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Abstract: In order to not only produce an open-die forged part with the desired final geometry
but to also maintain economic production, precise process planning is necessary. However, due
to the incremental forming of the billet, often with several hundred strokes, the process design is
arbitrarily complicated and, even today, often only based on experience or simple mathematical
models describing the geometry development. Hence, in this paper, fast process models were merged
with a double deep Q-learning algorithm to enable a pass schedule design including multi-objective
optimization. The presented implementation of a double deep Q-learning algorithm was successfully
trained on an industrial-scale forging process and converged stably against high reward values. The
generated pass schedules reliably produced the desired final ingot geometry, utilized the available
press force well without exceeding plant limits, and, at the same time, minimized the number of
passes. Finally, a forging experiment was performed at the institute of metal forming to validate the
generated results. Overall, a proof of concept for the pass schedule design in open-die forging via
double deep Q-learning was achieved which opens various starting points for future work.

Keywords: open-die forging; reinforcement learning; double deep Q-learning; process design;
process optimization

1. Introduction
1.1. Process Design in Open-Die Forging

Open-die forging is an incremental forming process to produce predominantly longi-
tudinally oriented components such as turbine shafts. Despite its long history, the open-die
forging process has not lost any of its importance to this day. Open-die forging is char-
acterized by the fact that not only a defined final geometry is generated, but excellent
mechanical properties are also produced. Due to the incremental forming of the workpiece
by commonly hundreds of strokes, the high flexibility and, at the same time, the high
complexity of the process design in open-die forging arises.

In order to ensure consistent quality in industrial production, forging processes are
usually designed in advance. Important process parameters, such as height reductions and
bite ratios, are summed up in a so-called “pass schedule” that serves as a template for the
forming process and can also be used directly to pilot the forging plant. Even today, the
design of pass schedules is often based on the experience of long-standing employees or
on simple mathematical models, e.g., based on volume constancy and the Tomlinson and
Stringer [1] spread formulas. Although, processes designed through this approach achieve
the final geometry accurately, they do not consider the expected component quality and
the efficient utilization of the machine’s limits.

Pass schedule calculation programs can improve on this by including not only the
geometry development but also other workpiece and process parameters, such as tem-
perature, deformation resistance, or press force, in the pass schedule design. In this way,
the generated pass schedules lead to components with the desired final geometry and, at
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the same time, comply with restrictions such as a maximum press force or a permissible
temperature range. In addition, the consideration of higher-level objectives, such as an
efficient production process by minimizing the process time, is possible. Subsequently,
some typical approaches for pass schedule design in open-die forging are listed.

In 1978, Mannesmann presented the pass schedule calculation program
“MD-Dataforge” [2] without publishing the underlying calculation equations. The program
is able to determine the workpiece dimensions depending on the material, the temperature
as well as height reduction and manipulator feed. In addition, it is checked whether the
forming forces exceed the maximum press force.

Bombač et al. [3] presented the pass schedule calculation program “HFS” that uses
the spread equation according to Tomlinson and Stringer (cf. Equations (1)–(3)) and a
temperature calculation that is not specified in detail. The comparison of an ad hoc forging
of a very experienced press operator and the pass schedule calculation program HFS shows
that the pass schedules made by HFS are of at least as good quality.

Kakimoto et al. [4] integrated empirically determined results for the workpiece spread
into the “Forging Guidance System (FGS)”, which allows pass schedule calculations from
square to octagon and from octagon to round. After the development of an alternative
spread equation and the implementation into the pass schedule calculation, the geometry
model achieved an accuracy of 2% [5].

The program “ForgeBase®” [6] from SMS group GmbH resulted from the programs
MD-Dataforge [2] and “ComForge” [7] and allows for the design of pass schedules under
consideration of plant and material restrictions such as a permissible maximum press speed
or a maximum height reduction. The user can select between different block cross-sections
and forging strategies and defines the boundary conditions to be observed. In addition,
pass schedules calculated with ForgeBase can be used directly to control the open-die
forging plant during the process, whereby the press operator can select freely between
either fully automatic, semi-automatic, or manual mode. Furthermore, previous versions
of ForgeBase offered the option to optimize the generated pass schedules regarding, for
example, a maximum throughput [8].

Using Tomlinson and Stringer’s expansion equation (cf. Equations (1)–(3)), Yan et al. [9]
calculated pass schedules whereby the intermediate geometries for each stroke were sim-
plified as rectangles. The simple functionality of the program implemented in MathWorks
MATLAB was expanded by the informative graphical representation of individual strokes.

1.2. Machine Learning for Process Planning and Optimization in Metal Forming

Quality requirements for dimensional accuracy and material properties of forged
components are continuously increasing and, therefore, the tools for process design and
monitoring need to evolve accordingly. Because methods of artificial intelligence and, in
particular, artificial neural networks are able to map highly non-linear interrelations well,
in recent years, they have been applied progressively in the field of process design in metal
forming technology. For example, Sauer et al. [10] developed deep neural networks that
are able to locally predict properties such as the true strain of sheet-bulk metal parts. This
locally resolved workpiece information is then integrated into the proprietary program
environment SLASSY (self-learning assistance system) that supports product developers
in the creation of sheet-bulk metal parts [11]. Addona et al. trained neural networks on
the basis of data sets from FE simulations to generate meta models for wear-determining
parameters of tools in closed-die forging [12]. These meta models then replace the compu-
tationally intensive FE simulations in a sequential optimization of the process design of the
closed-die forging process.

Methods of artificial intelligence are also applied in sheet metal forming. Guo et al.
as well as Dornheim et al. coupled a deep reinforcement learning algorithm to an FE
simulation of a deep drawing process and trained it to regulate the blankholder force
during the process. Hereby, the algorithm was trained to control the blankholder force in
such a way that the finished deep-drawn part exhibited as little internal stress as possible
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as well as a sufficient thickness everywhere, while the manufacturing process was as
material-efficient as possible [13–15]. Furthermore, Störkle et al. used a reinforcement
learning algorithm to control the springback of the material in incremental sheet metal
forming processes. The algorithm does not directly calculate the tool path but creates a
modified geometry from the desired geometry that is then fed into a path planning software.
The path generated in this way does not create the modified geometry but rather the desired
initial geometry due to the springback [16].

Kim et al. [17] trained separate functional link neural networks (FNNs) with a single
layer of neurons each to predict the resistance to forming, the spread, and the forming
speed in open-die hammer forging depending on the current ingot height and width, the
temperature, the height reduction, and the bite length. The training data was gathered
during industrial forging processes, though no information about the individual processes
and the quantity of the data was given. Furthermore, besides the results of the spread
prediction using an FNN, no training results or validations were presented. Finally, an
algorithm for a pass schedule calculation was described that used the FNNs to design
forging processes with the greatest possible height reduction while maintaining the given
force limit. This algorithm has not been validated though.

In 2018, Meyes et al. [18] described the successful use of reinforcement learning
algorithms for pass schedule design in hot rolling. The database used for the training,
consisting of information about the workpiece and its changes within a pass, was generated
by fast process models developed at the Institute of Metal Forming (IBF). The trained
algorithm can design pass schedules for rolling processes that generate a workpiece with
the desired final height using as few passes as possible and, at the same time, sets a
predefined grain size.

1.3. Reinforcement Learning for Pass Schedule Design in Open-Die Forging

The fast process models for open-die forging presented in Section 2.1 open the pos-
sibility to predict the process and workpiece properties that result from a pass schedule
quickly and, thus, to include the workpiece properties directly in the pass schedule design.
In this paper, this was solved by coupling the fast models with a double deep Q-learning
(DDQL) algorithm. During the training phase, the algorithm learned how to design pass
schedules that, on the one hand, maintained a maximum process force and, on the other
hand, led to the desired geometry as efficiently as possible. After completion of the training
process, the user should be able to select any ingot geometry within the selected process
window and quickly receive an optimized pass schedule. Here, the optimization goals are
closely aligned to the possibilities offered by existing software for the pass schedule design
mentioned above, so that comparability is ensured and, furthermore, a successfully trained
DDQL algorithm can serve as a proof of concept for optimized pass schedule design in
open-die forging using reinforcement learning.

For the here presented implementation of an optimized pass schedule design in
open-die forging using a reinforcement learning algorithm, a rather short and simple
process with approximately six passes and rectangular ingot cross-sections were selected.
This enabled a broad analysis of the complex correlations between the algorithm’s behavior
and its effects on the forging process, while the training durations of the required multiple
training processes remain acceptable.

In future work, the presented concept will be applied on more complex forging pro-
cesses featuring for example, octagonal ingot cross-sections or longer processes.
Furthermore, this reinforcement learning algorithm can be extended to include, for ex-
ample, the microstructure evolution into the optimization. At the same time, optimized
pass schedules can be calculated very quickly so that further development of the DDQL
algorithm towards a process parallel control system regarding the microstructure evolution
seems possible.
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2. Process, Materials, and Methods
2.1. Fast Process Modeling of Geometry, Temperature, and Equivalent Strain

The ad hoc production of any workpiece geometry with good mechanical properties
requires a forging press operator to have great experience gained through a high number of
trial-and-error forgings over the course of his work life. For this reason, various possibilities
for process design have been established to describe the forging process in advance with
regard to its main target variables: geometry, strain, and temperature. A central position
is taken by finite element modeling (FEM), which, on the one hand, can calculate these
parameters without restrictions for each point in the component. On the other hand, FEM
requires a long calculation time, which motivates the development of faster calculation
models for open-die forging. These models usually derive their high speed from the fact
that compared to other calculation methods simplifying assumptions have been made
which are permissible for the examined process and the examined target variables.

