Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

16 pages, 2239 KiB  
Article
IP Analytics and Machine Learning Applied to Create Process Visualization Graphs for Chemical Utility Patents
by Amy J. C. Trappey, Charles V. Trappey, Chih-Ping Liang and Hsin-Jung Lin
Processes 2021, 9(8), 1342; https://doi.org/10.3390/pr9081342 - 30 Jul 2021
Cited by 2 | Viewed by 3421
Abstract
Researchers must read and understand a large volume of technical papers, including patent documents, to fully grasp the state-of-the-art technological progress in a given domain. Chemical research is particularly challenging with the fast growth of newly registered utility patents (also known as intellectual [...] Read more.
Researchers must read and understand a large volume of technical papers, including patent documents, to fully grasp the state-of-the-art technological progress in a given domain. Chemical research is particularly challenging with the fast growth of newly registered utility patents (also known as intellectual property or IP) that provide detailed descriptions of the processes used to create a new chemical or a new process to manufacture a known chemical. The researcher must be able to understand the latest patents and literature in order to develop new chemicals and processes that do not infringe on existing claims and processes. This research uses text mining, integrated machine learning, and knowledge visualization techniques to effectively and accurately support the extraction and graphical presentation of chemical processes disclosed in patent documents. The computer framework trains a machine learning model called ALBERT for automatic paragraph text classification. ALBERT separates chemical and non-chemical descriptive paragraphs from a patent for effective chemical term extraction. The ChemDataExtractor is used to classify chemical terms, such as inputs, units, and reactions from the chemical paragraphs. A computer-supported graph-based knowledge representation interface is developed to plot the extracted chemical terms and their chemical process links as a network of nodes with connecting arcs. The computer-supported chemical knowledge visualization approach helps researchers to quickly understand the innovative and unique chemical or processes of any chemical patent of interest. Full article
(This article belongs to the Special Issue Recent Advances in Machine Learning and Applications)
Show Figures

Figure 1

13 pages, 5876 KiB  
Article
Effect of  Nb5+ and In3+  Ions on Moisture Sensitivity of Electrospun Titanium/Tungsten Oxide Nanostructures: Microstructural Characterization and Electrical Response
by Georgenes M. G. Silva, Victor N. S. Leão, Michel F. G. Pereira, Pedro M. Faia and Evando S. Araújo
Processes 2021, 9(8), 1336; https://doi.org/10.3390/pr9081336 - 30 Jul 2021
Cited by 2 | Viewed by 1988
Abstract
In this work, Nb5+ and In3+ ions were used as dopants in titanium/tungsten oxide nanostructures that are produced by the electrospinning and sintering process, for relative humidity (RH) detection. The microstructural properties were investigated [...] Read more.
In this work, Nb5+ and In3+ ions were used as dopants in titanium/tungsten oxide nanostructures that are produced by the electrospinning and sintering process, for relative humidity (RH) detection. The microstructural properties were investigated by SEM, EDS, XRD, Raman and FTIR techniques. The electrical response characterization of the samples was performed by electrical impedance spectroscopy in the range of 400 Hz to 40 MHz, at 20 °C. The sensors sensitivity to moisture was evaluated in terms of the impedance variations to RH (10–100%). The combined analysis of the microstructural characterization results confirmed the surface interaction between the oxides and the ions incorporation in Ti crystal lattice. All the studied sensors showed a conduction transition from p- to n-type at around 30–40% RH: besides, they also displayed better sensitivity to moisture than those obtained in a previous work using titanium/tungsten combination using a different fabricationn route. The impedance modulus variation up to 1.1 and 1.3 orders of magnitude for the 4 wt % niobium and indium doped samples, respectively. The results are directly associated with the microstructure and alternative preparation process. Full article
Show Figures

Figure 1

17 pages, 9241 KiB  
Article
Impact of Ballast Fouling on the Mechanical Properties of Railway Ballast: Insights from Discrete Element Analysis
by Luyu Wang, Mohamed Meguid and Hani S. Mitri
Processes 2021, 9(8), 1331; https://doi.org/10.3390/pr9081331 - 30 Jul 2021
Cited by 7 | Viewed by 2609
Abstract
Ballast fouling is a major factor that contributes to the reduction of shear strength of railway ballast, which can further affect the stability of railway supporting structure. The major sources of ballast fouling include infiltration of foreign fines into the ballast material and [...] Read more.
Ballast fouling is a major factor that contributes to the reduction of shear strength of railway ballast, which can further affect the stability of railway supporting structure. The major sources of ballast fouling include infiltration of foreign fines into the ballast material and ballast degradation induced by train movement on the supported tracks. In this paper, a discrete element model is developed and used to simulate the shear stress–strain response of fouled ballast assembly subjected to direct shear loading. A simplified computational approach is then proposed to model the induced ballast fouling and capture the mechanical response of the ballast at various levels of contamination. The approach is based on the assumption that fine particles comprising the fouling material will not only change the interparticle friction angle, but also the contact stiffness between the ballast particles. Therefore, both the interparticle friction coefficient and effective modulus are adjusted based on a fouled ballast model that is validated using experimental results. The effect of ballast degradation is also investigated by gradually changing the particle size distribution of the ballast assembly in the discrete element model to account for the increased range of particle sizes. Using the developed model, the effect of ballast degradation on the shear strength is then evaluated. Conclusions are made to highlight the suitability of these approximate approaches in efficiently modeling ballast assemblies under shear loading conditions. Full article
(This article belongs to the Special Issue Numerical Modeling in Civil and Mining Geotechnical Engineering)
Show Figures

Figure 1

14 pages, 2837 KiB  
Article
Microbial Fuel Cell as a Bioelectrochemical Sensor of Nitrite Ions
by Arnas Klevinskas, Kristina Kantminienė, Nerita Žmuidzinavičienė, Ilona Jonuškienė and Egidijus Griškonis
Processes 2021, 9(8), 1330; https://doi.org/10.3390/pr9081330 - 30 Jul 2021
Cited by 6 | Viewed by 2354
Abstract
The deteriorating environmental quality requires a rapid in situ real-time monitoring of toxic compounds in environment including water and wastewater. One of the most toxic nitrogen-containing ions is nitrite ion, therefore, it is particularly important to ensure that nitrite ions are completely absent [...] Read more.
The deteriorating environmental quality requires a rapid in situ real-time monitoring of toxic compounds in environment including water and wastewater. One of the most toxic nitrogen-containing ions is nitrite ion, therefore, it is particularly important to ensure that nitrite ions are completely absent in surface and ground waters as well as in wastewater or, at least, their concentration does not exceed permissible levels. However, no selective ion electrode, which would enable continuous measurement of nitrite ion concentration in wastewater by bioelectrochemical sensor, is available. Microbial fuel cell (MFC)-based biosensor offers a sustainable low-cost alternative to the monitoring by periodic sampling for laboratory testing. It has been determined, that at low (0.01–0.1 mg·L−1) and moderate (1.0–10 mg·L−1) concentration of nitrite ions in anolyte-model wastewater, the voltage drop in MFC linearly depends on the logarithm of nitrite ion concentration of proving the potential of the application of MFC-based biosensor for the quantitative monitoring of nitrite ion concentration in wastewater and other surface water. Higher concentrations (100–1000 mg·L−1) of nitrite ions in anolyte-model wastewater could not be accurately quantified due to a significant drop in MFC voltage. In this case MFC can potentially serve as a bioelectrochemical early warning device for extremely high nitrite pollution. Full article
Show Figures

Figure 1

22 pages, 6987 KiB  
Article
Microfluidic Network Simulations Enable On-Demand Prediction of Control Parameters for Operating Lab-on-a-Chip-Devices
by Julia Sophie Böke, Daniel Kraus and Thomas Henkel
Processes 2021, 9(8), 1320; https://doi.org/10.3390/pr9081320 - 29 Jul 2021
Cited by 3 | Viewed by 3961
Abstract
Reliable operation of lab-on-a-chip systems depends on user-friendly, precise, and predictable fluid management tailored to particular sub-tasks of the microfluidic process protocol and their required sample fluids. Pressure-driven flow control, where the sample fluids are delivered to the chip from pressurized feed vessels, [...] Read more.
Reliable operation of lab-on-a-chip systems depends on user-friendly, precise, and predictable fluid management tailored to particular sub-tasks of the microfluidic process protocol and their required sample fluids. Pressure-driven flow control, where the sample fluids are delivered to the chip from pressurized feed vessels, simplifies the fluid management even for multiple fluids. The achieved flow rates depend on the pressure settings, fluid properties, and pressure-throughput characteristics of the complete microfluidic system composed of the chip and the interconnecting tubing. The prediction of the required pressure settings for achieving given flow rates simplifies the control tasks and enables opportunities for automation. In our work, we utilize a fast-running, Kirchhoff-based microfluidic network simulation that solves the complete microfluidic system for in-line prediction of the required pressure settings within less than 200 ms. The appropriateness of and benefits from this approach are demonstrated as exemplary for creating multi-component laminar co-flow and the creation of droplets with variable composition. Image-based methods were combined with chemometric approaches for the readout and correlation of the created multi-component flow patterns with the predictions obtained from the solver. Full article
(This article belongs to the Special Issue Microfluidics in Chemical Engineering)
Show Figures

Figure 1

28 pages, 2622 KiB  
Article
Effects of Dynamic Pricing on the Design and Operation of Distributed Energy Resource Networks
by Tim Sidnell, Bogdan Dorneanu, Evgenia Mechleri, Vassilios S. Vassiliadis and Harvey Arellano-Garcia
Processes 2021, 9(8), 1306; https://doi.org/10.3390/pr9081306 - 28 Jul 2021
Cited by 3 | Viewed by 2041
Abstract
This paper presents a framework for the use of variable pricing to control electricity imported/exported to/from both fixed and unfixed residential distributed energy resource (DER) network designs. The framework shows that networks utilizing much of their own energy, and importing little from the [...] Read more.
This paper presents a framework for the use of variable pricing to control electricity imported/exported to/from both fixed and unfixed residential distributed energy resource (DER) network designs. The framework shows that networks utilizing much of their own energy, and importing little from the national grid, are barely affected by dynamic import pricing, but are encouraged to sell more by dynamic export pricing. An increase in CO2 emissions per kWh of energy produced is observed for dynamic import and export, against a baseline configuration utilizing constant pricing. This is due to feed-in tariffs (FITs) that encourage CHP generation over lower-carbon technologies. Furthermore, batteries are shown to be expensive in systems receiving income from FITs and grid exports, but for the cases when they sell to/buy from the grid using dynamic pricing, their use in the networks becomes more economical. Full article
(This article belongs to the Special Issue Bioinspired Computation for Sustainable Energy Systems)
Show Figures

Figure 1

13 pages, 858 KiB  
Article
Evaluation of the PGPR Capacity of Four Bacterial Strains and Their Mixtures, Tested on Lupinus albus var. Dorado Seedlings, for the Bioremediation of Mercury-Polluted Soils
by Daniel González, Carlota Blanco, Agustín Probanza, Pedro A. Jiménez and Marina Robas
Processes 2021, 9(8), 1293; https://doi.org/10.3390/pr9081293 - 26 Jul 2021
Cited by 10 | Viewed by 2680
Abstract
Soil contamination by mercury, which is one of the most toxic heavy metals due to its bioaccumulative capacity, poses a risk to the environment as well as health. The Almadén mining district in Ciudad Real, Spain is one of the most heavily-polluted sites [...] Read more.
Soil contamination by mercury, which is one of the most toxic heavy metals due to its bioaccumulative capacity, poses a risk to the environment as well as health. The Almadén mining district in Ciudad Real, Spain is one of the most heavily-polluted sites in the world, making the soils unusable. Bioremediation, and more specifically phyto-rhizoremediation, based on the synergistic interaction established between plant and Plant Growth Promoting Rhizobacteria (PGPR), improves the plant’s ability to grow, mobilize, accumulate, and extract contaminants from the soil. The objective of this study is to evaluate the plant growth-promoting ability of four PGPR strains (and mixtures), isolated from the bulk soil and rhizosphere of naturally grown plants in the Almadén mining district, when they are inoculated in emerged seeds of Lupinus albus, var. Dorado in the presence of high concentrations of mercury. After 20 days of incubation and subsequent harvesting of the seedlings, biometric measurements were carried out at the root and aerial levels. The results obtained show that the seeds treatment with PGPR strains improves plants biometry in the presence of mercury. Specifically, strain B2 (Pseudomonas baetica) and B1 (Pseudomonas moraviensis) were those that contributed the most to plant growth, both individually and as part of mixtures (CS5 and CS3). Thus, these are postulated to be good candidates for further in situ phyto-rhizoremediation tests of mercury-contaminated soils. Full article
(This article belongs to the Special Issue Innovative Treatments for the Improvement of Bioremediation Processes)
Show Figures

