 b | 72 ± 3.65 a | 67 ± 8.22 a | |
Shannon index | H’ | 2.94 ± 0.35 c | 2.85 ± 0.42 b | 2.46 ± 0.40 a | |
Terrain | Slope (°) | T_Slope | 11.25 ± 8.11 a | 19.39 ± 11.35 b | 22.69 ± 9.57 c |
Rock surface (%) | T_Rsf | 25.15 ± 19.41 a | 51.46 ± 22.11 b | 75.75 ± 18.53 c | |
Elevation (m) | T_Elev | 81.24 ± 32.98 b | 73.82 ± 40.98 a | 88.37 ± 45.047 c | |
Physical soil properties | Soil depth (cm) | S_SD | 82.46 ± 36.07 c | 59.44 ± 31.87 b | 42.54 ± 30.32 a |
Rock in soil (%) | S_Rock | 4.18 ± 11.66 a | 9.39 ± 11.91 c | 5.75 ± 3.64 b | |
Soil moisture (%) | S_Moisture | 9.19 ± 6.41 a | 11.49 ± 4.53 b | 13.51 ± 3.63 c | |
Sand (%) | S_Sand | 30.33 ± 11.45 b | 23.17 ± 6.75 a | 37.33 ± 17.77 c | |
Silt (%) | S_Silt | 39.79 ± 6.26 b | 42.88 ± 5.96 c | 35.20 ± 10.04 a | |
Clay (%) | S_Clay | 29.75 ± 10.99 b | 34.12 ± 5.02 c | 27.76 ± 9.13 a | |
Chemical soil properties | Soil humus content (%) | S_Humus | 3.69 ± 1.66 b | 2.84 ± 1.13 a | 4.61 ± 1.25 c |
pH | S_pH | 5.05 ± 0.43 a | 5.46 ± 0.54 b | 5.47 ± 0.33 b | |
Hydrolytic acidity (mmol/100 g) | S_HA | 4.40 ± 1.80 a | 5.09 ± 1.94 b | 5.29 ± 2.66 b | |
Caction exchange capacity (mmol/100 g) | S_CEC | 6.97 ± 1.83 a | 7.17 ± 1.01 b | 8.25 ± 1.00 c | |
Base saturation (%) | S_BS | 61.57 ± 12.44 b | 59.61 ± 10.81 a | 62.41 ± 10.36 c | |
Human disturbances | Footpaths (no. plot−1) | H_Fps | 1.32 ± 0.49 c | 0.72 ± 0.61 a | 0.97 ± 0.35 b |
Stumps (no. plot−1) | H_Stps | 0.16 ± 0.37 b | 0.014 ± 0.12 a | 0.00 ± 0.00 a | |
Traps (no. plot−1) | H_Trs | 0.79 ± 1.58 b | 0.79 ± 1.64 b | 0.34 ± 0.96 a |
Scientific Name | Family | Vietnamese Name | IUCN Category | Risk Category |
---|---|---|---|---|
Aglaia spectabilis (Miq.) Jain and Bennet | Meliaceae | Gội nếp | LC | IUCN low risk |
Chukrasia tabularis A. Juss. | Meliaceae | Lát hoa | LC | IUCN low risk |
Sindora tonkinensis A. Chev. ex K. S. Larsen | Caesalpiniaceae | Gụ lau | DD | IUCN low risk |
Canthium dicoccum (Gaertn.) Teysm. and Binn | Rubiaceae | Xương cá | VU | IUCN high risk |
Hydnocarpus hainanensis (Merr.) Sleum | Flacourtiaceae | Nang trứng hải nam | VU | IUCN high risk |
Goniothalamus macrocalyx Ban | Annonaceae | Màu cau trắng | VU | IUCN high risk |
Tsoongiodendron odorum Chun | Magnoliaceae | Giổi thơm | VU | IUCN high risk |
Bursera tonkinensis Guillaum | Burseraceae | Rẫm | VU | IUCN high risk |
Erythrophleum fordii Oliv | Caesalpiniaceae | Lim xanh | EN | IUCN high risk |
LLA | MSA | ISA | Other | IUCN | |
---|---|---|---|---|---|
PC1 | −0.98 (<0.001) | 0.02 (<0.001) | 0.99 (<0.001) | −0.33 (<0.001) | 0.33 (<0.001) |
PC2 | 0.15 (<0.001) | −0.15 (<0.001) | 0.09 (0.036) | −0.09 (0.036) | |
PC3 | 0.45 (<0.001) | −0.68 (<0.001) | 0.22 (<0.001) |
Principal Components | Eigenvalue | Variance Percent | Cumulative Variance Percent |
---|---|---|---|
PC1 | 1.627 | 20.61 | 20.614 |
PC2 | 1.276 | 16.16 | 36.778 |
PC3 | 1.179 | 14.93 | 51.706 |