2.1.1. Geometry

Due to the use of geometrically simple tools and free workpiece surfaces (cf. Figure 1)
the material flow in open-die forging is not predetermined but depends, among other
things, on the shape and dimensions of the contact area between the ingot and the tools,
the decrease in height, and on the material [19]. As shown in Figure 1, this contact area
is defined by the bite length, sB0, which corresponds to the manipulator feed, and on the
ingot width, b0, before the forging stroke was performed. Over the course of a stroke, the
initial ingot height, h0, is reduced to h1, while the initial ingot width, b0, increases to b1 due
to the spread. Here, the forging press applies the force, F, that is required to perform the
forging stroke.

Figure 1. Outline sketch of an open-die forging process (left) including the most important geometric parameters (right) [20].

To calculate intermediate and final geometries during process design and taking the free
material flow in open-die forging into account, various approaches to geometry calculation
based on, for example, empirical equations or the upper bound method were established.

Tomlinson and Stringer [1,21] presented simple formulae to calculate the spread
and elongation of rectangular blocks, which are nowadays among the most widely used
approaches mainly because of their simplicity. Forgings of steel 1.0402 (C22) were carried
out by varying temperature, pressed area (initial bite width/initial width ratio sB0/b0),
specific height reduction εh, and initial width/start height ratio b0/h0. Afterwards, the
measured change in length can be used to determine the mean width, b1, of the block
from Equation (1). The coefficient of expansion, s, is determined according to Equation (2).
Due to the small influence of the height decrease, it can be neglected, see Equation (3).

b1

b0
=

(
h0

h1

)s
(1)

s = 0.29− 0.16
(

h1

h0

)
+ 0.343

(
sB0

b0

)
− 0.048

(
sB0

b0

)2
(2)
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s = k1 + k2

(
sB0

b0

)
+ k3

(
sB0

b0

)2
(3)

with k1 = 0.14; k2 = 0.36; k3 = −0.054 for 1.0402.
The equation can also be used for alloyed steel by adjusting the parameters k1, k2, and

k3 [22] as shown in Table 1 for 42CrMo4.

Table 1. Tomlinson and Stringer parameters for 42CrMo4 [23].

Model k1 k2 k3 ∆brel

Tomlinson Stringer, 2 parameters 0.160 0.260 0 3.9%

Tomlinson Stringer, 3 parameters 0.130 0.377 −0.075 2.0%

2.1.2. Temperature

The temperature calculation model presented by Rosenstock et al. [24] is based on the
finite difference method (FDM). This approach was chosen since the 3D temperature field
in open-die forging cannot be calculated with a simple analytical calculation, and it fulfills
the condition of short calculation times. The FDM model considers all relevant phenomena
such as convection, conduction, radiation, heat transfer to the surroundings and tools as
well as dissipation during forging strokes based on the elementary theory of plasticity, see
Equations (4) and (5).

∆ϑ = 0.9·kres·
|εh|
ρ·cp

(4)

kres = k f ·
(

1 +
1
2
·µ· sb

h
+

1
4
· h
sb

)
(5)

where kres is the mean resistance to deformation of the stroke, k f is the yield stress, εh is
the true plastic strain in the height direction of the stroke, ρ is density, cp is specific heat, sb
is bite length (cf. Figure 1), h is height, and µ is the friction coefficient. The temperature
increase by dissipation ∆ϑ was modeled following the elementary theory of plasticity,
where a mean value for the deformed volume of each stroke was used.

Thermal conduction in the ingot was calculated by using the implicit Crank–Nicolson
method, whereas thermal radiation was implemented as an explicit boundary condition
of the model with the material parameters seen in Table 2. In addition, an emissivity of
ε = 0.85, a heat transfer to the environment of αe = 25 W/(m2 × K), and a heat transfer to
the tools of αt = 4500 W/(m2 × K) were assumed.

Table 2. Material parameters used in temperature model for 1.7725 [25].

ϑ λ 1 cp ρ

◦C W/(m × K) J/(kg*K) kg/m3

800 23.44 697.1 7570.5
900 26.14 694.6 7517.4
1000 27.87 692.1 7461.9
1100 29.21 689.6 7404.2
1200 30.60 687.2 7344.4

1 thermal conductivity.

2.1.3. Equivalent Strain

Fast models for the calculation of strain along the core fiber of a forged workpiece
have been investigated on a wide range. First approaches were given by Stenzhorn [26,27]
40 years ago, which allowed for a rough estimation of the strain distribution by a linear
interpolation of the values. Siemer [28] extended the model with an approximation of the
evolution of the equivalent strain using a sin2 function. Following the approach of Siemer,
Franzke et al. [29] adapted a model that calculated the strain of the deformed zone between
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the forging dies based upon the length change during forging with two empiric parameters
for two-dimensional cases. Recker et al. [30] applied this model to the calculation of strain
distribution after more than one forging pass.

Since these models were developed for a two-dimensional case only, Recker [20]
adapted the strain model towards three-dimensional forging processes by calculating the
maximum equivalent strain of a single forging stroke based on the elementary theory, see
Equation (6), with αm as a material constant.

εV,max = 2·αm· ln
(

1 +
∆l
xd

)
(6)

xd = sB0
(
qxd + 1

)
(7)

He also enhanced the model to only require one empiric parameter and the bite ratio
sB0, cf. Equation (7). The remaining empiric parameter, qXd , shown in Table 3, which is the
normalized length of the forming zone, was based on FEM studies and was used for the
calculation of the forming zone length of one stroke xd.

Table 3. Empiric parameter qXd for 1.7225 [23].

sB0/ho 0.2 0.3 0.4 0.6 0.6 0.95 1.1 1.3 1.6

qxd f or 1.7225 1.294 1.030 0.730 0.452 0.325 0.344 0.303 0.234 0.174

The principle of the calculation is shown in Figure 2. For each individual stroke, a
sin2 distribution of equivalent strain, which is defined by εv,max and xd, was imposed on
the core fiber. The maximum was placed in the center of the corresponding forming zone,
while the equivalent strains for the single strokes were super-imposed for the full forging
sequence to obtain the distribution for the whole process or intermediate process steps.

Figure 2. Calculation of the equivalent strain along the core fiber.

2.2. Reinforcement Learning

Reinforcement learning is a machine learning approach based on, among others, the
“trial and error” mechanism of human as well as animal learning [31]. In this learning
approach, a so-called agent interacts with its environment in a goal-oriented manner
and, thus, in the long term learns to maximize the positive feedback received from the
environment and to avoid negative responses.

Such goal oriented and interactive learning processes also take place in the produc-
tion of open-die forged components. In order to avoid the constant repetition of already
known misbehavior, a plant operator strives to adapt his behavior after negative events
appear, e.g., the production of scrap. In this tangible example, the plant operator represents
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the agent that interacts with the forging plant via the selection of process parameters
(e.g., the height reduction) in order to produce a defined component as efficiently as possi-
ble as shown in Figure 3 (variant A, red). After completion of the forging process, the plant
operator receives feedback about the quality of the forged product from his environment.
In the industrial everyday life, this feedback could be a visual check for surface cracks or the
outcome of a final quality control that classifies whether a good part or, in the worst case,
scrap was produced. In this way, the plant operator builds up a broad process knowledge
over the years and learns to design the forging process reasonably.

Figure 3. Schematic diagram of learning through interaction and feedback. Variant A, red: learning process in an industrial
forging plant; variant B, green: reinforcement learning in a virtual forging environment.

In this publication, the described learning process is realized by an independently
learning agent that interacts with a virtual forging environment by selecting various process
parameters in exactly the same way as a human plant operator (cf. Figure 3; variant B,
green). This virtual environment represents the open-die forging process and always
has a defined state that corresponds to the current ingot state (temperature, geometry,
strain, etc.). The change in the ingot state, which results directly from the behavior of the
agent, is calculated promptly by the fast process models described in Section 2.1 and, thus,
enables an interaction between environment and agent. Through the feedback that the
agent receives from the environment after each interaction, it is able to adapt its behavior
in the course of a training process and, thus, to learn, e.g., how to produce desired open-die
forged parts in an optimal way.
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After the basic concept of reinforcement learning has been briefly outlined with
the help of a practical example, the following sections first explain the most important
mathematical and theoretical principles and then present the specific implementation of
the generated reinforcement learning algorithm.

2.2.1. Markov Decision Processes

The concept of Markov decision processes (MDPs) offers the possibility to describe and
optimize sequential decision problems and, therefore, MDPs form the basis of reinforcement
learning. Markov decision processes are characterized by the fact that the probability of a
future state s′ depends only on the current state, s, and the associated action, a, and not on
past states and actions [32]. An MDP is defined by 5 tuples (S, A, P, R, γ) that corresponds
to:

• S, to the set of possible states;
• A, to the set of possible actions;
• P = p(s′|s, a) to the probability of a state change from s to s′ if in state s the action a is

chosen;
• r(s, a, s′) ∈ R to the scalar reward for each change of state from s to s′;
• γ, to the discount factor, which devalues any future reward and, thus, defines its value

in the current time step.

2.2.2. Optimal Decision Making

During the optimization of an MDP, a selection rule, the so-called optimal policy π∗, is
sought, which assigns exactly that action, a ∈ A, to each state, s ∈ S, which maximizes the
sum of the devalued rewards, the so-called return g (cf. Equation (8)), in the long run [31].

gt = f (rt, rt+1, rt+2, . . . , rT−1) =
T−t−1

∑
k=0

γk·rt+k

with T = Number o f last time step
(8)

In Equation (9), the Bellman equation of the action values qπ(s, a) is given, which
defines a value for action choice a in a state s depending on the value of the action choice in
the subsequent state qπ(s′, a′). Here the value qπ(s, a) of an action a in state s corresponds
to the expected return g in the case that in state s action a is chosen and afterwards policy
π is followed [31].

qπ(s, a) = Eπ [r + γ·qπ(St+1, At+1) | St = s, At = a ] (9)

Consequently, qπ(s, a) directly describes how good or bad an action choice a in a
state s is with respect to the long-term generated reward in the context of the underlying
decision problem. Assuming the optimal action value function q∗(s, a) = max

π
qπ(s, a) is

known, it follows that the optimal policy π∗ sought is to choose action a in each state s that
maximizes q∗(s, a) [31]:

π∗ = argmax(q∗(s, a)) (10)

This type of policy is called greedy policy, because the decision is only made based on
values of the current time step, in this case the action value function qπ(s, a) [31].