Figure 1

15 pages, 2526 KiB  
Article
Fluctuation and Re-Establishment of Aerobic Granules Properties during the Long-Term Operation Period with Low-Strength and Low C/N Ratio Wastewater
by Lijuan Cha, Yong-Qiang Liu, Wenyan Duan, Christain E. W. Sternberg, Qiangjun Yuan and Fangyuan Chen
Processes 2021, 9(8), 1290; https://doi.org/10.3390/pr9081290 - 26 Jul 2021
Cited by 5 | Viewed by 2169
Abstract
Long-term structure stability of aerobic granules is critical to maintaining stable wastewater treatment performance. In this study, granulation and long-term stability of sludge-treating synthetic wastewater with a low chemical oxygen demand to nitrogen (COD/N) ratio of 4:1 and COD concentration of 400 mg/L [...] Read more.
Long-term structure stability of aerobic granules is critical to maintaining stable wastewater treatment performance. In this study, granulation and long-term stability of sludge-treating synthetic wastewater with a low chemical oxygen demand to nitrogen (COD/N) ratio of 4:1 and COD concentration of 400 mg/L in anoxic-oxic conditions were investigated for over 300 days. Inoculated suspended sludge gradually transformed into granules-dominant sludge on day 80. Due to the improved sludge volume index after 30 min settling (SVI30), mixed liquor suspended solids (MLSS) reached 5.2 g/L on day 140. Without any external intervention or disturbance, aerobic granules started to disintegrate from day 140, causing the increase in SVI and the decrease in biomass concentration until day 210, with the average sludge size reduced to 243 µm. From day 210, granular sludge started to be re-established by re-granulation, and the average granule size increased to 500 µm on day 302. During these disintegration and re-granulation periods, there was no obvious difference in terms of COD removal and nitrification, but microbial species were found more diverse after the re-granulation, with Thauera and Sphingomonas dominant. Although there was no external intervention, the food to microorganisms ratio (F/M) varied significantly due to the changes in biomass concentration caused by strong selective pressure and the change of sludge-settling ability in the reactor. F/M ratios should be controlled between 0.3 and 1.0 gCOD/gSS·d to maintain the stable structure of granules to minimize the fluctuation of sludge properties under the conditions used in this study. Although aerobic granular sludge is able to re-establish itself after disintegration, controlling F/M ratios in a certain range would benefit long-term stability. The findings in this study are significant to deepen the understanding of granule stability with low-strength and low COD ratio wastewater and, thus, provide guidance for maintaining the long-term stability of granules. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

17 pages, 1715 KiB  
Article
An Imperfect Production–Inventory Model with Mixed Materials Containing Scrap Returns Based on a Circular Economy
by Rung-Hung Su, Ming-Wei Weng, Chih-Te Yang and Hsin-Ting Li
Processes 2021, 9(8), 1275; https://doi.org/10.3390/pr9081275 - 24 Jul 2021
Cited by 7 | Viewed by 2484
Abstract
The implementation of scrap recovery activities has been shown to improve the financial performance of many firms, and this kind of circular economy (CE) is particularly evident in industries with green manufacturing (GM). In this paper, we consider an imperfect multiple-stage production system [...] Read more.
The implementation of scrap recovery activities has been shown to improve the financial performance of many firms, and this kind of circular economy (CE) is particularly evident in industries with green manufacturing (GM). In this paper, we consider an imperfect multiple-stage production system that manufactures paired products made from mixed materials containing scrap returns, in which the scrap returns are converted from defective products. The feed rates of scrap returns for two products are different, and the product with the higher feed rate is placed in the second order of the process to avoid unlimited accumulation of scrap returns. The proposed problem is formulated as a joint economic order quantity (EOQ) and economic production quantity (EPQ) model aimed at cost minimization. The decision variables of the proposed model include the production run time of two products, order quantity of new material, and the extent of investment in converted equipment. We also prove that the optimal solution exists uniquely and provide an algorithm for the computation of the optimal solution. Finally, a numerical example involving the pulp and paper manufacturing industry is provided to illustrate the solution process, and the results of its sensitivity analysis are also presented to show some managerial implications. Full article
Show Figures

Figure 1

14 pages, 3718 KiB  
Article
Influence of Freezing Parameters on the Formation of Internal Porous Structure and Its Impact on Freeze-Drying Kinetics
by Patrick Levin, Vincent Meunier, Ulrich Kessler and Stefan Heinrich
Processes 2021, 9(8), 1273; https://doi.org/10.3390/pr9081273 - 23 Jul 2021
Cited by 7 | Viewed by 2799
Abstract
The main objective of this study was firstly to investigate the influence of freezing process parameters on the formation of the internal structure of frozen coffee granules. It was investigated how these frozen internal structures affect the drying kinetics during freeze-drying. A design [...] Read more.
The main objective of this study was firstly to investigate the influence of freezing process parameters on the formation of the internal structure of frozen coffee granules. It was investigated how these frozen internal structures affect the drying kinetics during freeze-drying. A design of experiment study was carried out using the response surface method to quantify the influence of the freezing step that occurs in a scraped surface heat exchanger (SSHE). Therefore, the coffee extract at a concentration of 30% w/w is entering the SSHE as a liquid and gets partially crystallized up to a weight-based ice content of 0.364. During this step, the influence of factors like cooling temperature, scraper rotation speed and temperature cycles on ice crystal structure was investigated. In a second freezing step, the influence of freezing rates during hardening of the product by air-blast freezing is investigated, where the freezing rate is significantly affected by the cake thickness. The produced frozen granules were freeze-dried in single layer experiments. During drying the influence of internal structure on the drying kinetics was investigated. Results show that all factors have a significant impact on structure parameters for 30% w/w coffee solutions. A lower degree of supercooling during freezing in an SSHE, a higher number of temperature cycles (2 to 8 times) and lower freezing rates during hardening (2 °C/min to 10 °C/min) were leading to increased crystal size. This increase accelerates the primary drying rate and decreases the total drying time. A higher number of temperature cycles leads to a significant increase of crystal size and therefore larger pore size at the end of the primary drying. Furthermore, in combination with temperature cycles in the SSHE, it was found that high freezing rates during air blast freezing generally lead to a second nucleation step of ice crystals. Full article
(This article belongs to the Special Issue Modern Freeze Drying Design for More Efficient Processes)
Show Figures

Graphical abstract

11 pages, 1581 KiB  
Article
Influence of Process Design on the Preparation of Solid Lipid Nanoparticles by an Ultrasonic-Nanoemulsification Method
by Agata Pucek-Kaczmarek
Processes 2021, 9(8), 1265; https://doi.org/10.3390/pr9081265 - 22 Jul 2021
Cited by 11 | Viewed by 3004
Abstract
In recent years, lipid-based nanosystems have emerged as a promising class of nanocarriers for encapsulating many active agents. Solid lipid nanoparticles (SLNs) provide good stability (colloidal as well as physical) and high biocompatibility. Appropriate design of the carrier structure through a selection of [...] Read more.
In recent years, lipid-based nanosystems have emerged as a promising class of nanocarriers for encapsulating many active agents. Solid lipid nanoparticles (SLNs) provide good stability (colloidal as well as physical) and high biocompatibility. Appropriate design of the carrier structure through a selection of components and preparation methods allows us to obtain formulations with desired physicochemical parameters and biological properties. The present contribution has been carried out to investigate SLNs containing biocompatible phosphatidylcholine mixed with non-ionic surfactant Tween 60 as stabilizing agents. The internal lipid phase consisted of glyceryl monostearate was confirmed as safe for drug delivery by the Food and Drug Administration. The SLNs were fabricated by ultrasonic-nanoemulsification method. The preparation process was optimized in regard to variable parameters such as ultrasonication time and used amplitude and number of cycles. The sizes of the studied nanoparticles along with the size distribution were determined by dynamic light scattering (DLS), while shape and morphology were determined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The colloidal stability was measured by a turbidimetric method. The physical state of SLNs was characterized using differential scanning calorimetry (DSC). The obtained results indicate that the proposed SLNs may provide great potential for design and preparation of novel delivery nanosystems with a variety of possible applications. Full article
(This article belongs to the Special Issue Nanoemulsion Processes Design and Applications)
Show Figures

Graphical abstract

11 pages, 2519 KiB  
Article
Aluminum-Free Steelmaking: Desulfurization and Nonmetallic Inclusion Evolution of Si-Killed Steel in Contact with CaO-SiO2-CaF2-MgO Slag
by Stephano P. T. Piva and Petrus Christiaan Pistorius
Processes 2021, 9(8), 1258; https://doi.org/10.3390/pr9081258 - 21 Jul 2021
Cited by 3 | Viewed by 3646
Abstract
In some applications, deep desulfurization and deoxidation of steels without the use of aluminum are required, using Si as a deoxidant instead, with double-saturated slags in the CaO-SiO2-CaF2-MgO system. This work studied the desulfurization and nonmetallic inclusion evolution for [...] Read more.
In some applications, deep desulfurization and deoxidation of steels without the use of aluminum are required, using Si as a deoxidant instead, with double-saturated slags in the CaO-SiO2-CaF2-MgO system. This work studied the desulfurization and nonmetallic inclusion evolution for the system using an induction furnace and compared the results with FactSage kinetic simulations. Steel samples were taken from the steel melt and analyzed with ICP-MS and combustion analysis for chemistry, and SEM/EDS for nonmetallic inclusion quantity, size, and composition. The results indicate that the steel was deeply desulfurized, with a final sulfur partition coefficient of 580; MgO was reduced from the slag, yielding dissolved [Mg] that transformed liquid Mn–silicate inclusions into forsterite and MgO. Intentional reoxidation of the melt with oxidized electrolytic iron demonstrated a significant concentration of dissolved [Mg] in the steel, by the formation of additional forsterite and MgO upon reoxidation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

19 pages, 1536 KiB  
Article
Advanced Kinetic Modeling of Bio-co-polymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Production Using Fructose and Propionate as Carbon Sources
by Stefanie Duvigneau, Robert Dürr, Jessica Behrens and Achim Kienle
Processes 2021, 9(8), 1260; https://doi.org/10.3390/pr9081260 - 21 Jul 2021
Cited by 10 | Viewed by 2657
Abstract
Biopolymers are a promising alternative to petroleum-based plastic raw materials. They are bio-based, non-toxic and degradable under environmental conditions. In addition to the homopolymer poly(3-hydroxybutyrate) (PHB), there are a number of co-polymers that have a broad range of applications and are easier to [...] Read more.
Biopolymers are a promising alternative to petroleum-based plastic raw materials. They are bio-based, non-toxic and degradable under environmental conditions. In addition to the homopolymer poly(3-hydroxybutyrate) (PHB), there are a number of co-polymers that have a broad range of applications and are easier to process in comparison to PHB. The most prominent representative from this group of bio-copolymers is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this article, we show a new kinetic model that describes the PHBV production from fructose and propionic acid in Cupriavidus necator (C. necator). The developed model is used to analyze the effects of process parameter variations such as the CO2 amount in the exhaust gas and the feed rate. The presented model is a valuable tool to improve the microbial PHBV production process. Due to the coupling of CO2 online measurements in the exhaust gas to the biomass production, the model has the potential to predict the composition and the current yield of PHBV in the ongoing process. Full article
(This article belongs to the Special Issue Mathematical Modeling and Control of Bioprocesses)
Show Figures