Factors | PC1 | PC2 | PC3 |
---|---|---|---|
H | 0.391 | 0.494 | 0.688 |
T | 0.895 | 0.325 | 0.319 |
S physical | 0.824 | 0.739 | 0.781 |
S chemical | 0.607 | 0.746 | 0.357 |
PC1 | PC2 | PC3 | |||
---|---|---|---|---|---|
Factor | r | Factor | R | Factor | r |
T_Rsf | 0.88 | S_CEC | 0.71 | S_Sand | 0.79 |
T_Slope | 0.77 | S_Moisture | 0.67 | H_Fps | 0.56 |
S_pH | 0.59 | S_BS | 0.66 | H_Stps | 0.53 |
S_CEC | 0.56 | S_Humus | 0.61 | T_Elev | 0.31 |
S_Moisture | 0.47 | H_Trs | 0.44 | S_BS | 0.30 |
S_Humus | 0.43 | S_Clay | 0.44 | H_Trs | 0.20 |
S_BS | 0.37 | S_SD | 0.40 | S_Humus | 0.08 |
S_Sand | 0.21 | S_pH | 0.38 | T_Rsf | 0.03 |
S_Rock | 0.19 | H_Fps | 0.31 | T_Slope | −0.04 |
T_Elev | 0.16 | S_Silt | 0.11 | S_pH | −0.04 |
S_Clay | −0.18 | H_Stps | 0.09 | S_Rock | −0.07 |
S_HA | −0.17 | T_Rsf | −0.07 | S_SD | −0.18 |
S_Silt | −0.21 | T_Slope | −0.25 | S_Moisture | −0.22 |
H_Fps | −0.23 | T_Elev | −0.26 | S_HA | −0.38 |
H_Trs | −0.25 | S_Sand | −0.36 | S_Clay | −0.61 |
H_Stps | −0.31 | S_Rock | −0.42 | S_Silt | −0.64 |
S_SD | −0.72 | S_HA | −0.44 |
Factors | IUCN | Other | LLA | MSA | ISA |
---|---|---|---|---|---|
H_Fps | −0.06 | 0.00 | 0.51 | −0.62 | −0.14 |
H_Stps | −0.15 | 0.00 | 0.36 | −0.25 | −0.29 |
H_Trs | −0.09 | 0.00 | 0.10 | 0.07 | −0.22 |
T_Slope | 0.48 | −0.02 | −0.49 | 0.23 | 0.49 |
T_Rsf | 0.57 | −0.02 | −0.75 | 0.16 | 0.95 |
T_Elev | −0.00 | 0.00 | 0.02 | −0.19 | 0.16 |
S_SD | −0.49 | 0.02 | 0.43 | −0.12 | −0.52 |
S_Rock | 0.23 | −0.01 | −0.17 | 0.30 | −0.05 |
S_Moisture | 0.07 | 0.00 | −0.37 | 0.09 | 0.46 |
S_Sand | 0.06 | 0.00 | 0.04 | −0.53 | 0.47 |
S_Silt | −0.08 | 0.00 | 0.02 | 0.45 | −0.48 |
S_Clay | −0.02 | 0.00 | −0.07 | 0.39 | −0.28 |
S_Humus | −0.04 | 0.00 | −0.05 | −0.57 | 0.62 |
S_pH | 0.21 | −0.01 | −0.49 | 0.34 | 0.39 |
S_HA | −0.04 | 0.00 | −0.22 | 0.15 | 0.18 |
S_CEC | 0.18 | 0.00 | −0.31 | 0.15 | 0.59 |
S_BS | 0.07 | 0.00 | −0.03 | −0.18 | 0.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, V.V.; Ammer, C.; Annighöfer, P. The Presence of IUCN Red List Tree Species in Dependence of Site Characteristics in the Vietnamese Cat Ba National Park. Diversity 2020, 12, 104. https://doi.org/10.3390/d12030104
Pham VV, Ammer C, Annighöfer P. The Presence of IUCN Red List Tree Species in Dependence of Site Characteristics in the Vietnamese Cat Ba National Park. Diversity. 2020; 12(3):104. https://doi.org/10.3390/d12030104
Chicago/Turabian StylePham, Van Vien, Christian Ammer, and Peter Annighöfer. 2020. "The Presence of IUCN Red List Tree Species in Dependence of Site Characteristics in the Vietnamese Cat Ba National Park" Diversity 12, no. 3: 104. https://doi.org/10.3390/d12030104
APA StylePham, V. V., Ammer, C., & Annighöfer, P. (2020). The Presence of IUCN Red List Tree Species in Dependence of Site Characteristics in the Vietnamese Cat Ba National Park. Diversity, 12(3), 104. https://doi.org/10.3390/d12030104