2.2.3. Q-Learning

Q-learning [33] is a widely used reinforcement learning algorithm that is able to
approximate the optimal action value function q∗(s, a) by iterative fitting of a Q-function
and, thus, to solve Markov decision problems [34]. The rule for the adaption of the Q-
function is based on the Bellman equation (Equation (9)) for the case of an optimal action
value function q∗(s, a) = max

π
qπ(s, a) and the results are as follows [31]:

Qt+1(s, a) = (1− β)·Qt(s, a) + β·
[
r + γ·max

a
{Qt(s′, a′)}

]
with β = learning rate and t = time step

(11)
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The Q-learning algorithm consists of an agent that interacts with an environment
(cf. Figure 4) and in each discrete training time step t

• receives a state information s ∈ S from the environment,
• then selects an action a ∈ A
• and finally receives a scalar reward r(s, a, s′) ∈ R, which describes the quality of the

action choice respectively the state change s a→ s′ made [31].

Figure 4. Schematic simplified representation of the implemented DDQL algorithm.

This procedure is repeated until after T training steps a terminal state s+ is reached,
after which the current state is transferred back to an initial state s = s0 based on defined
rules. Afterwards, the training process is continued starting from the new initial state
s = s0. The entirety of training time steps t, starting from an initial state s0 to the next final
state s+, form a training iteration.

Due to the continuous interaction between agent and environment during the training
process, the algorithm independently collects experience data tuples (s, a, r, s′) that are
used together with Equation (11) to continuously adjust the Q-function and, thus, find an
approximation of the optimal action value function q∗(s, a). Hence, a separate training data
acquisition and preprocessing as needed in, for example, supervised learning algorithms is
not necessary, the training data is generated during the training process.

2.2.4. Double Deep Q-Learning

Mnih et al. [35] present the deep Q-learning algorithm (DQL), which approximates
the Q-function not, as usual in basic Q-learning, by a lookup table L(S× A) [34], but by
a (deep) neural network (DNN) with the set of parameters Θ. Thus, the algorithm is able
to map finely discretized and even continuous state spaces. However, the non-linear Q-
networks in combination with model-free reinforcement learning, such as Q-learning, often
tend to diverge, which is why the training process can be unstable. In order to achieve good
convergence properties, nonetheless, a training data memory B was introduced, in which the
last N experience data tuples (s, a, r, s′) are stored. In each training step t, a minibatch of K
randomly selected data tuples is compiled from the experience buffer B and is then used to
adjust the parameters of the Q-network Θ by minimizing the loss function L [36]:

L =
1
K

K

∑
i=1

(yi −Q(si, ai|Θ ))2 (12)

The so-called target values yi result from the sum of the received reward ri and
the estimated maximum Q-value of the subsequent state Q

(
s′i, a′i

)
, which is not directly

estimated by the Q-function to be learned but by an additional target Q-function [36]:
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yi = ri + γ·max
a′i

Q(s′i, a′i|ΘT) (13)

The target Q network Q(s, a|ΘT ) corresponds exactly to the Q function Q(s, a|Θ ) in
its structure but uses a different set of parameters ΘT . The target-Q parameter set ΘT is
adapted to all C time steps using the parameters of the current Q function Θ. Overall, there
are several advantages to the described procedure that increases the training stability of
the DQL algorithm [35,36]:

• A higher data efficiency, since an experience data tuple (st, at, rt+1, st+1) is potentially
trained more than once;

• Correlations between data sets of consecutive learning steps are dissolved, since the
training data sets are randomly selected from the experience data memory B;

• Preventing unintentional “feedback loops”, because the current Q function no longer
correlates directly with the current training data due to the use of the target Q function
for the training data generation and the random compilation of minibatches.

A common problem of Q-learning algorithms is the overestimation of Q-values, which
can cause a performance loss [37]. To counteract this, van Hasselt et al. [38] present
the double DQL approach (DDQL), which reduces the problem of overestimation by a
minor adjustment in the calculation of the target values yi. Within the calculation of
the target values, the Q-value of the subsequent state s′i is still determined as in DQL
(cf. Equation (13)) using the target Q-function Q(s, a|ΘT ), but the best action a′max in the
subsequent state s′i is now calculated using the maximum of the Q-function Q(s, a|Θ ):

yi = ri + γ·Q
(
s′i, a′max|ΘT

)
with amax = argmax

A′
Q(s′i, A′|Θ )

(14)

This decouples the selection of the best action a′max in the subsequent time step s′i from
the estimation of the value of this selection Q

(
s′i, a′max|ΘT

)
and, thus, reduces the tendency

to overestimate [37].

2.3. Implementation of the DDQL Algorithm for Pass Schedule Design in Open-Die Forging

Here, a reinforcement learning DDQL algorithm is presented that is supposed to gen-
erate optimized pass schedules following defined goals. The DDQL algorithm was chosen
since deep Q- and double deep Q-learning are used successfully to solve various engineering
problems [39–41] including the optimization of the production of multilayered optical thin
films [42] whereby, as in the optimization of open-die forging processes, different highly non-
linear physical relations need to be considered. The developed algorithm was implemented
in MathWorks MATLAB and consists, as described in Section 2.2 and shown in Figure 4, of
two main elements interacting with each other: The agent and the environment.

The state s of the environment represents the current state of the forging block and
is characterized by five normalized values: The ingot height, h, at the start of the current
state, s, the difference, ∆h f , between the target height, h f ,target, and the current height, h,
the mean equivalent strain in the core fiber, εv, the mean temperature in the core fiber,
Tc f , and the mean surface temperature, Ts. These values were chosen based on their
process information content. The current ingot height, h, and the height difference, ∆h f ,
carry needed information about the current and the target geometry and, hence, enable an
estimation of the remaining process length. Since the press force is used as an optimization
criterion (cf. Section 2.6), the temperature (Tc f , Ts.) and equivalent strain (εv) information
are required, allowing a prediction of the current yield stress and consequently a prediction
of forces. In addition, the mean surface temperature and the mean core temperature
result in a gradient that usually increases over the course of the forging process and,
consequently, allows in combination with the current ingot height, h, a rough estimate
of the previous process duration and the current temperature field. Based on this state
information,

(
h, ∆h f , εv, Tc f , Ts

)
, the agent selects the next action, a, which consists of the

two process parameters: bite ratio, sB0/h0, and height reduction, εh. In contrast to the state
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information, s, which consists of continuous values, the action selection of the agent is limited
to discrete steps. In the present algorithm, the bite ratio, sB0/h0, can be varied between 0.3
and 0.9 in steps of 0.05 and the height reduction between 3% and 30% in steps of 1%.

To ensure the accuracy of the calculations from consecutive state transitions within a
pass schedule, the spatially resolved information about the temperature and the equivalent
strain distribution along the core fiber was stored within the environment. In subsequent
passes, this information was used as the point of departure of the state transition calcu-
lations using the fast process models. Afterwards, the above-described averaged values
were determined and merged together with the current geometry information in the form
of the five tuple

(
h, ∆h f , εv, Tc f , Ts

)
representing the resulting state s′.

In addition to the process parameters, such as the current ingot height h or the selected
height reduction εh, which can be directly related to the open-die forging process, the
algorithm also contained parameters without a direct physical background or reference to
the forging process. These included, for example, the model parameters Θ and ΘT of the
Q-networks, which were first learned during the training process using experience data
tuples (s, a, r, s′). Since these learned model parameters cannot be physically interpreted
on their own but significantly determine the behavior of the later used algorithm and, thus,
the quality of the designed pass schedules, only an indirect connection between model
parameters and the forging process was present. On the other hand, the algorithm has
so-called hyperparameters that are not learned during training but are predefined by the
user and have no direct connection to the forging process either. Since hyperparameters
significantly determine the training process of the algorithm, there is nevertheless an
influence on the quality of the generated pass schedules, for example, through improved
convergence properties or higher average rewards.

To approximate the Q- and target Q-values, the agent used a neural network that had
two separate input branches: one for state information and one for action information.
The action information was normalized and fed into the neural network by an input layer.
This was followed by a fully connected layer with 24 neurons and a subsequent addition
layer. This addition layer combined the pre-processed information from the two branches
by an element-wise addition. In the state branch, the normalized information was also fed
into the net via an input layer. Two fully connected layers followed, which were separated
by a ReLu layer. The abbreviation ReLu stands for “rectified linear unit” and corresponds
to the mathematical operation f (x) = max(0, x), where negative values are set to zero
and non-negative values remain unchanged. The output of the second fully connected
layer was connected to the addition layer, followed by another ReLu layer. Finally, a fully
connected layer with a single neuron formed the output layer which had a value that
corresponded to the estimated Q- or target Q-value. The used network architecture was
proposed in [43] and shown in Figure 5.

Figure 5. Graphic representation of the used (Target-)Q-Network.