Figure 1

16 pages, 1467 KiB  
Article
Prediction of Sugar Content in Port Wine Vintage Grapes Using Machine Learning and Hyperspectral Imaging
by Véronique Gomes, Marco S. Reis, Francisco Rovira-Más, Ana Mendes-Ferreira and Pedro Melo-Pinto
Processes 2021, 9(7), 1241; https://doi.org/10.3390/pr9071241 - 19 Jul 2021
Cited by 12 | Viewed by 3089
Abstract
The high quality of Port wine is the result of a sequence of winemaking operations, such as harvesting, maceration, fermentation, extraction and aging. These stages require proper monitoring and control, in order to consistently achieve the desired wine properties. The present work focuses [...] Read more.
The high quality of Port wine is the result of a sequence of winemaking operations, such as harvesting, maceration, fermentation, extraction and aging. These stages require proper monitoring and control, in order to consistently achieve the desired wine properties. The present work focuses on the harvesting stage, where the sugar content of grapes plays a key role as one of the critical maturity parameters. Our approach makes use of hyperspectral imaging technology to rapidly extract information from wine grape berries; the collected spectra are fed to machine learning algorithms that produce estimates of the sugar level. A consistent predictive capability is important for establishing the harvest date, as well as to select the best grapes to produce specific high-quality wines. We compared four different machine learning methods (including deep learning), assessing their generalization capacity for different vintages and varieties not included in the training process. Ridge regression, partial least squares, neural networks and convolutional neural networks were the methods considered to conduct this comparison. The results show that the estimated models can successfully predict the sugar content from hyperspectral data, with the convolutional neural network outperforming the other methods. Full article
(This article belongs to the Special Issue Emerging Trends in the Wine Ageing Process)
Show Figures

Figure 1

14 pages, 8598 KiB  
Article
Studies of the Anti-Diabetic Mechanism of Pueraria lobata Based on Metabolomics and Network Pharmacology
by Shu Zhang, Qi Ge, Liang Chen and Keping Chen
Processes 2021, 9(7), 1245; https://doi.org/10.3390/pr9071245 - 19 Jul 2021
Cited by 8 | Viewed by 3046
Abstract
Diabetes mellitus (DM), as a chronic disease caused by insulin deficiency or using obstacles, is gradually becoming a principal worldwide health problem. Pueraria lobata is one of the traditional Chinese medicinal and edible plants, playing roles in improving the cardiovascular system, lowering blood [...] Read more.
Diabetes mellitus (DM), as a chronic disease caused by insulin deficiency or using obstacles, is gradually becoming a principal worldwide health problem. Pueraria lobata is one of the traditional Chinese medicinal and edible plants, playing roles in improving the cardiovascular system, lowering blood sugar, anti-inflammation, anti-oxidation, and so on. Studies on the hypoglycemic effects of Pueraria lobata were also frequently reported. To determine the active ingredients and related targets of Pueraria lobata for DM, 256 metabolites were identified by LC/MS non targeted metabonomics, and 19 active ingredients interacting with 51 DM-related targets were screened. The results showed that puerarin, quercetin, genistein, daidzein, and other active ingredients in Pueraria lobata could participate in the AGE-RAGE signaling pathway, insulin resistance, HIF-1 signaling pathway, FoxO signaling pathway, and MAPK signaling pathway by acting on VEGFA, INS, INSR, IL-6, TNF and AKT1, and may regulate type 2 diabetes, inflammation, atherosis and diabetes complications, such as diabetic retinopathy, diabetic nephropathy, and diabetic cardiomyopathy. Full article
(This article belongs to the Special Issue Network Pharmacology Modelling for Drug Discovery)
Show Figures

Figure 1

21 pages, 23731 KiB  
Article
Bi-Functional Catalyst/Sorbent for a H2-Rich Gas from Biomass Gasification
by Francesca Micheli, Enrica Mattucci, Claire Courson and Katia Gallucci
Processes 2021, 9(7), 1249; https://doi.org/10.3390/pr9071249 - 19 Jul 2021
Cited by 5 | Viewed by 2307
Abstract
The aim of this work is to identify the effect of the CaO phase as a CO2 sorbent and mayenite (Ca12Al14O33) as a stabilizing phase in a bi-functional material for CO2 capture in biomass syngas [...] Read more.
The aim of this work is to identify the effect of the CaO phase as a CO2 sorbent and mayenite (Ca12Al14O33) as a stabilizing phase in a bi-functional material for CO2 capture in biomass syngas conditioning and cleaning at high temperature. The effect of different CaO weight contents is studied (0, 56, 85, 100 wt%) in sorbents synthesized by the wet mixing method. These high temperature solid sorbents are upgraded to bi-functional compounds by the addition of 3 or 6 wt% of nickel chosen as the metal active phase. N2 adsorption, X-ray diffraction, scanning electronic microscopy, temperature-programmed reduction analyses and CO2 sorption study were performed to characterize structural, textural, reducibility and sorption properties of bi-functional materials. Finally, sorption-enhanced reforming of toluene (chosen as tar model), of methane then of methane and toluene with bi-functional compounds were performed to study the best material to improve H2 content in a syngas, provided by steam biomass gasification. If the catalytic activity on the sorption enhanced reforming of methane exhibits a fast fall-down after 10–15 min of experimental test, the reforming of toluene reaches a constant conversion of 99.9% by using bi-functional materials. Full article
(This article belongs to the Special Issue Methane Reforming Processes)
Show Figures

Figure 1

13 pages, 2504 KiB  
Article
Ultra-Fast Electrochemical Sensor for Point-of-Care COVID-19 Diagnosis Using Non-Invasive Saliva Sampling
by Ashwin Ramanujam, Sharilyn Almodovar and Gerardine G. Botte
Processes 2021, 9(7), 1236; https://doi.org/10.3390/pr9071236 - 17 Jul 2021
Cited by 23 | Viewed by 4498
Abstract
Point-of-care diagnostic devices that are rapid and reliable remain as an unmet need highlighted by the coronavirus disease (COVID-19) pandemic crisis. The second/third wave of virus spread in various parts of the world combined with new evidence of re-infections and inadequate healthcare facilities [...] Read more.
Point-of-care diagnostic devices that are rapid and reliable remain as an unmet need highlighted by the coronavirus disease (COVID-19) pandemic crisis. The second/third wave of virus spread in various parts of the world combined with new evidence of re-infections and inadequate healthcare facilities demand increased testing rate to diagnose COVID-19 at its core. Although traditional molecular diagnostic tests have served this purpose, there have been shortage of reagents and other supplies at pandemic frontlines. This calls for novel alternate diagnostic processes with potential for obtaining emergency use authorization and that can be deployed in the field at the earliest opportunity. Here, we show an ultra-fast SARS-CoV-2 detection sensor for detecting coronavirus proteins in saliva within 100 milliseconds. Electrochemical oxidation of nickel hydroxide has been controlled using cyclic voltammetry and chronoamperometry techniques for successful detection of SARS-CoV-2. Test results have proven the capability of sensors to quantitatively detect the concentration of virus in blinded analyses. The detection occurs by a process similar to that of SARS-CoV-2 binding onto host cells. The sensor also shows prospects in distinguishing SARS-CoV-2 from other viruses such as HIV. More importantly, the sensor matches the detection limit of the gold standard test for diagnosing early infection. The use of saliva as a non-invasive sampling technique combined with the portability of the instrument has broadened the potential of this sensor. Full article
Show Figures

Figure 1

12 pages, 2832 KiB  
Article
Interactive Effects in Two-Droplets Combustion of RP-3 Kerosene under Sub-Atmospheric Pressure
by Hongtao Zhang, Zhihua Wang, Yong He, Jie Huang and Kefa Cen
Processes 2021, 9(7), 1229; https://doi.org/10.3390/pr9071229 - 16 Jul 2021
Cited by 8 | Viewed by 2236
Abstract
To improve our understanding of the interactive effects in combustion of binary multicomponent fuel droplets at sub-atmospheric pressure, combustion experiments were conducted on two fibre-supported RP-3 kerosene droplets at pressures from 0.2 to 1.0 bar. The burning life of the interactive droplets was [...] Read more.
To improve our understanding of the interactive effects in combustion of binary multicomponent fuel droplets at sub-atmospheric pressure, combustion experiments were conducted on two fibre-supported RP-3 kerosene droplets at pressures from 0.2 to 1.0 bar. The burning life of the interactive droplets was recorded by a high-speed camera and a mirrorless camera. The results showed that the flame propagation time from burning droplet to unburned droplet was proportional to the normalised spacing distance between droplets and the ambient pressure. Meanwhile, the maximum normalised spacing distance from which the left droplet can be ignited has been investigated under different ambient pressure. The burning rate was evaluated and found to have the same trend as the single droplet combustion, which decreased with the reduction in the pressure. For every experiment, the interactive coefficient was less than one owing to the oxygen competition, except for the experiment at L/D0 = 2.5 and P = 1.0 bar. During the interactive combustion, puffing and microexplosion were found to have a significant impact on secondary atomization, ignition and extinction. Full article
(This article belongs to the Special Issue Advanced Combustion and Combustion Diagnostic Techniques)
Show Figures

Figure 1

19 pages, 13452 KiB  
Article
Numerical Study of Electrostatic Desalting Process Based on Droplet Collision Time
by Marco A. Ramirez-Argaez, Diego Abreú-López, Jesús Gracia-Fadrique and Abhishek Dutta
Processes 2021, 9(7), 1226; https://doi.org/10.3390/pr9071226 - 15 Jul 2021
Cited by 5 | Viewed by 3147
Abstract
The desalting process of an electrostatic desalting unit was studied using the collision time of two droplets in a water-in-oil (W/O) emulsion based on force balance. Initially, the model was solved numerically to perform a process analysis and to indicate the effect of [...] Read more.
The desalting process of an electrostatic desalting unit was studied using the collision time of two droplets in a water-in-oil (W/O) emulsion based on force balance. Initially, the model was solved numerically to perform a process analysis and to indicate the effect of the main process parameters, such as electric field strength, water content, temperature (through oil viscosity) and droplet size on the collision time or frequency of collision between a pair of droplets. In decreasing order of importance on the reduction of collision time and consequently on the efficiency of desalting separation, the following variables can be classified such as moisture content, electrostatic field strength, oil viscosity and droplet size. After this analysis, a computational fluid dynamics (CFD) model of a biphasic water–oil flow was developed in steady state using a Eulerian multiphase framework, in which collision frequency and probability of coalescence of droplets were assumed. This study provides some insights into the heterogeneity of a desalination plant which highlights aspects of design performance. This study further emphasizes the importance of two variables as moisture content and intensity of electrostatic field for dehydrated desalination by comparing the simulation with the electrostatic field against the same simulation without its presence. The overall objective of this study is therefore to show the necessity of including complex phenomena such as the frequency of collisions and coalescence in a CFD model for better understanding and optimization of the desalting process from both process safety and improvement. Full article
(This article belongs to the Special Issue Process Design and Sustainable Development)
Show Figures