To ensure the algorithm not only relies on its experience during the training process
but also sufficiently explores the state space S and action space A, an ε-greedy-policy was
used to maximize the return, g, obtained in the long run [31]. Here, a random action,
a(s), was chosen with the probability ε and, otherwise with the probability of (1− ε), a
greedy action with respect to the Q(s, a) value according to Equation (10) was selected. For
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this purpose, the agent needed to calculate the Q(s, a) values of each combination of the
current state s and all possible actions a ∈ A(s) separately. This was necessary because the
implemented Q-network architecture (cf. Figure 5) uses not only the state information s but
also action information a ∈ A(s) to determine the Q(s, a) value of a single state–action pair.
The probability ε for a random action choice does not remain constant over the training
process. Starting from a value of 1, ε decreases continuously in every training time step
t according to the selected epsilon decay rate of 0.0001 to a minimum value εmin = 0.1
(cf. Equation (15)). These hyperparameters are based on literature values [35] that were
adapted to the conditions of the DDQL implementation in MathWorks MATLAB.

εt = max
(

ε·(1− EpsilonDecayRate)t, εmin

)
(15)

With the selected action a = (sB0/h0, εh) and the present state s =
(

h, ∆h f , εv, Tc f , Ts

)
,

the environment was able to calculate the change of state of the forging block s a→ s′ using
the fast process models presented in Section 2.1. A change of state does not correspond to
just one pass, but always to two passes, where the forging block is rotated by 90◦ around
the longitudinal axis after each pass. For this purpose, the bite ratio sB0/h0 selected by the
agent was used in both passes, while the selected height reduction εh was only used in the
first pass. The height reduction in the second pass was determined in such a way that after
the pass a square billet cross-section h = b was created, taking the occurring width spread
into account (see Equation (1)). This forging strategy with a square ingot cross-section after
every second pass is called “square forging” and is widely used in industrial applications.
Subsequently, fast process models were used to calculate the development of the temperature
field and the equivalent strain distribution during both passes (see Section 2.1). Finally, the
values of the state information s’

(
h′, ∆h′f , εv

′, Tc f
′, Ts

′) were put together and transferred to
the reward function and the training data memory B as shown in Figure 4.

The hyperparameters experience buffer size N = 10, 000 data sets, and the size of
the mini-batch K = 64 randomly chosen data sets was taken from the default settings of
the DDQL implementation in MathWorks MATLAB [44]. As described in Section 2.2, the
mini-batch was used to adjust the parameters Θ and ΘT of the Q- and Target Q-networks.
The learning rate β determines the size of the individual adaptions and had to be lowered
from the default value β = 0.01 to β = 0.001 based on some test trainings that showed
unstable training behavior and convergence problems.

The reward function, r(s, a, s′) (cf. Figure 4), is the part of the implementation in which
the user defines the goals of the algorithm during the training process. For this purpose, a
mathematical formulation r = f (s, a, s′) must be found that represents the goals in such
a way that the algorithm achieves them by maximizing the received return g. Hence, the
reward r corresponds to the quality of an action choice consisting of the bite ratio and
height reduction within a defined ingot state s, considering the defined optimization goals.

The goals for the present application example of a pass schedule design in open-die
forging were aligned to the possibilities offered by comparable pass schedule calculation
software without methods of artificial intelligence (see Section 1). The first goal a pass
schedule should fulfill is to reach the target geometry, whereby a permissible percentage
deviation, hvar, is tolerated. Here, this permissible deviation is one percent and is thus
within the usual range for open-die forging [45]. Two further criteria for an optimal pass
schedule design are derived from the desire to make the process as fast and efficient as
possible. On the one hand, the final geometry should be achieved in as few passes as
possible and, on the other hand, the available machine force, Fmax, should be used in the
best possible way. For this purpose, the desired target force, Ftarget, was set at 80% of the
maximum press force, Fmax, to consider a sufficient safety margin.

Through this selection of optimization criteria with a force and a pass number com-
ponent, the complicated incremental process kinematics and geometry development in
open-die forgings were taken into account. If only the press force is evaluated, the algorithm
could tend to apply the largest possible bite ratios while using small height reductions,



Processes 2021, 9, 1084 13 of 32

resulting in long forging processes. This effect is intensified by the occurring width spread,
since width spread increases with increasing bite ratios and must be forged back in the
subsequent pass due to the 90◦ ingot rotation at the end of each pass.

On the other hand, the pure evaluation of the number of passes can lead to an
algorithm selecting the largest possible height reductions combined with small bite ratios,
as in this case little width spread occurs and, overall, the fewest passes are required.
However, such a forging strategy can cause surface defects in the billet, such as laps, and
is therefore not desirable. In addition, small bite ratios result in high numbers of strokes,
which increase the process time.

Moreover, the sole evaluation of the process time is not implemented, because the
process time is highly individual for each plant, as it strongly depends on the present
velocities and accelerations of the manipulator and of the forging press. In addition,
discrete events, such as a significant increase in time due to reheating, can hardly be
weighted reasonably within the complex process optimization framework.

In Equations (16)–(18), the complete mathematical formulation of the used reward
function r(s, a, s′) is summarized. The function is divided into two large subareas, the
evaluation of the geometry and the evaluation of the occurring maximum press force:

r
(
s, a, s′

)
=

max
(
rgeo + rF,−10

)
10

(16)

rgeo =


0, h > h f ,ub

− a·h2

h2
f ,target

+ a·2·h
h f ,target

+ a + 10, h f ,ub ≥ h ≥ h f ,lb

max
(

h− h f ,ub,−10
)

, h < h f ,lb

(17)

rF =



−3 + 2·
(

exp− ( F
Fmax −0.8)

2

0.045

)
, F ≤ Ftarget

−6 + 5·
(
− ( F

Fmax −0.8)
2

0.04 + 1
)

, Ftarget < F ≤ Fmax

−6, F > Fmax

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
h > h f ,ub

0, F ≤ Ftarget

−5 + 5·
(
− ( F

Fmax −0.8)
2

0.04 + 1
)

, Ftarget < F ≤ Fmax

−5, F > Fmax

∣∣∣∣∣∣∣∣∣∣∣
h ≤ h f ,ub

with a = 10

( hvar
100% )

2 ; h f ,lb = h f ,target·
(

1− hvar
100%

)
;

h f ,ub = h f ,target·
(

1 + hvar
100%

)

(18)

The reward for the generated geometry, rgeo (see Equation (17)), evaluates only the final
generated ingot height of a pass schedule and not the intermediate geometry development
during the forging process, as the continuous evaluation of the ingot height could cause
contradictions with the other optimization goals. If the permissible final height range,
h f ,target ± 1%, is met, the reward according to Equation (17) corresponds to a symmetrical
parabola that reaches its maximum of 10 at h f ,target and has the value 0 at the edges. If the
algorithm generates a final height, h, that falls below the minimum permissible height,
h f ,ub, the reward corresponds to the resulting difference, h− h f ,ub. The resulting overall
function for the evaluation of the block geometry, rgeo, is shown in Figure 6 (right) showing
an example target height, h f ,target = 350 mm.
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Figure 6. Left: Plot of the force reward, rF, over the ratio of the produced force, F, and the maximum allowed force, Fmax,
in case the current height, h, is greater than the maximum final height, h f ,ub, and, thus, the related state, s, is no terminal
state, s+. Right: Graphic representation of the geometry reward, rgeo, based on one specific target final height, h f ,target. The
plot ranges from zero to the maximum initial height h0,max = 500 mm, thus representing all possible height values. The
maximum reward of 10 is located in h f ,target = 350 mm.

Equation (17) also shows that the penalty for dropping below the final height has
a lower limit of –10. This procedure is derived from the reward clipping recommended
in [36] and can significantly improve the convergence properties of an algorithm, since
individual rewards with high values can lead to large adjustments in the Q-function and,
thus, to instability in the training process.

The evaluation of the maximum force, F, occurring in the two passes of the state
transition s a→ s′ was divided into different scenarios according to its value and according
to the block height, h, in state s′ (cf. Equation (18)). As long as the generated height h′ is
above the allowed end range h f ,ub, the reward rF is calculated as shown in Figure 6 (left)
either by a Gaussian function or a parabola, depending on the calculated force, F. If the
resulting force, F, corresponds exactly to the target force, Ftarget, the reward rF = −1 reaches
its maximum. If the force decreases starting from the maximum F = Ftarget, the reward
drops to −3, while for forces above Ftarget, rewards up to −6 are possible. This asymmetry
is due to the fact that exceeding the target force is more critical than undercutting it.
If the force, F, rises above the maximum press force, Fmax, reward clipping comes into effect
again and limits the reward, rF, to a minimum of −6.

If a block height is generated that is in the range of the permitted final heights or
below, the completed change of state describes the last two passes of a pass schedule.
In these passes, the focus is primarily on setting the desired final geometry and not on the
optimal use of the press force, which is why the force reward for forces below the target
force, Ftarget, is omitted (cf. Equation (18) and Figure A1 (Appendix A)). However, since
the maximum press force, Fmax, must be maintained in the last two passes as well, the rest
of the force evaluation (F > Ftarget) remains qualitatively unchanged.

The reward for the generated forces, rF, is not arbitrarily defined negatively, but it
represents the goal of using the smallest possible number of passes. This results from the
fact that the algorithm tries to maximize the received return, g, in the course of the training
and, consequently, shows a tendency to lower the number of passes, because at lower
numbers of passes negative force rewards are received less often.

The total reward of an action choice is finally calculated according to Equation (16)
from the sum of the geometry reward, rgeo, and the force reward, rF. The total re-
ward of an action choice is also limited by reward clipping to a minimum value of −10.
Therefore, the clipped sum of the individual rewards is always in the range [−10, 10] and
can be scaled to the required order of [−1, 1] using the divisor 10. The general weighting
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of the individual parts of the reward function arose from the prioritization of the defined
goals. Therefore, the reward for reaching the final geometry was set proportionally higher
than the cumulative punishment of the force utilization, respectively, the number of passes.
The exact weightings were determined by many test trainings.