Figure 1

29 pages, 12765 KiB  
Article
Influence of Interfacial Force Models and Population Balance Models on the kLa Value in Stirred Bioreactors
by Stefan Seidel and Dieter Eibl
Processes 2021, 9(7), 1185; https://doi.org/10.3390/pr9071185 - 7 Jul 2021
Cited by 10 | Viewed by 3626
Abstract
Optimal oxygen supply is vitally important for the cultivation of aerobically growing cells, as it has a direct influence on cell growth and product formation. A process engineering parameter directly related to oxygen supply is the volumetric oxygen mass transfer coefficient [...] Read more.
Optimal oxygen supply is vitally important for the cultivation of aerobically growing cells, as it has a direct influence on cell growth and product formation. A process engineering parameter directly related to oxygen supply is the volumetric oxygen mass transfer coefficient kLa. It is the influences on kLa and computing time of different interfacial force and population balance models in stirred bioreactors that have been evaluated in this study. For this investigation, the OpenFOAM 7 open-source toolbox was utilized. Firstly, the Euler–Euler model with a constant bubble diameter was applied to a 2L scale bioreactor to statistically examine the influence of different interfacial models on the kLa value. It was shown that the kL model and the constant bubble diameter have the greatest influence on the calculated kLa value. To eliminate the problem of a constant bubble diameter and to take effects such as bubble breakup and coalescence into account, the Euler–Euler model was coupled with population balance models (PBM). For this purpose, four coalescence and five bubble breakup models were examined. Ultimately, it was established that, for all of the models tested, coupling computational fluid dynamics (CFD) with PBM resulted in better agreement with the experimental data than using the Euler–Euler model. However, it should be noted that the higher accuracy of the PBM coupled models requires twice the computation time. Full article
Show Figures

Figure 1

29 pages, 4073 KiB  
Article
A Real-Time Optimization Strategy for Small-Scale Facilities and Implementation in a Gas Processing Unit
by Pedro A. Delou, Leonardo D. Ribeiro, Carlos R. Paiva, Jacques Niederberger, Marcos Vinícius C. Gomes and Argimiro R. Secchi
Processes 2021, 9(7), 1179; https://doi.org/10.3390/pr9071179 - 7 Jul 2021
Cited by 4 | Viewed by 2968
Abstract
The rise of new digital technologies and their applications in several areas pushes the process industry to update its methodologies with more intensive use of mathematical models—commonly denoted as digital twins—and artificial intelligence (AI) approaches to continuously enhance operational efficiency. In this context, [...] Read more.
The rise of new digital technologies and their applications in several areas pushes the process industry to update its methodologies with more intensive use of mathematical models—commonly denoted as digital twins—and artificial intelligence (AI) approaches to continuously enhance operational efficiency. In this context, Real-time Optimization (RTO) is a strategy that is able to maximize an economic function while respecting the existing constraints, which enables keeping the operation at its optimum point even though the plant is subjected to nonlinear behavior and frequent disturbances. However, the investment related to the project of commercial RTOs may make its application infeasible for small-scale facilities. In this work, an in-house, small-scale RTO is presented and its successful application in a real industrial case—a Natural Gas Processing Unit—is shown. Besides that, a new method for enhancing the efficiency of using sequential-modular simulator inside an optimization framework and a new method to account for the economic return of optimization-based tools are proposed and described. The application of RTO in the industrial case showed an enhancement in the stability of the main variables and an increase in profit of 0.64% when compared to the operation of the regulatory control layer alone. Full article
Show Figures

Graphical abstract

17 pages, 4875 KiB  
Article
Storing Energy from External Power Supplies Using Phase Change Materials and Various Pipe Configurations
by Daniel Aprile, Samer Al-Banna, Arraventhan Maheswaran, Joshua Paquette and Mohamad Ziad Saghir
Processes 2021, 9(7), 1160; https://doi.org/10.3390/pr9071160 - 3 Jul 2021
Cited by 2 | Viewed by 2179
Abstract
Phase change materials are commonly used for energy storage. Heat transfer enhancement and heat storage are the two main goals in this paper. A cylindrical pipe covered with phase change material is investigated numerically. Ideally, a high temperature liquid flows through the pipe, [...] Read more.
Phase change materials are commonly used for energy storage. Heat transfer enhancement and heat storage are the two main goals in this paper. A cylindrical pipe covered with phase change material is investigated numerically. Ideally, a high temperature liquid flows through the pipe, resulting in heat transferred to the phase change material. To enhance the heat transfer, various configurations involving the addition of a twisted tape inside of the pipe and the use of helical shape pipes were investigated. A straight pipe with no twisted tape insert was also analyzed and used as a benchmark case. All the configurations had constant properties such as material selection, overall size, pipe diameter and inlet Reynold’s number, so the performance could be compared under similar conditions. All initial configurations were simulated and the heat transfer rate, Nusselt number, friction factor and performance evaluation criterion (PEC) of the designs were determined. It was found that the heat transfer rate and Nusselt number of all the various designs yielded higher results than the reference straight pipe configuration. Additionally, due to the added complexity in the flow caused by the insert, the friction factor of all the configurations was also higher. The helical pipe configuration was the only configuration that had a PEC higher than that of the reference straight pipe. This is because the negative impacts caused by the friction factor outweighed the gains in Nusselt number for the twisted tape designs. It was also hypothesized that lowering the inner diameter of the helical pipe would increase the PEC. Further simulations with modified inner diameters were done to test the hypothesis. The simulations confirmed the hypothesis, as the pipes with inner diameters 0.75 and 0.5 cm led to a 50% and 150% increase in the PEC respectively, when compared to an inner diameter of 1 cm. It was also determined that smaller inner diameters led to lower outlet temperatures meaning a higher percentage of the thermal energy from the fluid was transferred to the phase change material. Full article
Show Figures

Figure 1

15 pages, 2990 KiB  
Article
Extraction of Added-Value Triterpenoids from Acacia dealbata Leaves Using Supercritical Fluid Extraction
by Vítor H. Rodrigues, Marcelo M. R. de Melo, Inês Portugal and Carlos M. Silva
Processes 2021, 9(7), 1159; https://doi.org/10.3390/pr9071159 - 3 Jul 2021
Cited by 9 | Viewed by 3097
Abstract
Forestry biomass is a by-product which commonly ends up being burnt for energy generation, despite comprising valuable bioactive compounds with valorisation potential. Leaves of Acacia dealbata were extracted for the first time by supercritical fluid extraction (SFE) using different conditions of pressure, temperature [...] Read more.
Forestry biomass is a by-product which commonly ends up being burnt for energy generation, despite comprising valuable bioactive compounds with valorisation potential. Leaves of Acacia dealbata were extracted for the first time by supercritical fluid extraction (SFE) using different conditions of pressure, temperature and cosolvents. Total extraction yield, individual triterpenoids extraction yields and concentrations were assessed and contrasted with Soxhlet extractions using solvents of distinct polarity. The extracts were characterized by gas chromatography coupled to mass spectrometry (GC-MS) and target triterpenoids were quantified. The total extraction yields ranged from 1.76 to 11.58 wt.% and the major compounds identified were fatty acids, polyols, and, from the triterpenoids family, lupenone, α-amyrin and β-amyrin. SFE was selective to lupenone, with higher individual yields (2139–3512 mg kgleaves1) and concentrations (10.1–12.4 wt.%) in comparison to Soxhlet extractions, which in turn obtained higher yields and concentrations of the remaining triterpenoids. Full article
(This article belongs to the Special Issue Extraction, Utilization and Conversion of Woody Biomass)
Show Figures

Graphical abstract

12 pages, 743 KiB  
Article
Efficacy of Different Waste and By-Products from Forest and Food Industries in the Removal/Retention of the Antibiotic Cefuroxime
by Raquel Cela-Dablanca, Carolina Nebot, Lucia Rodríguez López, David Fernández-Calviño, Manuel Arias-Estévez, Avelino Núñez-Delgado, María J. Fernández-Sanjurjo and Esperanza Álvarez-Rodríguez
Processes 2021, 9(7), 1151; https://doi.org/10.3390/pr9071151 - 1 Jul 2021
Cited by 13 | Viewed by 2353
Abstract
Environmental pollution due to antibiotics is a serious problem. In this work, the adsorption and desorption of the antibiotic cefuroxime (CFX) were studied in four by-products/residues from the forestry and food industries. For this, batch-type experiments were carried out, adding increasing concentrations of [...] Read more.
Environmental pollution due to antibiotics is a serious problem. In this work, the adsorption and desorption of the antibiotic cefuroxime (CFX) were studied in four by-products/residues from the forestry and food industries. For this, batch-type experiments were carried out, adding increasing concentrations of CFX (from 0 to 50 µmol L−1) to 0.5 g of adsorbent. The materials with a pH higher than 9 (mussel shell and wood ash) were those that presented the highest adsorption percentages, from 71.2% (23.1 µmol kg−1) to 98.6% (928.0 µmol kg−1). For the rest of the adsorbents, the adsorption was also around 100% when the lowest concentrations of CFX were added, but the percentage dropped sharply when the highest dose of the antibiotic was incorporated. Adsorption data fitted well to the Langmuir and Freundlich models, with R2 greater than 0.9. Regarding desorption, the materials that presented the lowest values when the highest concentration of CFX was added were wood ash (0%) and mussel shell (2.1%), while pine bark and eucalyptus leaves presented the highest desorption (26.6% and 28.6%, respectively). Therefore, wood ash and mussel shell could be considered adsorbents with a high potential to be used in problems of environmental contamination by CFX. Full article
Show Figures

Graphical abstract

15 pages, 3224 KiB  
Article
Residual Life Prediction for Induction Furnace by Sequential Encoder with s-Convolutional LSTM
by Yulim Choi, Hyeonho Kwun, Dohee Kim, Eunju Lee and Hyerim Bae
Processes 2021, 9(7), 1121; https://doi.org/10.3390/pr9071121 - 28 Jun 2021
Cited by 5 | Viewed by 3135
Abstract
Induction furnaces are widely used for melting scrapped steel in small foundries and their use has recently become more frequent. The maintenance of induction furnaces is usually based on empirical decisions of the operator and an explosion can occur through operator error. To [...] Read more.
Induction furnaces are widely used for melting scrapped steel in small foundries and their use has recently become more frequent. The maintenance of induction furnaces is usually based on empirical decisions of the operator and an explosion can occur through operator error. To prevent an explosion, previous studies have utilized statistical models but have been unable to generalize the problem and have achieved a low accuracy. Herein, we propose a data-driven method for induction furnaces by proposing a novel 2D matrix called a sequential feature matrix(s-encoder) and multi-channel convolutional long short-term memory (s-ConLSTM). First, the sensor data and operation data are converted into sequential feature matrices. Then, N-sequential feature matrices are imported into the convolutional LSTM model to predict the residual life of the induction furnace wall. Based on our experimental results, our method outperforms general neural network models and enhances the safe use of induction furnaces. Full article
Show Figures