In summary, the general characteristic of the reward function is that the focus in each
of the last passes of a pass schedule is primarily on reaching the desired final height as
accurately as possible and in all preceding passes, mainly on making the best possible use
of the press force. To emphasize this characteristic, the discount factor γ was reduced from
the default value γ = 0.99 to 0.9. Since the geometry reward is achieved only at the end of
each training pass schedule, it tends to be discounted more often by the discount factor.
As a result, the influence of the geometric reward granted for hitting the target height
decreases in preceding passes and using the press force optimally becomes more important.
However, the discount factor must not be selected too low either, since in a state s, the
algorithm can only select discrete actions, a(s), and, thus, the resulting block heights, h′, are
also limited. In addition, the permissible deviation from the target height, hvar = ±1%, is
small, and the reward received rapidly decreases with increasing distance from the optimal
value h f ,target, even within the permissible deviations (see Figure 6 (right)). Consequently,
it may be necessary for the algorithm to adapt its actions over several passes in advance in
such a way that the target height is hit as accurately as possible, thereby maximizing the
total reward.

2.4. Definition of the Process Characteristics for the Pass Schedule Design in Open-Die Forging

According to [46], the weight of open-die forged parts can range from a few pounds
to more than 150 tons. Furthermore, hydraulic open-die forging machines are usually
offered with maximum press forces between five and two hundred meganewton [47–49].
Hence, the hereafter described chosen process window for the intended optimized pass
schedule design using the presented DDQL algorithm with ingot weights of approximately
three tons and a forging press with a maximum press force of 25 MN corresponds to a
small- to medium-sized open-die forging process. Subsequently, a successfully trained
DDQL algorithm can serve as a proof of concept for the pass schedule design in open-die
forging via reinforcement learning.

The boundary conditions of the forging processes to be planned in an optimal manner
are defined as follows:

• The assumed maximum press force, Fmax, is 25 MN. Hence, a target force of
Ftarget = 20 MN results;

• The initial height of the workpiece, hi(= bi), can be selected freely by the user between
hi,min = 450 mm and hi,max = 550 mm;

• The target height of the workpiece h f ,target

(
= b f ,target

)
can also be selected freely by

the user between h f ,min = 250 mm and h f ,max = 350 mm;
• The ingot start length li= 1500 mm is constant;
• The forging block consists of 42CrMo4 (1.7225), a commonly used steel for open-die

forged parts. The corresponding parameters of the fast process models for temperature
and equivalent strain are described in the Sections 2.1.2 and 2.1.3, and the flow curve
originates in [25];

• There is no pre-deformation of the ingot and, thus, no equivalent strain at the start of
the process (εv = 0);

• The ingot temperature at process start T0 corresponds to 1000 ◦C and is homogeneous
in the billet;

• In every second pass a bite shift of sb0/2 is applied. Bite shift corresponds to the
offset of the contact areas between the ingot and the dies of a pass in the longitudinal
direction in comparison to the contact areas of the subsequent pass;

• Since excessive cooling of the ingot during the forging process can cause damage, such
as edge cracks as well as high forming forces, reheating of the forging ingot should
be taken into account. This becomes necessary if the minimum temperature, Tmin,
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anywhere in the workpiece, including its edges and vertices, falls below a lower limit
of Tcrit = 650 ◦C.

The reheating of a hypothermic workpiece is represented by reading out the minimum
block temperature, Tmin, after each change of state, respectively, for each even-numbered
pass and comparing it with the minimum allowed temperature, Tcrit. If the temperature
falls below Tcrit, the temperature field is reset to the initial state with homogeneously
present temperature T0. Reheating is not directly considered in the reward function,
since the chosen optimization criteria should lead to short processes anyway and thereby
indirectly prevent mandatory reheating of the ingot.

In order to generate an algorithm that calculates pass schedules that meet the above-
mentioned goals while maintaining the selected process framework, the algorithm must
be trained for a sufficiently long time. Therefore, the number of training iterations in the
training process, which corresponds to the number of designed pass schedules, was set to
50,000 and the convergence of the algorithm was monitored (cf. Sections 2.6 and 3.1).

At the beginning of each training iteration the state, s, must be reset to the initial state,
s0. Both the mean temperature in the core fiber, Tc f , and the mean surface temperature,
Ts, correspond in the initial state to the initial temperature, T0, and there is no equivalent
strain, εv = 0. The start and target height of the forging block, hi and h f ,target, are randomly
selected within their limits for each initial state, so that the algorithm learns to generate an
optimized pass schedule for all possible combinations of given input parameters.

2.5. Application of the DDQL Algorithm for Pass Schedule Design in Open-Die Forging

In Sections 2.3 and 2.4, the implementation of the DDQL algorithm for the design of
pass schedules is presented and is now completed by a description of the application of the
algorithm. Therefore, Figure 7 shows the application cycle of the DDQL algorithm, which
is divides into three major steps: setup, training, and usage.

At the beginning, the user (e.g., a plant operator) defines the forging process window
(process parameters), while the hyperparameters of the DDQL algorithm can often remain
unchanged or can be set by a programmer or a research engineer as shown in Figure 7,
“Setup”. Here, together with process parameters, such as permissible geometries or mate-
rial properties, the optimization goals the algorithm should pursue in the pass schedule
design need to be determined, and a corresponding reward function must be formulated.
The training process follows (cf. Figure 7, “Training Process”), whereby the process param-
eters selected by the user are incorporated into the environment and the hyperparameters
into the agent as well as the framework of the training process. The environment contains
not only the training goal represented by the reward function but also the fast process
models (cf. Section 2.1) that calculate the change of state of the forging ingot. A training
process of the implemented algorithm takes approximately two days, but once the training is
successfully completed, the trained agent is able to quickly generate optimized pass schedules
in the selected process window. Now, the user can select a desired initial and target geometry
and receives an optimized pass schedule in a few seconds (cf. Figure 7, “Usage”).

If required, the user is able to flexibly influence all sections of the algorithm and the
underlying forging process to achieve his desired pass schedule design. At the same time,
the user does not need to change all sections of the algorithm at once; for example, it is also
possible to change only the process parameters in an existing implementation and restart
the training with the same hyperparameters and reward function to obtain an optimized
pass schedule design for a different process window. However, in this case, successful
training is not guaranteed, which is why the transferability of the implementation described
above needs to be reviewed critically. For this purpose, the algorithm was trained on an
industrial scaled forging process at first (cf. Sections 3.1 and 3.2) and was transferred to a
smaller experimental scale of the Institute of Metal Forming (IBF) for validation purposes
later on (cf. Section 3.3).
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Figure 7. Application cycle of the implemented DDQL algorithm.

2.6. Evaluation of the Algorithm Performance

To evaluate the performance and the convergence of a reinforcing learning (DDQL)
algorithm, commonly the generated rewards or the Q-value of the initial state, Q(s0), are
plotted over the iterations of the training process [31,35–38]. If the training is successful, both
values increase during the training and, in the best case, converge towards their optimum.

If an algorithm performs well measured by the generated total reward or Q-values, it is
only a reliable indicator for the achievement of the defined training goals as long as the reward
function is a sufficiently accurate mathematical representation of these goals. Although this
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condition is assumed in the present implementation, it must be checked nevertheless in
the analysis of the training results. Therefore, the performance and the convergence of the
algorithm are measured not only by the collected total rewards of individual iterations rtot,i
or the Q(s0)-value, but additionally by the development of the following process parameters
and auxiliary variables, which directly represent the defined goals:

• Difference ∆h f
between the generated final height h f and target height h f ,target;

# Goal: accurately achieve the desired final height h f ,target;

• Number of passes np;

# Goal: minimize the number of passes;

• Maximum force occurring in the pass schedule Ftot;

# Goal: stay below the press force limit;

• Force utilization Fuse

# Goal: best possible utilization of the forging press.

The force utilization, Fuse, corresponds to the sum of the absolute differences between
the maximum generated force, F, and the target force, Ftarget, over all state changes that
make up the evaluated pass schedule (see Equation (19)). Since the force of the last pass
is not evaluated in the training process, it is also dismissed from the force utilization
calculation. This procedure is based on the fact that the forces of the two passes, which are
derived from the selection of an action a, were not selected independently of each other
due to the square forging.

Fuse =
∑

np/2−1
k=1

∣∣Fk − Ftarget
∣∣

np/2− 1
(19)

Furthermore, due to the underlying non-continuous problem of pass schedule design
in open-die forging, only short training iterations with mostly single-digit training step
numbers occur in the present algorithm. At the same time, the structure of the reward
function leads to the fact that the negative force reward is received less frequently with
lower numbers of passes, which means not every combination of initial and target height
can achieve the same maximum total reward. Since the start and target heights of a pass
schedule are chosen randomly in the training process, the maximum possible reward is
not constant within individual training iterations. For this reason, the convergence and
performance of the algorithm is not measured by the characteristics of pass schedules of
individual combinations of initial and target heights, but by parameters averaged over the
entirety of input parameters.

To generate these mean values for different training states, the algorithm was eval-
uated every 2500 training iterations. The input parameters initial and target height were
both varied in 20 steps, resulting in 400 evenly distributed parameter combinations.
With the help of the current agent, a pass schedule was designed for each of these combina-
tions and the abovementioned characteristic process and algorithm parameters were stored.
Subsequently, an average value can be calculated for each characteristic variable across all
400 pass schedules of an evaluation step. The pass schedule design using a fully trained
algorithm works in the same way as the pass schedule design during the training process,
with the difference that instead of the ε greedy policy, a pure greedy policy according to
Equation (10) is used.