Figure 1

24 pages, 2366 KiB  
Article
Improvements of Micro-CHP SOFC System Operation by Efficient Dynamic Simulation Methods
by Laura Nousch, Mathias Hartmann and Alexander Michaelis
Processes 2021, 9(7), 1113; https://doi.org/10.3390/pr9071113 - 26 Jun 2021
Cited by 2 | Viewed by 2802
Abstract
Solid Oxide Fuel Cell (SOFC) technology is of high interest for stationary decentralized generation of electricity and heat in combined heat and power systems (CHP) for the residential sector. Application scenarios for SOFC systems in an electricity-regulated mode play an important role, especially [...] Read more.
Solid Oxide Fuel Cell (SOFC) technology is of high interest for stationary decentralized generation of electricity and heat in combined heat and power systems (CHP) for the residential sector. Application scenarios for SOFC systems in an electricity-regulated mode play an important role, especially in places where an electrical grid connection is not available or rather unstable. The advantages of SOFC systems are the high fuel flexibility and the high efficiencies also under partial load operation compared to other decentralized power generation technologies. Due to the long, energy-consuming system heat-up and the limited partial load capability, SOFC systems do not reach the performance of conventional power generation technologies. Furthermore, stack thermal cycling is associated with power degradation and should be minimized. In this paper, the improvement of these drawbacks are investigated for hotbox-based SOFC systems in the 1 kWel-class for residential applications. Since experimental investigations of the high-temperature systems are limited, modeling tools are established, enabling the visualization of internal system characteristics and providing the opportunity to simulate system operation in critical regions. To achieve this, a methodology for dynamic SOFC system modeling in a process engineering manner is developed based on the modeling language Modelica. A suitable approach is particularly important for modeling and simulation of the strong thermal interaction between the hot system components within the hotbox. The parametrized and validated models are used for the investigation of different dynamic effects, such as the system heat-up and the operation in low partial load points. A second reduced thermal system model aims for annual simulations of the SOFC system together with a battery to investigate the number of thermal cycles and the advantage of a hot standby operation. As a result, it is found that an adequate control of the power input at the start-up device and the cathode air flow has a high improvement potential to increase the stack heating rate and accelerate the heat-up in an energy-saving way. The hotbox-internal thermal management is identified as a crucial issue to reach low partial load points. To avoid the risk of stack cooling, lower heat losses and/or additional heat sources are of importance. Furthermore, the robustness of the tail gas oxidizer is found to be crucial for a higher load flexibility during partial load and the end of life stack operation. The annual simulation results indicate that operating the battery hybrid system with a hot standby mode requires much lower battery capacity for a high grid independence and a complete avoidance of system shutdown and associated power degradation. Full article
(This article belongs to the Special Issue Hydrogen Energy Systems: Optimization Models, Control and Simulation)
Show Figures

Figure 1

22 pages, 8658 KiB  
Article
Design and Optimization of a Curved-Crease-Folding Process Applied to a Light Metallic Structure
by Doina Raducanu, Vasile Danut Cojocaru, Vlad Andrei Raducanu, Anna Nocivin, Nicolae Serban, Ion Cinca, Elisabeta Mirela Cojocaru, Laurentiu Moldovan, Corneliu Trisca-Rusu and Irina Varvara Balkan
Processes 2021, 9(7), 1110; https://doi.org/10.3390/pr9071110 - 25 Jun 2021
Cited by 1 | Viewed by 3213
Abstract
Presently, the realization of complex, unconventional designs using efficient modalities is possible due to an increasing interest in interdisciplinary approaches: materials science, mathematics, IT, architecture, etc. Computerized techniques, among which the algorithmic/generative design is the most advanced one, that are associated with the [...] Read more.
Presently, the realization of complex, unconventional designs using efficient modalities is possible due to an increasing interest in interdisciplinary approaches: materials science, mathematics, IT, architecture, etc. Computerized techniques, among which the algorithmic/generative design is the most advanced one, that are associated with the individualized production methods are used for finding solutions for modern spatial forms with an unconventional spatial geometric shape, which are generically called “free-forms”. This work presents the design, realization and testing of a thin-walled metallic structure proposed as a light structural unit. An integrated research approach was proposed that utilized an algorithmic/digital design applied to the curved-crease-folding method with the study (at different length scales) of the metallic material behaviour after folding. An original method was proposed for the digital design and simulations. The specific mechanical behaviour of the metallic material in the elastic–plastic regime was used in this case to improve the structural performances; mechanical and structural tests were realized to analyse the behaviour of the entire structure. The results are useful for enhancing the accuracy of the digital design, the structural simulation programs and the fabrication methods. Full article
(This article belongs to the Special Issue Design and Optimization in Process Engineering)
Show Figures

Figure 1

18 pages, 9859 KiB  
Article
Electrothermal Desiccant Regeneration Technique for Air Dehumidification
by Chih-Hao Chen, Yu-Hao Kang, Jing-Hung Lu, Ming-Lang Hung, Jyi-Ching Perng and Jiun-Jen Chen
Processes 2021, 9(7), 1082; https://doi.org/10.3390/pr9071082 - 22 Jun 2021
Cited by 3 | Viewed by 4478
Abstract
Adsorption dehumidification and drying equipment is essential general equipment for domestic and industrial use. The most commonly used type in industry is the compressed air adsorption dryer. The analysis results show that the heat loss of the traditional heat air regeneration system of [...] Read more.
Adsorption dehumidification and drying equipment is essential general equipment for domestic and industrial use. The most commonly used type in industry is the compressed air adsorption dryer. The analysis results show that the heat loss of the traditional heat air regeneration system of the compressor dryer is 39.4%, and the exhaust waste heat is 32.4%. The actual use of heat energy for desiccant regeneration is only 28.2%. Therefore, this study uses an innovative electrothermal adsorbent unit (ETAU) to regenerate the desiccant. By directly heating the adsorbent, heat loss can be effectively improved. On the other hand, the composite arrangement of zeolite and activated alumina is used. The inlet compressed air is firstly treated by the activated alumina, which has a high adsorption capacity in the high relative humidity condition, then a zeolite is used as a second part to make the dew point reach –40 °C. In the regeneration step, the airflow direction is reversed, whereby the zeolite is regenerated by the ETAU, and the waste heat of the exhaust air is used to regenerate the activated alumina, which reduces the temperature of the exhaust air. Compared with the traditional heat air compressed air system, the two technologies can save about 27% energy in total. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

14 pages, 1893 KiB  
Article
Efficacy and Safety of Modified Huang-Lian-Jie-Du Decoction Cream on Cancer Patients with Skin Side Effects Caused by EGFR Inhibition
by Ming-Yang Lee, Mei-Yi Lin, Yu-Ju Chang, Yu-Ting Tseng, I-An Huang, Wan-Ting Huang and Yi-Wen Liu
Processes 2021, 9(7), 1081; https://doi.org/10.3390/pr9071081 - 22 Jun 2021
Cited by 2 | Viewed by 2514
Abstract
(1) Background: The epidermal growth factor inhibitors (EGFRIs)/tyrosine kinase inhibitors (TKIs) are effective for cancer target therapy, but acneiform rashes or so-called inflammatory papulopustular exanthemas are common (50% to 90%). The conventional therapy for EGFRIs/TKIs-induced skin toxicity is steroids and antibacterial drugs, but [...] Read more.
(1) Background: The epidermal growth factor inhibitors (EGFRIs)/tyrosine kinase inhibitors (TKIs) are effective for cancer target therapy, but acneiform rashes or so-called inflammatory papulopustular exanthemas are common (50% to 90%). The conventional therapy for EGFRIs/TKIs-induced skin toxicity is steroids and antibacterial drugs, but it is still ineffective for some patients, and EGFRIs/TKIs dose reduction/interruption may be needed. In this study, a modified Chinese herbal medicine, Huang-Lian-Jie-Du decoction cream with Yin-Cold (YC) medicine characteristic, was investigated for the effect on patients suffering EGFRIs/TKIs-induced skin toxicity. (2) Methods: The modified Huang-Lian-Jie-Du (mHLJD) decoction cream was made from 10 herbal medicines, including 4 major medicines (Huanglian, Huangqin, Huangbo, and Zhizi) in traditional HLJD decoction. Patients with EGFRIs/TKIs-induced skin toxicity were enrolled. Patients were excluded if they also used other cream for skin toxicity. Skin conditions were monitored by follow up every 2 weeks. The patients’ characteristics, the skin toxicities, treatment response, and adverse events were recorded and analyzed until skin problems resolved or the study ended. (3) Results: The mHLJD decoction cream and its sub-packages were stored at 4 °C before use. Thirty-four patients who had grade 1–3 skin toxicities after receiving EGFRIs/TKIs were enrolled. Seven patients withdrew or were excluded. Finally, data from 27 patients were analyzed. The mean grade of rash acneiform was significantly decreased from 2.19 (ranged 1 to 3) to 0.88 (ranged 0 to 2) after mHLJD decoction cream treatment for 4 weeks and to 0.55 (ranged 0 to 2) after mHLJD decoction cream treatment for 8 weeks. Additionally, the mean grade of dry skin was also significantly decreased from 1.57 (ranged 1 to 2) to 0.71 (ranged 0 to 1) after mHLJD decoction cream treatment for 4 weeks. The changes of skin toxicity were significant, with no obvious adverse events. (4) Conclusions: In summary, the mHLJD decoction cream provides benefits for alleviation of EGFRIs/TKIs-induced skin rash acneiform and dry skin. Additionally, no obvious side effects were found in patients using mHLJD decoction cream. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

32 pages, 40011 KiB  
Article
Successful Pass Schedule Design in Open-Die Forging Using Double Deep Q-Learning
by Niklas Reinisch, Fridtjof Rudolph, Stefan Günther, David Bailly and Gerhard Hirt
Processes 2021, 9(7), 1084; https://doi.org/10.3390/pr9071084 - 22 Jun 2021
Cited by 9 | Viewed by 3870
Abstract
In order to not only produce an open-die forged part with the desired final geometry but to also maintain economic production, precise process planning is necessary. However, due to the incremental forming of the billet, often with several hundred strokes, the process design [...] Read more.
In order to not only produce an open-die forged part with the desired final geometry but to also maintain economic production, precise process planning is necessary. However, due to the incremental forming of the billet, often with several hundred strokes, the process design is arbitrarily complicated and, even today, often only based on experience or simple mathematical models describing the geometry development. Hence, in this paper, fast process models were merged with a double deep Q-learning algorithm to enable a pass schedule design including multi-objective optimization. The presented implementation of a double deep Q-learning algorithm was successfully trained on an industrial-scale forging process and converged stably against high reward values. The generated pass schedules reliably produced the desired final ingot geometry, utilized the available press force well without exceeding plant limits, and, at the same time, minimized the number of passes. Finally, a forging experiment was performed at the institute of metal forming to validate the generated results. Overall, a proof of concept for the pass schedule design in open-die forging via double deep Q-learning was achieved which opens various starting points for future work. Full article
Show Figures

Graphical abstract

22 pages, 3208 KiB  
Article
Modelling and Multi-Objective Optimization of the Sulphur Dioxide Oxidation Process
by Mohammad Reza Zaker, Clémence Fauteux-Lefebvre and Jules Thibault
Processes 2021, 9(6), 1072; https://doi.org/10.3390/pr9061072 - 20 Jun 2021
Cited by 3 | Viewed by 9312
Abstract
Sulphuric acid (H2SO4) is one of the most produced chemicals in the world. The critical step of the sulphuric acid production is the oxidation of sulphur dioxide (SO2) to sulphur trioxide (SO3) which takes place [...] Read more.
Sulphuric acid (H2SO4) is one of the most produced chemicals in the world. The critical step of the sulphuric acid production is the oxidation of sulphur dioxide (SO2) to sulphur trioxide (SO3) which takes place in a multi catalytic bed reactor. In this study, a representative kinetic rate equation was rigorously selected to develop a mathematical model to perform the multi-objective optimization (MOO) of the reactor. The objectives of the MOO were the SO2 conversion, SO3 productivity, and catalyst weight, whereas the decisions variables were the inlet temperature and the length of each catalytic bed. MOO studies were performed for various design scenarios involving a variable number of catalytic beds and different reactor configurations. The MOO process was mainly comprised of two steps: (1) the determination of Pareto domain via the determination a large number of non-dominated solutions, and (2) the ranking of the Pareto-optimal solutions based on preferences of a decision maker. Results show that a reactor comprised of four catalytic beds with an intermediate absorption column provides higher SO2 conversion, marginally superior to four catalytic beds without an intermediate SO3 absorption column. Both scenarios are close to the ideal optimum, where the reactor temperature would be adjusted to always be at the maximum reaction rate. Results clearly highlight the compromise existing between conversion, productivity and catalyst weight. Full article
(This article belongs to the Special Issue Modelling and Optimization of Chemical Reactors)
Show Figures