Machine learning algorithms and especially neural networks represent black boxes
which have a learning process and behavior that is very difficult or even impossible to
comprehend. Therefore, the characteristics of the evaluated pass schedules are graphically
refurbished to provide an insight into the behavior and the learning process of the algorithm.
For this purpose, the respective characteristic parameter was plotted over the varied initial
and target heights, and the individual areas were colored according to the value of the
characteristic parameter. So-called heatmaps (cf. Section 3.2) arose, which enable the user to
utilize his process knowledge of open-die forging to analyze the behavior of the algorithm
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more precisely. For example, the user can examine which training goal is already achieved
for which combinations of initial and target heights or the user can analyze which process
and algorithm parameters correlate.

Exactly the same algorithm might converge in one training delivering good results
and diverge in another seemingly identical training producing no useful training results.
This is related to random influences on the training process such as the initialization of the
(target) Q-network and the epsilon-greedy policy. In order to ensure that the convergence
of the algorithm and the generated training results are not purely by chance but resilient,
the training process was carried out and analyzed 15 times with the same algorithm and
process parameters but different random seeds over 50,000 training iterations each.

The training processes lasted approximately two days performed on an Intel CPU
of type Xeon E-2286G. This training duration results primarily from the calculation of
the environment and not from the adjustment of the network parameters. Since the
DDQL algorithm has an experience data memory and consequently learns “off-policy”, the
generation of experience data sets (s, a, r, s′) can be parallelized in the future, so that the
training duration may be reduced significantly.

3. Results and Discussion
3.1. Training Outcome and Convergence

The plot of the evaluation results against the number of training iterations allows
assessing the convergence of the algorithm based on the different averaged parameters.
In Figure 8, this was done for all 15 trainings in form of box plots.

Figure 8. Boxplots of the results of all 15 Trainings over the course of the training process representing: (a) the mean total
reward rtot,i, (b) the mean force utilization Fuse, (c) the mean target height deviation ∆h,target, and (d) the mean number of
passes np.
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Figure 8a shows the average total reward, rtot,i, obtained by a pass schedule. The algo-
rithm converges robustly against the same averaged reward in all 15 trainings. However, it
was noticeable that there were single outliers, which are represented by red crosses. These
can be traced back to the learning steps of the agent that were taken shortly before the
evaluation in which the designed processes have changed significantly. Due to the changed
behavior, the algorithm often reaches areas of the state space, S, in which it does not have a
good approximation of the optimal action value function q∗(s, a) yet and, therefore, per-
forms poorly. The fact that these outliers were not transferred to the following evaluation
steps shows that the algorithm quickly learns to select the right actions even in the new
states and, consequently, achieves higher rewards again.

It follows that the agent of the last training iteration was not necessarily the best
one. The best agent was the one that has the highest averaged reward compared to all the
other evaluations of the training process [38] while always hitting the final height range
and respect the maximum press force, Fmax. Hence, hereafter, the best agent determined
in this way represents the training outcome. The number of training iterations of the
best agents ranged between 22,500 and 50,000 iterations and amounted to an average of
~37,500 iterations. In addition to the development of a variable, the box plot of the 15 best
agents of all trainings is shown on the right-hand side of each single graphic of Figure 8.
The best averaged rewards were very close together except for one value, which receives a
slightly lower maximum reward. This accentuates the good convergence of the algorithm.

In Figure A2, the plot of the averaged Q-values of the initial states Q(s0) against the
number of training iterations is shown. The graph has qualitatively the same course as the
graph of the generated rewards. Since the Q-function does not approximate the summed reward
rtot, but the received return, g, it ran below the total reward. This also emphasizes the stability
of the training process and the good convergence properties of the presented algorithm.

After the general convergence of the algorithm has been demonstrated, it must be
checked whether the defined goals for the optimized pass schedule design in open-die
forging were achieved over the course of the trainings. Therefore, the development of
the force utilization, Fuse, the deviation from the target height, ∆h,target, and the number
of passes, np, throughout all 15 trainings is shown in Figure 8 as well. Figure 8b shows
that the force utilization drops to a value of approximately one meganewton during the
first 20,000 iterations of the training process and remains constant in this range from then
on. The 15 best agents achieved an average force utilization of less than one meganewton.
Considering a target force of Ftarget = 20 MN, this corresponded to a deviation of less than
5%, showing that the goal of optimal press force utilization was reached.

The mean deviation from the target height, ∆h,target, converged significantly faster
compared to the mean force utilization, Fuse, and already shows deviations of less than
0.4% on average during the first evaluation after 2500 training iterations and, thus, clearly
undercuts the targeted maximum permissible deviation of 1% (see Figure 8c). Due to the
very early achievement of this goal, the graph does not show the typical convergence curve,
but is constant at low values around 0% ± 0.5% deviation. However, a slight bias towards
positive deviations, ∆h,target, or towards exceeding the final height, htarget, was evident.
This bias could result from the nature of the training process, since the reward for setting
the final height was symmetrical on both sides. If the algorithm exceeds the allowable
final height, it only has to accept the negative force reward of an additional pass but can
still receive the big positive reward for setting the final height with another pass. This is
not possible if the final height is undershot, so the algorithm probably tends to exceed
the target height. The box plot of the 15 best agents was very close to a 0% deviation and
showed the described bias only very slightly, which confirms the set geometry target had
been met.

Figure 8d shows the development of the average number of passes in the 15 training
processes carried out. The mean number of passes, np, decreased in the course of the train-
ing and finally converged after approximately 25,000 iterations in a range of approximately
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5.6 passes confirming the achievement of the last goal, the minimization of the number of
passes, np.

However, it is noticeable that the algorithms did not converge against one, but against
several similarly small average numbers of passes np = ~6.1, np = ~5.6 and np = ~5.2.
These different numbers of passes do not result in total rewards that differ to the same
extend (see Figure 8a), since e.g., a higher reward from lower numbers of passes can be
equaled out by lower force and geometry rewards. Consequently, there is probably no
clearly defined global maximum in the current reward function.

A comparison of the convergence times of the individual process variables reveals
that first the geometry target (approx. 0–2500 iterations), then the force target and finally
the target of the lowest possible number of passes is attained. This sequence corresponds
to the weightings that the individual reward components take up within the total reward
and occurs in all 15 training sessions.

Overall, the analysis of the 15 training processes revealed that the agent trained
robustly and converged reliably towards high rewards. At the same time, the development
of the characteristic process variables corresponded to the formulated goals for the pass
schedule design in open-die forging, which proves the suitability of the reward function.

3.2. Best Agent Results

After Section 3.1 presented the convergence properties of the algorithm and the
development of the characteristic parameters in the course of the training, this chapter
constitutes the overall best training result throughout all 15 accomplished trainings in
more detail. This result arose in the 45,000th iteration of the fifteenth training process and
achieved an average total reward of rtot = 0.76 in the evaluation.

As shown in Figure 9a, the deviations from the target height, ∆h,target, were below the
limit of ±1% in each of the 400 pass schedules, with the maximum deviation being −0.66%.
On average, the agent reached a deviation of ∆h,target = 0.22%. The force utilization shown
in Figure 9b averaged at Fuse = 0.75 MN and was, at most, just over two meganewtons. As
seen in Figure A3b, the maximum force of 25 MN was not exceeded in any pass schedule
but always undercut by at least 3 MN. Figure 9c shows the number of passes, np, via the
input parameter space. There were three clearly separated areas of different numbers of
passes, starting from four passes at small initial heights and large target heights, over six
passes to eight passes at large initial heights and small target heights. The mean number of
passes, np, was 5.20. Since more passes cause a negative force reward more often and the
algorithm was able to approximate this correctly, the heat map of the Q-values in the initial
state, Q(s0), shows the same three distinct ranges as the heat map of the number of passes
(see Figure A3a).

On closer examination of the heat maps for the deviation from the target height,
∆h,target, and the force utilization, Fuse, patterns were noticeable. In the heatmap of the
force utilization (cf. Figure 9b), these slight patterns ran predominantly parallel to the
ordinate and were best seen in the four-pass area on the top left. Here, it can be observed
that the force utilization, from left to right, repeatedly increased at first and then abruptly
dropped. In the four-pass area (top left) of the heatmap of the target height deviation (cf.
Figure 9a), a diagonal pattern was present that consisted of a fixed sequence of slightly
undershooting the target final height, a good agreement with the final target height and
slightly overshooting the target final height. This diagonal pattern changed its orientation
in the six and eight pass regions (central and bottom right), although it was not as distinct
in the eight as in the six-pass area of the heatmap.

The described patterns were partially caused by direct correlations between different
process parameters. For example, at pass number transitions, the press force tended
to be used less efficiently and the target height was hit the worst. On the other hand,
such patterns can result from the restriction of the discrete action selection. Due to the
discrete action selection, A(s), the set of possible geometries in the subsequent state, s′,
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was also discrete and dependsed directly on the geometry of the current state, s, and the
discretization of the actions, a.

Figure 9. Heatmaps of the training results of the overall best agent: (a) the target height deviation, ∆h,target, (b) the mean
force utilization, Fuse, (c) the mean number of passes, np, and (d) the total reward, rtot.

Starting from an ingot geometry in state, s, the algorithm could only realize a discrete
quantity of geometries Mgeo(s′) in state s′ due to the limited discrete number of actions,
A(s). Including another action choice in state s′ from the discrete set of actions, A(s′),
the quantity of possible discrete geometries, Mgeo(s′′ ), increases exponentially, because
now the intermediate geometry in state s′ can be adjusted specifically. Consequently, the
quantity of possible discrete geometries Mgeo(s+) in a final state s+ of a pass schedule
design increases exponentially with the number of action choices (i.e., passes) the algorithm
can take into account before reaching the final geometry. With only four passes to reach the
final geometry, however, the number of possible actions and realizable discrete geometries,
Mgeo, is significantly limited.

In addition, the reward, rgeo, obtained decreases rapidly over the narrow allowed final
height range, so that the algorithm is usually not able to obtain the maximum geometry
reward only by the action choice of the last pass. In order to be as close as possible to
the target geometry and, thus, maximize its reward, the algorithm must also adjust the
parameters of the previous passes in such a way that the last intermediate geometry in
combination with the allowed discrete action choices can the target height be achieved as
accurately as possible. While adjusting the parameters of previous passes, the algorithm
accepts reduced force rewards in order to achieve higher geometry rewards, whereby the
vertical patterns in the heat map of the force utilization arise (cf. Figure 9b). However, the
algorithm cannot always perfectly hit the target height, even when taking previous passes
into account, which results in fine patterns in the heatmap of the deviation from the final



Processes 2021, 9, 1084 23 of 32

height. These patterns are significantly more distinct in the four-pass area than in the areas
with six or eight passes, since the quantity of possible geometries, Mgeo, is significantly
more limited in this area as described above.

Due to the connection in the form of the reward function, r(s, a, s′), the described
patterns can also be found in an attenuated form and partly overlaid in the heatmap of
the collected total reward, rtot. For example, the average reward in the four -pass area was
higher than in the six- and eight-pass areas due to the negative force rewards and, also, the
patterns from the deviations from the target height as well as the patterns observed in the
force utilization were recognizable.

Behavior Analysis Using an Example Pass Schedule

In the two previous chapters, the results of the generated pass schedules were analyzed
and evaluated on the basis of different partially averaged parameters. Therefore, in this
chapter, a tangible example pass schedule is used to show how the algorithm was choosing
the actions consisting of a bite ratio and height reduction in order to generate the optimized
pass schedules.

The billet had an initial height and width of hi = bi of 512.5 mm, which was reduced
to a target height and width of h f ,target = b f ,target = 267.5 mm over the course of the forging
process. The remaining process boundary conditions corresponded to those listed in
Section 2.4. Since the implemented pass schedule design was based on the square forging
strategy, the forging block was rotated by 90◦ around the longitudinal axis after each pass.
The pass schedule (see Table 4) was generated using the action choices of the best agent
(training process 15, iteration 45,000), and it contained all the necessary variables, such as
ingot dimensions and process and plant characteristics, which are required to carry out the
forging process.

Table 4. The pass schedule example generated using the overall best agent (training 15, iteration 45,000).

Pass
Number

Initial
Height

Final
Height

Initial
Width

Final
Width

Initial
Length Final Length Height

Reduction Bite Ratio Bite
Length

- mm mm mm mm mm mm % - mm

Total 512.5 267.5 512.5 267.5 1500 5505.9 3–30 0.3–0.9 -
1 512.5 358.8 512.5 564.1 1500 1946.7 30 0.4 205.0
2 564.1 404.4 358.8 404.4 1946.7 2409.0 28.3 0.4 225.7
3 404.4 283.1 404.4 454.8 2409.0 3059.8 30 0.6 242.6
4 454.8 327.8 283.1 327.8 3059.8 3667.7 27.9 0.6 272.9
5 327.8 245.8 327.8 350.8 3667.7 4568.4 25 0.3 98.3
6 350.8 266.6 245.8 266.6 4568.4 5542.0 24 0.3 105.3

Time
Stamp 1

Rotation
Angle 1

Number of
Strokes

Forging
Direction Tool Speed

Mean
Temperature

1

Min.
Temperature

1
Reheat 1 Maximum

Force
Mean
Force

s ◦ - - mm/s ◦C ◦C - MN MN

470.3 - - feed - 1000 1000 - - -
46.9 90 8 feed 100 993.7 - - 19.41 19.11
102.6 90 9 feed 100 986.6 732.0 no 15.21 14.31
157.5 90 10 feed 100 979.2 - - 19.57 18.52
226.4 90 12 feed 100 968.3 661.5 no 14.41 14.31
346.1 90 37 feed 100 946.2 - - 9.16 7.05
470.3 90 44 feed 100 922.0 598.3 yes 8.32 6.10

1 At the end of the pass.

In addition to the maximum force, a mean force was listed to provide the machine
operator with a better estimation of the expected forces during the forging process. This was
calculated from the individual forces of all strokes except those at the ends of the workpiece,
since smaller bite widths can occur in these due to the bite shift or smaller final strokes.

An examination of the selected height reductions and bite ratios, which are repre-
sentative for the training sessions performed, shows that the algorithm tended to select
the largest possible height reductions, εh, in all but the last passes combined with rather
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small bite ratios, sB0h0 . Only if the target force is not reached by this strategy, it increases
the bite ratio until the desired force is attained. Since the final height is defined in the
last two passes and the force must not exceed the force limit, the action selection of the
algorithm directly results from this. Bite ratio and height reduction are chosen in a way that
the final height is hit as exactly as possible, taking the occurring spread into account and,
consequently, maximizing the received reward, rgeo. As already described in Section 3.2,
due to the discrete action choices, it may be necessary to deviate slightly from the de-
scribed selection behavior at certain times in order to obtain the maximum geometry and
force reward.

Utilizing this procedure, the algorithm hits the desired final geometry, represented
by the target height (=target width), excellently and uses the available press force well at
the same time. In addition, the tendency towards small bite ratios results in a tendency
towards less spread and, thus, a lower number of passes. Furthermore, as soon as the
bite ratio is increased to generate the desired target force, the number of strokes per pass
decreases, which leads to a reduction in the total process time. Overall, this procedure for
the pass schedule design of the algorithm is adequate and reasonable in the context of the
selected optimization goals. Nevertheless, in the shown example, the parameter selection
of the last pass may be different in an experience-based pass schedule, since the algorithm
selected a small bite ratio of 0.3 and, hence, did not utilize the forging press to its capacity.
This choice resulted from the fact that in the last pass, the reward of the generated force
was omitted and only the deviation from the final height was evaluated. In combination
with the discrete action selection, the chosen combination of bite ratio and height reduction
presumably maximized the received reward in the last pass. In industrial processes, a
larger bite ratio may be more appropriate, because the press force is not yet exhausted, and
a higher bite ratio would reduce the process time even further due to the decreasing stroke
numbers in the last pass. In this case, the height reduction would also have to increase, as a
larger bite ratio is associated with more width spread. Such an increase of bite ratio and
height reduction is only possible and useful as long as the increased width spread does not
cause higher number of passes.

3.3. Experimental Validation

In order to validate the applicability of the generated optimized pass schedule de-
sign via an DDQL algorithm, a forging experiment was carried out on the forging plant
of the Institute of Metal Forming of the RWTH Aachen University (IBF). The setup con-
sisted of a 6.3 MN forging press and a 6 axis heavy-duty robot. Since the pass schedule
design presented so far was based on an industrial-scale forging process, first, the pro-
cess parameters in the algorithm implementation were adapted to the conditions at the
IBF and, afterwards, the adjusted algorithm was trained again. Therefore, a quadratic
ingot cross-section of 150 mm × 150 mm (height × width) was chosen, since these are the
biggest ingot dimensions that can be reliably gripped and manipulated. Hence, to ensure a
reasonable process design and to match the ingot dimensions the maximum press force,
Fmax, was reduced from 25 MN to 3.5 MN, resulting in a target force, Ftarget = 2.8 MN.
The permissible initial and target heights of the forging block were set to hi = 135–165 mm
and h f ,target = 75–105 mm. The initial block length, li, corresponded to 500 mm. In addition,
the press speed was halved to 50 mm/s and the maximum height reduction was reduced
from 30% to 25%. The forging ingot was made of a low-cost low alloyed steel of grade C45.
The material-dependent parameters for the temperature and spread calculation as well as
the yield stress were changed accordingly [1,25]. Furthermore, the process time calculation
was adjusted to the real process conditions at the IBF, e.g., by adding a transport time from
the oven to the press of 45 s as well as break times of 15 s between individual passes. This is
necessary because full automation was assumed in the so far considered industrial process
window, which was not achieved at the IBF forging plant to this degree. All other process
and algorithm parameters remain unchanged (cf. Sections 2.3 and 2.4) and the adapted
DDQL algorithm was trained only once.
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Even with the new significantly different process window, the algorithm success-
fully converged after 50,000 training iterations against an average reward of rtot = ~0.63.
Due to the changed geometry spectrum, the generated pass schedules contained more
passes, which is why the overall reward was lower compared to the industrial process.
The best agent occurred after 35,000 training iterations and produced a mean number of
passes of np = 6.56, a mean force utilization of Fuse = 0.2 MN, and a mean deviation from
the target end height of ∆h,target = 0.22%. Consequently, the formulated optimization goals
for the pass schedule design were also achieved for this modified process window. The
associated heat maps of the characteristic process and algorithm parameters of the best
agent are appended to this publication (see Figure A4).

The pass schedule used in the experiment was generated in advance using the best
agent of the successfully trained adapted DDQL algorithm and is listed in Table 5.

Table 5. Pass schedule of the experiment, generated with the adapted and retrained algorithm.