Figure 1

14 pages, 690 KiB  
Article
Olive Oil Dregs as a Novel Source of Natural Antioxidants: Extraction Optimization towards a Sustainable Process
by Giuseppe Squillaci, Alice Marchetti, Orsolina Petillo, Michela Bosetti, Francesco La Cara, Gianfranco Peluso and Alessandra Morana
Processes 2021, 9(6), 1064; https://doi.org/10.3390/pr9061064 - 18 Jun 2021
Cited by 3 | Viewed by 2259
Abstract
Olive oil dregs (OOD), which are an underutilized by-product from oil mills, were used for the extraction of antioxidant compounds. The residues from three oil mills located in Campania (Southern Italy) were extracted with acidified methanol, and hydroxytyrosol (HT) was the main phenolic [...] Read more.
Olive oil dregs (OOD), which are an underutilized by-product from oil mills, were used for the extraction of antioxidant compounds. The residues from three oil mills located in Campania (Southern Italy) were extracted with acidified methanol, and hydroxytyrosol (HT) was the main phenolic compound detected. Total phenolic content (TPC) and HT amount were measured. EVO Campania oil mill provided the residue with the highest TPC and HT quantities: 6.801 ± 0.159 mg Gallic Acid Equivalents (GAE)/g OOD and 519.865 ± 9.082 μg/g OOD, respectively. Eco-friendly extractions at different temperatures and times were performed on EVO Campania OOD, obtaining 9.122 ± 0.104 mg GAE/g OOD and 541.330 ± 64.087 μg/g OOD for TPC and HT, respectively, at 121 °C for 60 min. Radical Scavenging Activity (RSA), Superoxide Scavenging Activity (SSA), and Ferric Reducing Antioxidant Power (FRAP) were measured in OOD aqueous extracts. Extract prepared at 37 °C for 60 min showed the greatest RSA and SSA values (44.12 ± 1.82 and 75.72 ± 1.78, respectively), whereas extract prepared at 121 °C for 60 min exhibited the highest FRAP value (129.10 ± 10.49 μg Ascorbic Acid Equivalents (AAE)/mg). OOD extracts were able to protect sunflower oil from oxidation for 4 weeks at 65 °C. The overall results suggest that this novel residue can be usefully valorized by providing HT-rich extracts to use as antioxidant agents. Full article
(This article belongs to the Special Issue Extraction Optimization Processes of Antioxidants)
Show Figures

Figure 1

27 pages, 88783 KiB  
Article
Pool Boiling Performance of Water and Self-Rewetting Fluids on Hybrid Functionalized Aluminum Surfaces
by Matic Može, Viktor Vajc, Matevž Zupančič, Radek Šulc and Iztok Golobič
Processes 2021, 9(6), 1058; https://doi.org/10.3390/pr9061058 - 17 Jun 2021
Cited by 18 | Viewed by 3535
Abstract
The boiling performance of functionalized hybrid aluminum surfaces was experimentally investigated for water and self-rewetting mixtures of water and 1-butanol. Firstly, microstructured surfaces were produced via chemical etching in hydrochloric acid and the effect of the etching time on the surface morphology was [...] Read more.
The boiling performance of functionalized hybrid aluminum surfaces was experimentally investigated for water and self-rewetting mixtures of water and 1-butanol. Firstly, microstructured surfaces were produced via chemical etching in hydrochloric acid and the effect of the etching time on the surface morphology was evaluated. An etching time of 5 min was found to result in pitting corrosion and produced weakly hydrophilic microstructured surfaces with many microcavities. Observed cavity-mouth diameters between 3.6 and 32 μm are optimal for efficient nucleation and provided a superior boiling performance. Longer etching times of 10 and 15 min resulted in uniform corrosion and produced superhydrophilic surfaces with a micropeak structure, which lacked microcavities for efficient nucleation. In the second stage, hybrid surfaces combining lower surface energy and a modified surface microstructure were created by hydrophobization of etched aluminum surfaces using a silane agent. Hydrophobized surfaces were found to improve boiling heat transfer and their boiling curves exhibited a significantly lower superheat. Significant heat transfer enhancement was observed for hybrid microcavity surfaces with a low surface energy. These surfaces provided an early transition into nucleate boiling and promoted bubble nucleation. For a hydrophobized microcavity surface, heat transfer coefficients of up to 305 kW m−2 K−1 were recorded and an enhancement of 488% relative to the untreated reference surface was observed. The boiling of self-rewetting fluids on functionalized surfaces was also investigated, but a synergistic effect of developed surfaces and a self-rewetting working fluid was not observed. An improved critical heat flux was only obtained for the untreated surface, while a lower critical heat flux and lower heat transfer coefficients were measured on functionalized surfaces, whose properties were already tailored to promote nucleate boiling. Full article
(This article belongs to the Special Issue Two-Phase Flow Heat Transfer: Design, Simulation and Optimization)
Show Figures

Graphical abstract

15 pages, 4024 KiB  
Article
g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution
by Yihang Chen, Yanfei Liu and Zhen Ma
Processes 2021, 9(6), 1055; https://doi.org/10.3390/pr9061055 - 17 Jun 2021
Cited by 4 | Viewed by 1982
Abstract
Protonated g-C3N4 (pCN) formed by treating bulk g-C3N4 with an aqueous HCl solution was modified with D149 dye, i.e., 5-[[4[4-(2,2-diphenylethenyl) phenyl]-1,2,3,3a,4,8b-hexahydrocyclopent[b]indol-7-yl] methylene]-2-(3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-thiazolidin-2-ylidenerhodanine, for photocatalytic water splitting (using Pt as a co-catalyst). The D149/pCN-Pt composite showed a much [...] Read more.
Protonated g-C3N4 (pCN) formed by treating bulk g-C3N4 with an aqueous HCl solution was modified with D149 dye, i.e., 5-[[4[4-(2,2-diphenylethenyl) phenyl]-1,2,3,3a,4,8b-hexahydrocyclopent[b]indol-7-yl] methylene]-2-(3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-thiazolidin-2-ylidenerhodanine, for photocatalytic water splitting (using Pt as a co-catalyst). The D149/pCN-Pt composite showed a much higher rate (2138.2 µmol·h−1·g−1) of H2 production than pCN-Pt (657.0 µmol·h−1·g−1). Through relevant characterization, the significantly high activity of D149/pCN-Pt was linked to improved absorption of visible light, accelerated electron transfer, and more efficient separation of charge carriers. The presence of both D149 and Pt was found to be important for these factors. A mechanism was proposed. Full article
(This article belongs to the Special Issue Redesign Processes in the Age of the Fourth Industrial Revolution)
Show Figures

Figure 1

24 pages, 5375 KiB  
Article
Techno-Economic and Carbon Footprint Analyses of a Coke Oven Gas Reuse Process for Methanol Production
by Jean-François Portha, Wilmar Uribe-Soto, Jean-Marc Commenge, Solène Valentin and Laurent Falk
Processes 2021, 9(6), 1042; https://doi.org/10.3390/pr9061042 - 15 Jun 2021
Cited by 7 | Viewed by 3543
Abstract
This paper focuses on the best way to produce methanol by Coke Oven Gas (COG) conversion and by carbon dioxide capture. The COG, produced in steelworks and coking plants, is an interesting source of hydrogen that can be used to hydrogenate carbon dioxide, [...] Read more.
This paper focuses on the best way to produce methanol by Coke Oven Gas (COG) conversion and by carbon dioxide capture. The COG, produced in steelworks and coking plants, is an interesting source of hydrogen that can be used to hydrogenate carbon dioxide, recovered from flue gases, into methanol. The architecture of the reuse process is developed and the different process units are compared by considering a hierarchical decomposition. Two case studies are selected, process units are modelled, and flowsheets are simulated using computer-aided design software. A factorial techno-economic analysis is performed together with a preliminary carbon balance to evaluate the economic reliability and the environmental sustainability of the proposed solutions. The production costs of methanol are equal to 228 and 268 €/ton for process configurations involving, respectively, a combined methane reforming of COG and a direct COG separation to recover hydrogen. This cost is slightly higher than the current price of methanol on the market (about 204 €/ton for a process located in the USA in 2013). Besides, the second case study shows an interesting reduction of the carbon footprint with respect to reference scenarios. The carbon dioxide capture from flue gases together with COG utilization can lead to a competitive and sustainable methanol production process depending partly on a carbon tax. Full article
(This article belongs to the Special Issue Recent Advances in Carbon Dioxide Capture and Utilization)
Show Figures

Figure 1

16 pages, 1476 KiB  
Article
Dark Fermentation of Sweet Sorghum Stalks, Cheese Whey and Cow Manure Mixture: Effect of pH, Pretreatment and Organic Load
by Margarita Andreas Dareioti, Aikaterini Ioannis Vavouraki, Konstantina Tsigkou, Constantina Zafiri and Michael Kornaros
Processes 2021, 9(6), 1017; https://doi.org/10.3390/pr9061017 - 9 Jun 2021
Cited by 17 | Viewed by 2792
Abstract
The aim of this study was to determine the optimal conditions for dark fermentation using agro-industrial liquid wastewaters mixed with sweet sorghum stalks (i.e., 55% sorghum, 40% cheese whey, and 5% liquid cow manure). Batch experiments were performed to investigate the effect of [...] Read more.
The aim of this study was to determine the optimal conditions for dark fermentation using agro-industrial liquid wastewaters mixed with sweet sorghum stalks (i.e., 55% sorghum, 40% cheese whey, and 5% liquid cow manure). Batch experiments were performed to investigate the effect of controlled pH (5.0, 5.5, 6.0, 6.5) on the production of bio-hydrogen and volatile fatty acids. According to the obtained results, the maximum hydrogen yield of 0.52 mol H2/mol eq. glucose was measured at pH 5.5 accompanied by the highest volatile fatty acids production, whereas similar hydrogen productivity was also observed at pH 6.0 and 6.5. The use of heat-treated anaerobic sludge as inoculum had a positive impact on bio-hydrogen production, exhibiting an increased yield of 1.09 mol H2/mol eq. glucose. On the other hand, the pretreated (ensiled) sorghum, instead of a fresh one, led to a lower hydrogen production, while the organic load decrease did not affect the process performance. In all experiments, the main fermentation end-products were volatile fatty acids (i.e., acetic, propionic, butyric), ethanol and lactic acid. Full article
Show Figures

Graphical abstract

13 pages, 2882 KiB  
Article
Mesoscale Morphologies of Nafion-Based Blend Membranes by Dissipative Particle Dynamics
by Unal Sen, Mehmet Ozdemir, Mustafa Erkartal, Alaattin Metin Kaya, Abdullah A. Manda, Ali Reza Oveisi, M. Ali Aboudzadeh and Takashi Tokumasu
Processes 2021, 9(6), 984; https://doi.org/10.3390/pr9060984 - 2 Jun 2021
Cited by 2 | Viewed by 2733
Abstract
Polymer electrolyte membrane (PEM) composed of polymer or polymer blend is a vital element in PEM fuel cell that allows proton transport and serves as a barrier between fuel and oxygen. Understanding the microscopic phase behavior in polymer blends is very crucial to [...] Read more.
Polymer electrolyte membrane (PEM) composed of polymer or polymer blend is a vital element in PEM fuel cell that allows proton transport and serves as a barrier between fuel and oxygen. Understanding the microscopic phase behavior in polymer blends is very crucial to design alternative cost-effective proton-conducting materials. In this study, the mesoscale morphologies of Nafion/poly(1-vinyl-1,2,4-triazole) (Nafion-PVTri) and Nafion/poly(vinyl phosphonic acid) (Nafion-PVPA) blend membranes were studied by dissipative particle dynamics (DPD) simulation technique. Simulation results indicate that both blend membranes can form a phase-separated microstructure due to the different hydrophobic and hydrophilic character of different polymer chains and different segments in the same polymer chain. There is a strong, attractive interaction between the phosphonic acid and sulfonic acid groups and a very strong repulsive interaction between the fluorinated and phosphonic acid groups in the Nafion-PVPA blend membrane. By increasing the PVPA content in the blend membrane, the PVPA clusters’ size gradually increases and forms a continuous phase. On the other hand, repulsive interaction between fluorinated and triazole units in the Nafion-PVTri blend is not very strong compared to the Nafion-PVPA blend, which results in different phase behavior in Nafion-PVTri blend membrane. This relatively lower repulsive interaction causes Nafion-PVTri blend membrane to have non-continuous phases regardless of the composition. Full article
Show Figures

Figure 1

19 pages, 18879 KiB  
Article
Pressure Drops and Energy Consumption Model of Low-Scale Closed Circuit Cooling Towers
by Francisco Táboas and Francisco Vázquez
Processes 2021, 9(6), 974; https://doi.org/10.3390/pr9060974 - 31 May 2021
Cited by 4 | Viewed by 3809
Abstract
Heat transfer models of closed-circuit cooling towers are available in the literature. Using these models, traditional parametric studies show how the inlet conditions of the streams influence the cooling capacity. This type of analysis could yield to suboptimal operation of the cooling tower [...] Read more.
Heat transfer models of closed-circuit cooling towers are available in the literature. Using these models, traditional parametric studies show how the inlet conditions of the streams influence the cooling capacity. This type of analysis could yield to suboptimal operation of the cooling tower since optimal heat and mass transfer processes do not necessarily imply an energy efficient cooling device. The optimal design of closed-circuit cooling towers should include any evaluation of pressure loses associated with the three streams involved. Air-water biphasic pressure drop across tube bundles in such devices was not sufficiently investigated in literature. The proposed literature correlations depend on geometry parameters, and these parameters are not known. In this work, an experimental device has been designed and constructed to study pressure drops, and an energy consumption model has been developed. The pressure drop was successfully calculated modifying a general correlation proposed for two phase flow across tube bundles. The energy model results show that the optimum was obtained where the intube water Reynolds number is near the transition region, and at air velocities near 1 m/s. Full article
(This article belongs to the Special Issue Redesign Processes in the Age of the Fourth Industrial Revolution)
Show Figures

Figure 1

12 pages, 1401 KiB  
Article
Automating Laboratory Processes by Connecting Biotech and Robotic Devices—An Overview of the Current Challenges, Existing Solutions and Ongoing Developments
by Ferdinand Biermann, Julius Mathews, Bastian Nießing, Niels König and Robert H. Schmitt
Processes 2021, 9(6), 966; https://doi.org/10.3390/pr9060966 - 29 May 2021
Cited by 12 | Viewed by 3946
Abstract
The constantly growing interest and range of applications of advanced cell, gene and regenerative therapies raise the need for efficient production of biological material and novel treatment technologies. Many of the production and manipulation processes of such materials are still manual and, therefore, [...] Read more.
The constantly growing interest and range of applications of advanced cell, gene and regenerative therapies raise the need for efficient production of biological material and novel treatment technologies. Many of the production and manipulation processes of such materials are still manual and, therefore, need to be transferred to a fully automated execution. Developers of such systems face several challenges, one of which is mechanical and communication interfaces in biotechnological devices. In the present state, many devices are still designed for manual use and rarely provide a connection to external software for receiving commands and sending data. However, a trend towards automation on the device market is clearly visible, and the communication protocol, Open Platform Communications Data Access (OPC DA), seems to become established as a standard in biotech devices. A rising number of vendors offer software for device control and automated processing, some of which even allow the integration of devices from multiple manufacturers. The high, application-specific need in functionalities, flexibility and adaptivity makes it difficult to find the best solution and, in many cases, leads to the creation of new custom-designed software. This report shall give an overview of existing technologies, devices and software for laboratory automation of biotechnological processes. Furthermore, it presents an outlook for possible future developments and standardizations. Full article
(This article belongs to the Special Issue Cell, Gene and Regenerative Therapy Processes)
Show Figures

Figure 1

20 pages, 5603 KiB  
Article
Development of a Nanocrystal Formulation of a Low Melting Point API Following a Quality by Design Approach
by Andreas Ouranidis, Nikos Gkampelis, Catherine Markopoulou, Ioannis Nikolakakis and Kyriakos Kachrimanis
Processes 2021, 9(6), 954; https://doi.org/10.3390/pr9060954 - 27 May 2021
Cited by 7 | Viewed by 3390
Abstract
Preparation of nanocrystal formulations by wet media milling and spray-drying is a reliable technique to enhance dissolution and ameliorate absorption limitations of poorly soluble BCS II drugs. However, when thermosensitive compositions are dried at high temperatures, the risks of particle aggregation and thermal [...] Read more.
Preparation of nanocrystal formulations by wet media milling and spray-drying is a reliable technique to enhance dissolution and ameliorate absorption limitations of poorly soluble BCS II drugs. However, when thermosensitive compositions are dried at high temperatures, the risks of particle aggregation and thermal degradation must be considered. The present study investigates the effects of nanosuspension formulation variables when performing the spray drying process at equidistant temperatures above and below the melting point. Towards this purpose, Fenofibrate is exploited as a model drug of unfavorable pharmacokinetic profile and low melting point (79–82 °C), properties that render thermal processing a nontrivial task. Rationalizing the system’s behavior by combining molecular simulations with QbD methodology, the preparation of stable nanocrystals can be “steered” in order to avoid undesirable melting. The statistically resolved operational conditions showed that Fenofibrate Critical Quality Attribute–compliant nanosuspensions i.e., bearing hydrodynamic diameter and ζ-potential of 887 nm and −16.49 mV, respectively, were obtained by wet milling drug to Pharmacoat and mannitol weighted optimum ratios of 4.075% and 0.75%, after spray drying at the desired temperature of 77 °C. In conclusion, we present a quality assurance methodology of nano-comminution generally applicable for thermo-labile BCS II drugs. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Graphical abstract

19 pages, 3374 KiB  
Article
Heat Transfer Coefficient Estimation and Performance Evaluation of Shell and Tube Heat Exchanger Using Flue Gas
by Xuejun Qian, Seong W. Lee and Yulai Yang
Processes 2021, 9(6), 939; https://doi.org/10.3390/pr9060939 - 26 May 2021
Cited by 24 | Viewed by 8619
Abstract
In the past few decades, water and air were commonly used as working fluid to evaluate shell and tube heat exchanger (STHE) performance. This study was undertaken to estimate heat transfer coefficients and evaluate performance in the pilot-scale twisted tube-based STHE using the [...] Read more.
In the past few decades, water and air were commonly used as working fluid to evaluate shell and tube heat exchanger (STHE) performance. This study was undertaken to estimate heat transfer coefficients and evaluate performance in the pilot-scale twisted tube-based STHE using the flue gas from biomass co-combustion as working fluid. Theoretical calculation along with experimental results were used to calculate the specific heat of flue gas. A simplified model was then developed from the integration of two heat transfer methods to predict the overall heat transfer coefficient without tedious calculation of individual heat transfer coefficients and fouling factors. Performance including water and trailer temperature, heat load, effectiveness, and overall heat transfer coefficient were jointly investigated under variable operating conditions. Results indicated that the specific heat of flue gas from co-combustion ranging between 1.044 and 1.338 kJ/kg·K while specific heat was increased by increasing flue gas temperature and decreasing excess air ratio. The developed mathematical model was validated to have relatively small errors to predict the overall heat transfer coefficient. A flue gas mass flow rate of 61.3–98.8 kg/h, a water flow rate of 13.7–14.1 L/min, and a parallel arrangement of two water-to-air heaters in an empty trailer were found to be optimal conditions for space heating purpose. In addition, a lower poultry litter feeding rate decreased heat loss of flue gas and increased heat gain of water, while a lower water flow rate also provided a lower maximum possible heat transfer rate with a higher actual heat transfer rate to quickly achieve heat equilibrium that ultimately improves the performance. This study demonstrates the possibility of collecting residual heat from the flue gas using the pilot-scale STHE system while outlining a systematic approach and process for evaluating its performance. Full article
(This article belongs to the Special Issue CFD Applications in Energy Engineering Research and Simulation)
Show Figures

Graphical abstract

23 pages, 12042 KiB  
Article
Calcium Carbonate as Functional Filler in Polyamide 12-Manipulation of the Thermal and Mechanical Properties
by Fabio Ippolito, Gunter Hübner, Tim Claypole and Patrick Gane
Processes 2021, 9(6), 937; https://doi.org/10.3390/pr9060937 - 26 May 2021
Cited by 3 | Viewed by 3910
Abstract
Adjusting the thermal response properties of a polymeric compound can significantly improve the usability in a selective laser-sintering process. As previously shown, combining a precise amount of coarse and narrow size distribution fine calcium carbonate fillers results in a potential optimization of the [...] Read more.
Adjusting the thermal response properties of a polymeric compound can significantly improve the usability in a selective laser-sintering process. As previously shown, combining a precise amount of coarse and narrow size distribution fine calcium carbonate fillers results in a potential optimization of the thermal properties of a polyamide 12 matrix. Additionally, up to 60% of the normally associated lost ductility can be re-gained by surface modification, thus functionalizing the filler. To optimize the functionality further this study combines a precisely defined particle size ratio of fillers adopting a specially selected surface modification using amino hexanoic acid. Morphology of the carbonate filler was also investigated. The range of effect of each parameter on the thermal response and mechanical properties was studied. The results show that the thermal properties have large potential to be optimized, without reducing the ductility significantly, by adjusting the morphology and size ratio of coarse and fine filler particles. The compound properties were demonstrated using a twin-screw extruder, indicating the potential for producing a preparate composite for additive manufacturing. Full article
(This article belongs to the Special Issue Particulate-Filled Advanced Polymer Composites)
Show Figures

Figure 1

23 pages, 1221 KiB  
Article
Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety
by Cristina Soares, Paula Paíga, Marta Marques, Tânia Neto, Ana Paula Carvalho, Alexandre Paiva, Pedro Simões, Leonor Costa, Ana Bernardo, Naiara Fernández, Edgar Pinto, Agostinho Almeida, Maria Rosário Bronze, Cristina Delerue-Matos and Clara Grosso
Processes 2021, 9(5), 893; https://doi.org/10.3390/pr9050893 - 19 May 2021
Cited by 21 | Viewed by 4001
Abstract
Mental health and active aging are two of the main concerns in the 21st century. To search for new neuroprotective compounds, extracts of Codium tomentosum Stackhouse and Fucus vesiculosus L. were obtained through multi-step (four step) subcritical water extraction using a temperature gradient. [...] Read more.
Mental health and active aging are two of the main concerns in the 21st century. To search for new neuroprotective compounds, extracts of Codium tomentosum Stackhouse and Fucus vesiculosus L. were obtained through multi-step (four step) subcritical water extraction using a temperature gradient. The safety assessment of the extracts was performed by screening pharmaceutical compounds and pesticides by UHPLC-MS/MS, and iodine and arsenic levels by ICP-MS. Although the extracts were free of pharmaceutical compounds and pesticides, the presence of arsenic and high iodine contents were found in the first two extraction steps. Thus, the health-benefits were only evaluated for the fractions obtained in steps 3 and 4 from the extraction process. These fractions were tested against five brain enzymes implicated in Alzheimer’s, Parkinson’s, and major depression etiology as well as against reactive oxygen and nitrogen species, having been observed a strong enzyme inhibition and radical scavenging activities for the step 4 fractions from both seaweed species. Regarding the variation of the chemical composition during the extraction, step 1 fractions were the richest in phenolic compounds. With the increase in temperature, Maillard reaction, caramelization and thermo-oxidation occurred, and the resulting products positively affected the antioxidant capacity and the neuroprotective effects. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Graphical abstract