Pass
Number

Initial
Height

Final
Height

Initial
Width

Final
Width

Initial
Length Final Length Height

Reduction Bite Ratio Bite
Length

- mm mm mm mm mm mm % - mm

Total 150 100 150 100 500 1125 3–25 0.3–0.9 -
1 150 112.5 150 165.6 500 603.9 25 0.65 97.5
2 165.6 126.6 112.5 126.6 603.9 701.4 23.5 0.65 107.6
3 126.6 96.3 126.6 139.7 701.4 836.6 24 0.7 88.7
4 139.7 108.1 96.3 108.1 836.6 961.9 22.6 0.7 97.8
5 108.1 94.1 108.1 114.3 961.9 1046.3 13 0.85 91.9
6 114.3 99.9 94.1 99.9 1046.3 1126.3 12.5 0.85 97.1

Time
Stamp 1

Rotation
Angle 1

Number of
Strokes

Forging
Direction Tool Speed

Mean Tem-
perature

1

Minimum
Temperature

1
Reheat 1 Maximum

Force
Mean
Force

s ◦ - - mm/s ◦C ◦C - MN MN

284 - - feed - 1050 1000 - - -
81.6 90 5 feed 50 972.7 - - 2.79 2.61
122.4 90 6 feed 50 935.5 710.7 no 2.51 2.28
164.8 90 8 feed 50 900.4 - - 2.72 2.43
211 90 9 feed 50 864.7 658.6 no 2.53 2.15

249.8 90 11 feed 50 832.9 - - 2.33 2.02
284 90 11 feed 50 805.7 622.1 yes 2.31 1.96

1 At the end of the pass.

In the forging experiment at the IBF (cf. Figure 10), the positioning of the ingot before
the first stroke of each pass was done manually. Consequently, the bite length and the
press force of the strokes at the ingot ends could fluctuate. For this reason, the maximum
press force of each pass, which occurred at one of the block’s ends due to the stronger
cooling, could not be used as a reliable benchmark. Instead of this, the averaged forces of
the middle strokes, which were not affected by bite length fluctuation due to the manual
handling, were compared. Hence, the compared mean forces (see Figure 11) were lower
than the maximum predicted forces within a pass (cf. Table 5).

During the experiment, the process time and the occurring press forces were measured
and, subsequently, the abovementioned averaged measured force, Fi,exp, as well as the
averaged predicted force, Fi, were evaluated for every pass (see Figure 11). In addition,
Table 6 gives an overview of the strokes taken into account and the standard deviations
that occurred for each pass.
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Figure 10. Photo from the forging experiment at the beginning of the first stroke of pass two.

Figure 11. Plot of the expected and measured averaged forces and the measured time delay.

Table 6. Overview of the expected and measured averaged forces and their standard deviations.

Pass
Number

Evaluated
Strokes Mean Target Force Fi SD Fi Mean Measured Force Fi,exp SD Fi,exp

Time
Difference 1

- - MN MN MN MN s

1 2–4 2.61 0.00 2.31 0.06 −13.6
2 2–5 2.28 0.00 1.97 0.03 2.5
3 2–7 2.43 0.02 2.29 0.06 6.5
4 2–8 2.15 0.01 2.09 0.04 24.9
5 2–9 2.02 0.01 2.11 0.06 49.1
6 3–9 1.96 0.00 2.35 0.03 93

1 Between the generated pass schedule and real experiment at the end of each pass.

Figure 11 shows that the created DDQL algorithm was able to predict the real press
forces both qualitatively and quantitatively. The mean measured forces, Fi,exp, deviated
from the mean predicted forces, Fi, by an average of 9.7% and a maximum of 19.9%, which
emphasizes the estimated target force of Ftarget = 0.8·Fmax for the algorithm. Over the
process, the measured force Fi,exp increased continuously compared to the predicted force,
Fi, and exceeded it from the fifth pass. The continuous increase could have resulted from
the delay between the timeline of the experiment and the timeline of the designed pass
schedule that increased from −13.6 s at the end of pass one to 93 s at the end of pass six
(cf. Table 6 and Figure 11). This delay appeared despite the abovementioned adapted time
calculation, since the break time in between different passes, needed for manual handling
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of the forging ingot, was slightly underestimated. The longer process duration can cause a
stronger cooling of the forging ingot compared to the prediction of the algorithm, thus, to
higher yield stresses and ultimately to higher press forces.

Moreover, deviating flow curves, model inaccuracies of the force and temperature calcu-
lation as well as real process conditions, such as fluctuating initial ingot temperatures or slight
deviations in the chemical composition of the material, can lead to deviating press forces.

In combination with the results of the optimized pass schedule generation already
presented (cf. Sections 3.1 and 3.2), the findings of the forging experiment accentuate the
capability of the generated DDQL algorithm to produce optimized pass schedules for real
open-die forging processes. Here, the press forces were predicted with sufficient accuracy
and the generated pass schedules efficiently used the available press force. In addition, the
final height was reliably reached, and the number of passes was reduced to a minimum
within the given conditions.

4. Conclusions and Outlook

In this paper, a DDQL algorithm was presented that learned to design optimized
pass schedules autonomously with the help of fast process models. The training process
was stable and independent of the selected process window (industrial-scale forging/test
forging at institute), the selected material (42CrMo4/C45), and the random seed. Moreover,
the algorithm converged reliably in all training scenarios. This shows that the selected
algorithm and its hyperparameters are well suited for the introduced problem of pass
schedule design in open-die forging and, at the same time, emphasizes the transferability
of the presented approach. The algorithm can be flexibly transmitted to other square
forging processes by changing the process boundary conditions as well as the geometry,
while the retraining does not require an adjustment of the hyperparameters. After the
training process that takes about two days, the algorithm was able to design optimized
pass schedules in two to four seconds, which makes the concept of pass schedule design in
open-die forging using a DDQL algorithm altogether well suited for industrial use.

The pass schedules generated by the trained algorithms fulfilled the formulated goals.
They created the desired final geometry while maintaining the permissible target height
deviation of one percent. At the same time, with an average deviation of less than 5%, a
very good utilization of the available press force was realized (cf. Section 3). In addition,
the maximum press force was never surpassed in all 6000 pass schedules of the 15 training
outcomes, and the average number of passes was reduced to a minimum np = 5.6 within the
given conditions. This also shows the developed reward function was a good mathematical
formulation of the defined optimization goals, since all set goals could be achieved in the
course of the trainings.

During the development of the DDQL algorithm, the important role of the reward
function became clear, because the reward function first had to be extended by reward
clipping (see Section 2.3) and the weightings of the individual reward parts had to be
varied before a stable training process with useful results could be achieved. Consequently,
the reward function not only determines the quality of the generated pass schedules but
also contributes significantly to the success of the training process. In addition, the average
number of passes, np, over the training process (see Figure 8d) showed a slight scatter
in the convergence limits. This could be an indication that the global maximum of the
reward function was not clearly defined and an improvement in this could lead to even
better convergence properties. Overall, the development of a good reward function is a
crucial factor in the application of reinforcement learning, which is why a more detailed
investigation and optimization of the reward function is desirable.

Despite the good results and the finely discretized evaluation with 400 sampled
schedules each, the utilized neural networks represent black boxes which display behavior
that cannot be predicted for each individual case. For this reason, a pass schedule designed
via machine learning should not go unchecked before it is used in the production process.
To assure this, for example, the calculated maximum press force and the final geometry
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can be output, and the observance of the strict limits can be checked beforehand either
automatically or by a forging press operator.

Furthermore, the usage of heat maps to visualize evaluation results can help to gain
deeper insights into the normally opaque training process of neural networks. The training
results of an input parameter space can be clearly displayed and, thus, interpreted by the
user. This facilitates, for example, the creation of practicable reward functions, because it is
possible to comprehend which process parameters are changed in what way and at what
time during the training. In addition, the use of heat maps also enables the user to find
correlations between different process and algorithm parameters, such as the influence of
the discrete action selection on the target height deviation and the force utilization, which
caused patterns in the corresponding heat maps (cf. Section 3.2).

Due to the reliable convergence of the algorithm and the good achievements of the
optimization goals, it can be concluded that the presented DDQL algorithm offers the same
possibilities for optimized pass schedule design as conventional pass schedule calculation
tools (see Section 1). Therefore, the presented algorithm serves as proof of concept for
the optimized pass schedule design in open-die forging via double deep Q-learning and,
furthermore, as a starting point for further work.

Since the presented implementation of the DDQL algorithm was based on rather
simple forging processes an extension to longer or more complex forging processes with
different ingot cross-sections, for example, octagonal seems useful. The required fast
process models for octagonal cross-sections are available [23].

Furthermore, the presented algorithm used neural networks that can map highly
non-linear relationships; hence, the chosen approach is ideally suited to include other
important process and material parameters in the pass schedule design. In the future,
the environment could be extended by an already existing semi-empirical fast model for
microstructure calculation [50], so that, for example, the generation of a defined grain size
may be included in the goals for the optimized pass schedule generation. In addition,
an extension of the action selection of the agent by a variable bite shift is conceivable;
hence, the agent has the possibility to create homogeneous equivalent strain distributions.
With such additions, the functional range of the DDQL algorithm would exceed that of
the conventional pass schedule calculation approaches and could therefore contribute to
continuous quality improvement of open-die forgings.

The successful offline design of optimized pass schedules using a DDQL algorithm
also opens up the opportunity for an online process optimization, since an online process
control can be understood as a process design starting from an intermediate process state.
Furthermore, the calculation times of the pass schedule design are sufficiently short, and
the neural networks used in the reinforcement learning algorithm may be able to depict the
more complex correlation in an online process control. Hence, in combination with an exist-
ing microstructure model [50] even the online control of the microstructure seems possible.
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Appendix A

Figure A1. Plot of the Force reward, rF, over the ratio of the produced force, F, and the maximum
allowed Force, Fmax, in case the current height, h, is equal or lower than the maximum final height
h f ,ub, and thus the related state, s, is a terminal state, s+.

Figure A2. Boxplots of the mean Q-value of the initial state, s0, of all 15 trainings over the course of
the training process.

Figure A3. Heatmaps of the training results of the overall best agent (training 15, iteration 45,000): (a) initial Q-value Q(s0)

and (b) the maximum occurred force in a single pass schedule, F.
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Figure A4. Heatmaps of the training results (best agent) of the forging experiment: (a) the target height deviation, ∆h,target,
(b) the mean force utilization, Fuse, (c) the mean number of passes, np, (d) the total reward rtot, (e) initial Q-value Q(s0), and
(f) the maximum occurred force in a single pass schedule, F.
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