13 pages, 1719 KiB  
Article
A Food-Grade Resin with LDH–Salicylate to Extend Mozzarella Cheese Shelf Life
by Laura Quintieri, Valeria Bugatti, Leonardo Caputo, Luigi Vertuccio and Giuliana Gorrasi
Processes 2021, 9(5), 884; https://doi.org/10.3390/pr9050884 - 18 May 2021
Cited by 6 | Viewed by 2676
Abstract
Mozzarella cheese can be considered by far the world’s most popular Italian dairy product. Extending the shelf life of mozzarella cheese is an important issue in the dairy industry due to the high risk of contamination by several bacteria species, including spoilage pseudomonads. [...] Read more.
Mozzarella cheese can be considered by far the world’s most popular Italian dairy product. Extending the shelf life of mozzarella cheese is an important issue in the dairy industry due to the high risk of contamination by several bacteria species, including spoilage pseudomonads. In this work, active packaging was prepared by coating traditional polyethylene terephthalate (PET) containers of “ovoline” mozzarella cheese with a food-grade resin mixed with a layered double hydroxide (LDH) in which salicylate anion was intercalatedby ionic exchange.. This antimicrobial molecule is listed in EC-Directive 10/2011/EC of 14 January 2011. Morphological arrangement of the molecule into the LDH layers was evaluated by X-ray diffraction (XRD) and controlled release followed by UV spectroscopy. Then, active trays were used to pack the mozzarella cheeses stored for 20 days at 4 °C and under thermal abuse (15 °C). Samples from both conditions showed coliform reduction (by ca. 2 log CFU/g) throughout the storage period. Depending on temperature, total mesophilic aerobic bacteria, Pseudomonas spp., yeasts, and mold loads were reduced in the first 3 days; at 4 °C. Slower acidification and lower proteolysis were also found in treated samples in comparison to control ones. The fitting of the Gompertz function to coliforms and spoilage pseudomonads highlighted an increase in the shelf life of mozzarella cheese of ca. 2 days at 4 °C. These results suggest that salicylate–LDH-coated PET may be applied to extend the shelf-life of mozzarella cheese and also counteract its spoilage if accidental interruptions to refrigeration occur. Full article
(This article belongs to the Special Issue Advances of Antimicrobial in Bioengineering)
Show Figures

Figure 1

16 pages, 1332 KiB  
Article
Optimization and Analysis of Liquid Anaerobic Co-Digestion of Agro-Industrial Wastes via Mixture Design
by Roberto Eloy Hernández Regalado, Tobias Weide, Daniel Baumkötter, Lukas Wettwer, Jurek Häner, Elmar Brügging and Jens Tränckner
Processes 2021, 9(5), 877; https://doi.org/10.3390/pr9050877 - 17 May 2021
Cited by 5 | Viewed by 2417
Abstract
Anaerobic co-digestion (AcoD) is a widely employed technique to produce biogas from simultaneous digestion of various biomasses. However, the selection of the optimal proportions of the substrates in the mixtures presents a challenge. This research used a mixture design to investigate the interactions [...] Read more.
Anaerobic co-digestion (AcoD) is a widely employed technique to produce biogas from simultaneous digestion of various biomasses. However, the selection of the optimal proportions of the substrates in the mixtures presents a challenge. This research used a mixture design to investigate the interactions between the liquid fraction of piglet manure (PM), cow manure (CWM), and starch wastewater (SWW). A modified Gompertz model was used to identify the statistically significant parameters of the methane production curves. The optimal compositions of the mixtures were identified based on multi-objective optimization of the maximal methane yield (YCH4) and maximal methane specific production rate (rCH4) parameters. The study was validated using a double mixture of PM and CWM and a triple mixture. The estimated degradation rates for both mixtures were faster than the predicted ones. The absolute relative errors of rCH4 were 27.41% for the double mixture and 5.59% for the triple mixture, while the relative errors of YCH4 were 4.64% for the double mixture and 10.05% for the triple mixture. These relative errors are within the normal limits of a process with high variability like AD. Thus, mixture design supported by the tested models is suitable for the definition of practically advisable mixtures of substrates. Full article
(This article belongs to the Special Issue Bioprocess Design and Optimization)
Show Figures

Graphical abstract

14 pages, 366 KiB  
Article
Optimization of Methanol Synthesis under Forced Periodic Operation
by Carsten Seidel, Daliborka Nikolić, Matthias Felischak, Menka Petkovska, Andreas Seidel-Morgenstern and Achim Kienle
Processes 2021, 9(5), 872; https://doi.org/10.3390/pr9050872 - 15 May 2021
Cited by 9 | Viewed by 2673
Abstract
Traditionally, methanol is produced in large amounts from synthesis gas with heterogeneous Cu/ZnO/Al2O3 catalysts under steady state conditions. In this paper, the potential of alternative forced periodic operation modes is studied using numerical optimization. The focus is a well-mixed isothermal [...] Read more.
Traditionally, methanol is produced in large amounts from synthesis gas with heterogeneous Cu/ZnO/Al2O3 catalysts under steady state conditions. In this paper, the potential of alternative forced periodic operation modes is studied using numerical optimization. The focus is a well-mixed isothermal reactor with two periodic inputs, namely, CO concentration in the feed and total feed flow rate. Exploiting a detailed kinetic model which also describes the dynamics of the catalyst, a sequential NLP optimization approach is applied to compare optimal steady state solutions with optimal periodic regimes. Periodic solutions are calculated using dynamic optimization with a periodicity constraint. The NLP optimization is embedded in a multi-objective optimization framework to optimize the process with respect to two objective functions and generate the corresponding Pareto fronts. The first objective is the methanol outlet flow rate. The second objective is the methanol yield based on the total carbon in the feed. Additional constraints arising from the complex methanol reaction and the practical limitations are introduced step by step. The results show that significant improvements for both objective functions are possible through periodic forcing of the two inputs considered here. Full article
(This article belongs to the Special Issue Redesign Processes in the Age of the Fourth Industrial Revolution)
Show Figures

Figure 1

12 pages, 8312 KiB  
Article
Lessons Learned from 10 Years of ANITA Mox for Sidestream Treatment
by Romain Lemaire and Magnus Christensson
Processes 2021, 9(5), 863; https://doi.org/10.3390/pr9050863 - 14 May 2021
Cited by 8 | Viewed by 3655
Abstract
When a wastewater treatment plant (WWTP) uses anaerobic digestion (AD) on its sludge treatment line, the opportunity to install a sidestream deammonification process for the cost-effective removal of the N-rich reject water load generated by the sludge digester should be considered. In this [...] Read more.
When a wastewater treatment plant (WWTP) uses anaerobic digestion (AD) on its sludge treatment line, the opportunity to install a sidestream deammonification process for the cost-effective removal of the N-rich reject water load generated by the sludge digester should be considered. In this context, the ANITA™ Mox process based on the moving bed biofilm reactor (MBBR) technology has been implemented at more than 30 full-scale facilities over the last 10 years to treat reject water from conventional AD or after thermal hydrolysis process (THP) to reduce the N-load and associated treatment costs on the WWTP. This paper reviews the lessons learned in the implementation of the ANITA™ Mox process at several WWTP in the US, Europe, and Australia. Full article
(This article belongs to the Special Issue Anammox-Based Processes for Wastewater Treatment)
Show Figures

Figure 1

13 pages, 1013 KiB  
Article
In Situ Bio-Methanation Modelling of a Randomly Packed Gas Stirred Tank Reactor (GSTR)
by Leone Mazzeo, Antonella Signorini, Giuseppe Lembo, Irene Bavasso, Luca Di Palma and Vincenzo Piemonte
Processes 2021, 9(5), 846; https://doi.org/10.3390/pr9050846 - 12 May 2021
Cited by 5 | Viewed by 2352
Abstract
In situ Bio-Methanation (BM) is a recently developed biogas upgrading technique which finds application also in the Power to Gas (P2G) field. In this study a novel configuration of BM digester, the randomly packed Gas Stirred Tank Reactor (GSTR), was modelled. A 49 [...] Read more.
In situ Bio-Methanation (BM) is a recently developed biogas upgrading technique which finds application also in the Power to Gas (P2G) field. In this study a novel configuration of BM digester, the randomly packed Gas Stirred Tank Reactor (GSTR), was modelled. A 49 L reactor, in thermophilic conditions (55 °C) and at atmospheric pressure, was filled up with random packing on which the microbial populations could adhere. The feedstock used was Second Cheese Whey (SCW), liquid waste of cheese factories, rich in lactose (38 g/L), and its flowrate was chosen to obtain a Hydraulic Retention Time (HRT) of 30 days. The process was analyzed for different hydrogen inlet flowrates of 10 mL/min and 50 mL/min. The produced biogas was also recirculated in the reactor in order to transfer, into the liquid phase, as much hydrogen as possible. The model parameters were estimated by means of stationary state information of the reactor working without hydrogen injection, while a dynamical fitting was necessary to evaluate the value of the hydrogen mass transfer coefficient during BM. The model well described the reactor behavior and, by means of a dimensionless analysis in which the numbers of Stanton (St) and β were defined, it was found out that the mass transfer coefficient is the limiting step of the process. Full article
(This article belongs to the Special Issue Modelling and Optimization of Chemical Reactors)
Show Figures

Figure 1

16 pages, 5193 KiB  
Article
Simulation of Shear-Thickening Liquid Transfer between U-Shaped Cell and Flat Plate
by Ling Dong, Jiefang Xing, Shuang Wu, Xiaomin Guan and Hongjuan Zhu
Processes 2021, 9(5), 838; https://doi.org/10.3390/pr9050838 - 11 May 2021
Cited by 4 | Viewed by 2059
Abstract
Based on the actual measurement of the shear-thickening properties of water-based inks, in order to improve the ink transfer rate, the PLIC (Piecewise Linear Interface Construction) interface tracking method and the VOF (Volume of Fluid) method are used to simulate the transfer process [...] Read more.
Based on the actual measurement of the shear-thickening properties of water-based inks, in order to improve the ink transfer rate, the PLIC (Piecewise Linear Interface Construction) interface tracking method and the VOF (Volume of Fluid) method are used to simulate the transfer process of the shear-thickening liquid between the U-shaped cell and the upwardly moving plate. The effects of substrate surface wettability, cell contact angle, and cell depth on liquid transfer were studied. The results showed that all can increase the liquid transfer rate, and the change of the cell contact angle also led to the difference in the breaking time of the liquid filament. In addition, the shallow plate effect was discovered in the study of cell depth. The shallow plate effect is a phenomenon by which the amount of liquid transferred and the liquid transfer rate are greatly improved when the depth of the cell decreases to a certain limit value. In addition, for the U-shaped cell, the optimization method combining the shallow printing plate effect and fillet can greatly improve the liquid transfer rate and solve the undesirable problems such as plate blocking. After optimization, a liquid transfer rate of about 85% can be achieved. Full article
(This article belongs to the Section Advanced Digital and Other Processes)
Show Figures

Figure 1

13 pages, 1469 KiB  
Article
Time-Dependent Viscous Flow Behavior of a Hydrophobic Fumed Silica Suspension
by Jorge H. Sánchez, Francisco J. Rubio-Hernández and Nicolás M. Páez-Flor
Processes 2021, 9(5), 807; https://doi.org/10.3390/pr9050807 - 5 May 2021
Cited by 4 | Viewed by 2028
Abstract
The viscous flow behavior of a 12.5 vol% hydrophobic fumed silica (Aerosil® R816) suspension in polypropylene glycol of low molecular weight (PPG400) was studied in a stress-controlled rheometer. The steady flow curve showed shear thickening between two shear thinning regions. Time-dependent viscosity [...] Read more.
The viscous flow behavior of a 12.5 vol% hydrophobic fumed silica (Aerosil® R816) suspension in polypropylene glycol of low molecular weight (PPG400) was studied in a stress-controlled rheometer. The steady flow curve showed shear thickening between two shear thinning regions. Time-dependent viscosity response provoked by step changes in shear stresses corresponding to the shear-thickening region apparently agrees with thixotropic behavior just after the very initial stages are surpassed. Almost instantaneous jamming can justify misinterpretation of the results. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop