Influence of Interfacial Force Models and Population Balance Models on the kLa Value in Stirred Bioreactors
Abstract
:1. Introduction
1.1. Oxygen Demand of Cells
1.2. Breakup and Coalescence
1.3. Population Balance Modeling
1.4. Computational Fluid Dynamics
2. Materials and Methods
2.1. CFD Simulations
2.2. Richardson Extrapolation
2.3. Statistical Analysis
2.4. Validation
3. Results and Discussion
3.1. Mesh Study
3.2. Euler–Euler Simulations
3.2.1. Influence of the Bubble Diameter
3.2.2. Influence of Drag Force
3.2.3. Influence of Lift Force
3.2.4. Influence of the Virtual Mass Force
3.2.5. Influence of Turbulent Dispersion Force
3.3. Population Balance Modelling
3.3.1. Influence of Initial Gas Bubble Size Distribution
3.3.2. Influence of the Coalescence Model
3.3.3. Influence of the Breakup Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis Of Variance |
CFD | Computational Fluid Dynamics |
CFL | Courant-Friedrichs-Lewy |
CPU | Central Processing Unit |
DSD | Daughter Size Distribution |
HPC | High Performance Computer |
MOM | Method Of Moments |
MRF | Moving Reference Frame |
NDF | Number Density Function |
OTR | Oxygen Transfer Rate |
OUR | Oxygen Uptake Rate |
PBE | Population Balance Equation |
PBM | Population Balance Modelling |
RANS | Reynolds-averaged Navier–Stokes |
VOF | Volume of Fluid |
Nomenclature
Latin symbols | ||
A | Area | [] |
a | Specific interfacial area | [m−1] |
B | Birth rate | [m−3 s−1] |
c | Constant value | [-] |
Drag force coefficient | [-] | |
Lift force coefficient | [-] | |
Dissolved oxygen concentration at the gas liquid interphase | [mol m−3] | |
Dissolved oxygen concentration in the liquid bulk | [mol m−3] | |
Specific heat capacity | [J kg−1 K−1] | |
Turbulent dispersion force coefficient | [-] | |
Coefficient of variation | [-] | |
Virtual mass force coefficient | [-] | |
Wall lubrication force coefficient | [-] | |
Biomass concentration | [cells L−1] | |
Sauter mean diameter | [] | |
D | Death rate | [m−3 s−1] |
D | Dimensions | [-] |
Bubble diameter | [] | |
E | Error | [-] |
F | Force | [] |
Sum of volume-related interfacial forces [ | [] | |
Drag force | [] | |
Lift force | [] | |
Turbulent dispersion force | [] | |
Virtual mass force | [] | |
Wall lubrication force | [] | |
g | Gravitational acceleration | [m s−2] |
Null hypothesis | [-] | |
k | Turbulent kinetic energy | [m2 s−2] |
Liquid side mass transfer coefficient | [m2 s−1] | |
Volumetric oxygen mass transfer coefficient | [h−1] | |
m | Molecular weight | [] |
N | Total number of particles | [-] |
N | Total number of cells | [-] |
n | Number of particles per unit volume | [m−3] |
Unit normal pointing away from the wall | [-] | |
OTR | Oxygen transfer rate | [mol L−1 h−1] |
OUR | Oxygen uptake rate | [mol L−1 h−1] |
P | Power | [] |
p | Pressure | [] |
p | Exponent of error reduction | [-] |
p | p-value | [-] |
Q | Aggregation frequency | [s−1] |
Cell specific oxygen uptake rate | [mol cells−1 h−1] | |
r | Refinement factor | [-] |
T | Temperature | [] |
t | Time | [] |
Velocity | [m s−1] | |
V | Volume | [m3] |
Representative volume for the ith size range | [m3] | |
Data to be transformed | [-] | |
Greek symbols | ||
Volume fraction | [-] | |
Significance level | [-] | |
Dimensionless daughter size distribution | [-] | |
Breakup frequency | [m3 s−1] | |
Turbulent energy dissipation rate | [m2 s−3] | |
Estimated discretisation error | [-] | |
Factor defined by eq. 10 | [-] | |
Cell specific constant | [-] | |
Power parameter | [-] | |
Dynamic viscosity | [] | |
Kinematic viscosity | [m2 s−1] | |
Density | [kg m−3] | |
Surface tension | [N m−1] | |
Reynolds stress tensor | [] | |
Sub- and Superscripts | ||
a | Air | |
atm | Atmospheric | |
b | Bubble | |
br | Breakup | |
coal | Coalescence | |
g | Gas | |
i | Index | |
l | Liquid | |
t | Turbulent | |
w | Water |
Appendix A
Field | Fixed Walls (Vessel, Sparger) | Moving Walls (Stirrer, Shaft) | Inlet | Outlet |
---|---|---|---|---|
alpha.air | zeroGradient | zeroGradient | fixedValue (uniform 1) | inletOutlet |
alphat. | compressible:: alphatWallFunction | compressible:: alphatWallFunction | calculated | calculated |
epsilon | epsilonWall-Function | epsilonWall-Function | fixedValue (uniform 0.00015) | zeroGradient |
k | kqRWallFunction | kqRWallFunction | fixedValue (uniform 3.75 · 10−5) | zeroGradient |
nut. | nutkWallFunction | nutkWallFunction | fixedValue (uniform 1 · 10−8) | inletOutlet |
p | calculated | calculated | calculated | calculated |
p_rgh | fixedFluxPressure (uniform 1 · 105) | fixedFluxPressure (uniform 1 · 105) | fixedFlux-Pressure | prghPressure |
Theta | zeroGradient | zeroGradient | fixedValue (uniform 1.0 · 10−7) | inletOutlet |
T. | zeroGradient | zeroGradient | fixedValue (uniform 298.15) | inletOutlet |
U.air | fixedValue | movingWall-Velocity | fixedValue uniform (x 0 0) | pressureInlet-OutletVelocity |
U.water | fixedValue | movingWall-Velocity | fixedValue uniform (0 0 0) | pressureInlet-OutletVelocity |
Short Biography of Authors
| Stefan Seidel holds a Bachelor’s degree in biotechnology and a Master’s degree in applied computational life sciences from Zurich University of Applied Sciences. His focus is on the classical process engineering characterization of bioreactors as well as on multiphase CFD simulations and their validation using shadowgraphy and particle image velocimetry. Since 2017, he has been a research assistant in the Competence Center for Biochemical Engineering and Cell Cultivation Techniques at ZHAW and since 2020, a Ph.D. student at the Technical University of Berlin. |
| Dieter Eibl has held an engineering degree in food technology since 1981 and a Ph.D. in biotechnology from the Technical University in Köthen since 1986. Since 1991, Prof. Eibl has been working at the University of Applied Sciences in Wädenswil as a lecturer. He is the head of the Competence Center for Biochemical Engineering and Cell Cultivation Techniques and working group leader for biochemical engineering. Prof. Eibl brings more than 25 years of professional expertise in upstream process development, scaling-up, project, and team management. |
References
- Langer, E.S.; Gillespie, D.E.; Rader, R. 17th Annual Report and Survey on Biopharmaceutical Manufacturing Capacity and Production, 17th ed.; BioPlan Associates, Inc.: Rockville, MD, USA, 2020; p. 555. [Google Scholar]
- Schirmer, C.; Maschke, R.W.; Pörtner, R.; Eibl, D. An overview of drive systems and sealing types in stirred bioreactors used in biotechnological processes. Appl. Microbiol. Biotechnol. 2021, 105, 2225–2242. [Google Scholar] [CrossRef] [PubMed]
- Paschedag, A.R. CFD in der Verfahrenstechnik; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Scully, J.; Considine, L.B.; Smith, M.T.; McAlea, E.; Jones, N.; O’Connell, E.; Madsen, E.; Power, M.; Mellors, P.; Crowley, J.; et al. Beyond heuristics: CFD-based novel multiparameter scale-up for geometrically disparate bioreactors demonstrated at industrial 2kL–10kL scales. Biotechnol. Bioeng 2020, 117, 1710–1723. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, V.; Sarkar, J.; Rathore, A.S. CFD based mass transfer modeling of a single use bioreactor for production ofmonoclonal antibody biotherapeutics. Chem. Eng. J. 2021, 412, 128592. [Google Scholar] [CrossRef]
- Cappello, V.; Plais, C.; Vial, C.; Augier, F. Scale-up of aerated bioreactors: CFD validation and application to the enzyme production by Trichoderma reesei. Chem. Eng. Sci. 2021, 229, 116033. [Google Scholar] [CrossRef]
- Seidel, S.; Maschke, R.W.; Werner, S.; Jossen, V.; Eibl, D. Oxygen Mass Transfer in Biopharmaceutical Processes: Numerical and Experimental Approaches. Chem. Ing. Tech. 2021, 93, 42–61. [Google Scholar] [CrossRef]
- Kocabaş, P.; Çalik, P.; Özdamar, T.H. Fermentation characteristics of l-tryptophan production by thermoacidophilic Bacillus acidocaldarius in a defined medium. Enzym. Microb. Technol. 2006, 39, 1077–1088. [Google Scholar] [CrossRef]
- Losen, M.; Frölich, B.; Pohl, M.; Büchs, J. Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol. Prog. 2004, 20, 1062–1068. [Google Scholar] [CrossRef]
- Wagner, B.A.; Venkataraman, S.; Buettner, G.R. The rate of oxygen utilization by cells. Free. Radic. Biol. Med. 2011, 51, 700–712. [Google Scholar] [CrossRef] [Green Version]
- García-Ochoa, F.; Castro, E.G.; Santos, V.E. Oxygen transfer and uptake rates during xanthan gum production. Enzym. Microb. Technol. 2000, 27, 680–690. [Google Scholar] [CrossRef]
- Gotoh, T.; Chiba, K.; Kikuchi, K.I. Oxygen consumption profiles of Sf-9 insect cells and their culture at low temperature to circumvent oxygen starvation. Biochem. Eng. J. 2004, 17, 71–78. [Google Scholar] [CrossRef]
- Çalik, P.; Yilgör, P.; Ayhan, P.; Demir, A.S. Oxygen transfer effects on recombinant benzaldehyde lyase production. Chem. Eng. Sci. 2004, 59, 5075–5083. [Google Scholar] [CrossRef]
- Feng, Q.; Mi, L.; Li, L.; Liu, R.; Xie, L.; Tang, H.; Chen, Z. Application of “oxygen uptake rate-amino acids” associated mode in controlled-fed perfusion culture. J. Biotechnol. 2006, 122, 422–430. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Gomez, E.; Santos, V.E.; Merchuk, J.C. Oxygen uptake rate in microbial processes: An overview. Biochem. Eng. J. 2010, 49, 289–307. [Google Scholar] [CrossRef]
- Nienow, A.W. Reactor Engineering in Large Scale Animal Cell Culture. Cytotechnology 2006, 50, 9–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chmiel, H. Bioprozesstechnik; Spektrum Akademischer Verlag: Heidelberg, Germany, 2011; pp. 295–372. [Google Scholar] [CrossRef]
- Kraume, M. Transportvorgänge in der Verfahrenstechnik, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020; p. 646. [Google Scholar] [CrossRef]
- Freed, L.E.; Guilak, F. Engineering Functional Tissues. In Principles of Tissue Engineering, 3rd ed.; Lanza, R., Langer, R., Vacanti, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 137–153. [Google Scholar] [CrossRef]
- Eibl, R.; Werner, S.; Eibl, D. Bag Bioreactor Based on Wave-Induced Motion: Characteristics and Applications. In Disposable Bioreactors; Springer: Berlin/Heidelberg, Germany, 2009; pp. 55–87. [Google Scholar] [CrossRef]
- Aunins, J.G.; Henzler, H.J. Aeration in Cell Culture Bioreactors. In Biotechnology: Bioprocessing; Rehm, H., Reed, G., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; Volume 3, pp. 219–281. [Google Scholar] [CrossRef]
- Werner, S.; Kaiser, S.C.; Kraume, M.; Eibl, D. Computational fluid dynamics as a modern tool for engineering characterization of bioreactors. Pharm. Bioprocess. 2014, 2, 85–99. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 2009, 27, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Golbabaei, F.; Mehrnia, M.R.; Neghab, M.; Mohammad, K.; Nikpey, A.; Pourmand, M.R. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes. Iran. J. Environ. Health Sci. Eng. 2013, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Gill, N.K.; Appleton, M.; Baganz, F.; Lye, G.J. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up. Biotechnol. Bioeng. 2008, 100, 1144–1155. [Google Scholar] [CrossRef]
- Gestrich, W.; Krauss, W. Die spezifische Phasengrenzfläche in Blasenschichten. Chem. Ing. Tech. 1975, 47, 360–367. [Google Scholar] [CrossRef]
- Gestrich, W.; Esenwein, H.; Krauss, W. Der flüssigkeitsseitige Stoffübergangskoeffizient in Blasenschichten. Chem. Ing. Tech. 1976, 48, 399–407. [Google Scholar] [CrossRef]
- Yawalkar, A.A.; Heesink, A.B.M.; Versteeg, G.F.; Pangarkar, V.G. Gas-Liquid Mass Transfer Coefficient in Stirred Tank Reactors. Can. J. Chem. Eng. 2008, 80, 840–848. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.; Finch, J.; Bournival, G.; Ata, S.; Hamlett, C.; Pugh, R.J. A review of bubble break-up. Adv. Colloid Interface Sci. 2019, 270, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Lucas, D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem. Eng. Sci. 2009, 64, 3389–3406. [Google Scholar] [CrossRef]
- Chesters, A.K. Modelling of coalescence processes in fluid-liquid dispersions. A review of current understanding. Chem. Eng. Res. Des. 1991, 69, 227–259. [Google Scholar]
- Lehr, F.; Millies, M.; Mewes, D. Bubble-Size distributions and flow fields in bubble columns. AIChE J. 2002, 48, 2426–2443. [Google Scholar] [CrossRef]
- Shinnar, R.; Church, J.M. Statistical Theories of Turbulence in… Predicting Particle Size in Agitated Dispersions. Ind. Eng. Chem. 1960, 52, 253–256. [Google Scholar] [CrossRef]
- Howarth, W.J. Coalescence of drops in a turbulent flow field. Chem. Eng. Sci. 1964, 19, 33–38. [Google Scholar] [CrossRef]
- Liao, Y.; Lucas, D. A literature review on mechanisms and models for the coalescence process of fluid particles. Chem. Eng. Sci. 2010, 65, 2851–2864. [Google Scholar] [CrossRef]
- Ramkrishna, D. Population Balances; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar] [CrossRef]
- Hulburt, H.; Katz, S. Some problems in particle technology. Chem. Eng. Sci. 1964, 19, 555–574. [Google Scholar] [CrossRef]
- Randolph, A.D. A population balance for countable entities. Can. J. Chem. Eng. 1964, 42, 280–281. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Gao, Z. Quadrature-based moment methods for the population balance equation: An algorithm review. Chin. J. Chem. Eng. 2019, 27, 483–500. [Google Scholar] [CrossRef]
- Jakobsen, H.A. Chemical Reactor Modeling; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–1244. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Jin, Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chem. Eng. Sci. 2003, 58, 4629–4637. [Google Scholar] [CrossRef]
- Askari, E.; St-Pierre Lemieux, G.; Proulx, P. Application of extended quadrature method of moments for simulation of bubbly flow and mass transfer in gas-liquid stirred tanks. Can. J. Chem. Eng. 2019, 97, 2548–2564. [Google Scholar] [CrossRef]
- Liang, X.F.; Pan, H.; Su, Y.H.; Luo, Z.H. CFD-PBM approach with modified drag model for the gas–liquid flow in a bubble column. Chem. Eng. Res. Des. 2016, 112, 88–102. [Google Scholar] [CrossRef]
- Solsvik, J.; Jakobsen, H.A. The Foundation of the Population Balance Equation: A Review. J. Dispers. Sci. Technol. 2015, 36, 510–520. [Google Scholar] [CrossRef]
- Laakkonen, M.; Moilanen, P.; Alopaeus, V.; Aittamaa, J. Modelling local bubble size distributions in agitated vessels. Chem. Eng. Sci. 2007, 62, 721–740. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Laurent, F.; Fox, R.O.; Massot, M. Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes. J. Comput. Phys. 2016, 325, 129–156. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Ramkrishna, D. On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem. Eng. Sci. 1996, 51, 1311–1332. [Google Scholar] [CrossRef]
- Morel, C. Mathematical Modeling of Disperse Two-Phase Flows; Springer: Berlin/Heidelberg, Germany, 2015; Volume 114, pp. 57–76. [Google Scholar] [CrossRef]
- Tabib, M.V.; Roy, S.A.; Joshi, J.B. CFD simulation of bubble column-An analysis of interphase forces and turbulence models. Chem. Eng. J. 2008, 139, 589–614. [Google Scholar] [CrossRef]
- Suh, J.W.; Kim, J.W.; Choi, Y.S.; Kim, J.H.; Joo, W.G.; Lee, K.Y. Development of numerical Eulerian-Eulerian models for simulating multiphase pumps. J. Pet. Sci. Eng. 2018, 162, 588–601. [Google Scholar] [CrossRef]
- Thakre, S.S.; Joshi, J.B. CFD simulation of bubble column reactors: Importance of drag force formulation. Chem. Eng. Sci. 1999, 54, 5055–5060. [Google Scholar] [CrossRef]
- Magnaudet, J.J. Forces acting on bubbles and rigid particles. In Proceedings of the American Society of Mechanical Engineers, Fluids Engineering Summer Meeting FEDSM’97, Vancouver, BC, Canada, 22–26 June 1997. [Google Scholar]
- Gradov, D.V.; Laari, A.; Turunen, I.; Koiranen, T. Experimentally Validated CFD Model for Gas-Liquid Flow in a Round-Bottom Stirred Tank Equipped with Rushton Turbine. Int. J. Chem. React. Eng. 2017, 15. [Google Scholar] [CrossRef]
- Lou, W.; Zhu, M. Numerical simulation of gas and liquid two-phase flow in gas-stirred systems based on Euler-Euler approach. Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 2013, 44, 1251–1263. [Google Scholar] [CrossRef]
- Saffman, P.G. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 1965, 22. [Google Scholar] [CrossRef] [Green Version]
- Kolev, N.I.; Kolev, N.I. Drag, lift, and virtual mass forces. Multiph. Flow Dyn. 2 2011, I, 31–85. [Google Scholar] [CrossRef]
- Auton, T.R.; Hunt, J.C.; Prud’Homme, M. The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 1988, 197, 241–257. [Google Scholar] [CrossRef]
- Deen, N.G.; Solberg, T.; Hjertager, B.H. Large eddy simulation of the gas-liquid flow in a square cross-sectioned bubble column. Chem. Eng. Sci. 2001, 56, 6341–6349. [Google Scholar] [CrossRef]
- Antal, S.P.; Lahey, R.T.; Flaherty, J.E. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int. J. Multiph. Flow 1991, 17, 635–652. [Google Scholar] [CrossRef]
- Tomiyama, A.; Kataoka, I.; Zun, I.; Sakaguchi, T. Drag Coefficients of Single Bubbles under Normal and Micro Gravity Conditions. JSME Int. J. Ser. B 1998, 41, 472–479. [Google Scholar] [CrossRef]
- Frank, T. Advances in computational fluid dynamics (CFD) of 3-dimensional gas-liquid multiphase flows. In Proceedings of the NAFEMS Seminar “Simulation of Complex Flows (CFD)”, Wiesbaden, Germany, 25–26 April 2005; pp. 1–18. [Google Scholar] [CrossRef]
- Lahey, R.T.; Lopez de Bertodano, M.; Jones, O.C. Phase distribution in complex geometry conduits. Nucl. Eng. Des. 1993, 141, 177–201. [Google Scholar] [CrossRef] [Green Version]
- Lopez de Bertodano, M.; Lahey, R.T.; Jones, O.C. Turbulent bubbly two-phase flow data in a triangular duct. Nucl. Eng. Des. 1994, 146, 43–52. [Google Scholar] [CrossRef]
- Gosman, A.D.; Lekakou, C.; Politis, S.; Issa, R.I.; Looney, M.K. Multidimensional modeling of turbulent two-phase flows in stirred vessels. AIChE J. 1992, 38, 1946–1956. [Google Scholar] [CrossRef]
- Lucas, D.; Krepper, E.; Prasser, H.M. Use of models for lift, wall and turbulent dispersion forces acting on bubbles for poly-disperse flows. Chem. Eng. Sci. 2007, 62, 4146–4157. [Google Scholar] [CrossRef]
- Burns, A.D.; Frank, T.; Hamill, I.; Shi, J.M. The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. In Proceedings of the 5th International Conference on Multiphase Flow, Yokohama, Japan, 30 May–4 June 2004; pp. 1–17. [Google Scholar]
- Basset, A.B. Hydrodynamics; C. J. Clay, M. A. and Sons: Cambridge, UK, 1888. [Google Scholar]
- Brown, R. XXIV. Additional remarks on active molecules. Philos. Mag. 1829, 6. [Google Scholar] [CrossRef] [Green Version]
- Autodesk. Autodesk Inventor Professional 2020. 2020. Available online: https://www.autodesk.com/products/inventor/overview?term=1-YEAR (accessed on 4 July 2021).
- Jasak, H.; Papers, S. OpenFOAM®; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Holzmann, T. Mathematics, Numerics, Derivations and OpenFOAM; Holzmann CFD: Loeben, Germany, 2019. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik. In Kurt Otto Friedrichs; Birkhäuser Boston: Boston, MA, USA, 1986; pp. 53–95. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Kelly, W. Using computational fluid dynamics to characterize and improve bioreactor performance. Biotechnol. Appl. Biochem. 2008, 49, 225. [Google Scholar] [CrossRef]
- VDI-Wärmeatlas; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]
- Schiller, L.; Naumann, A. A Drag Coefficient Correlation. Z. Ver. Dtsch. Ing. 1935, 77, 318–320. [Google Scholar]
- Ergun, S. Fluid Flow Through Columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Ishii, M.; Zuber, N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J. 1979, 25, 843–855. [Google Scholar] [CrossRef]
- Tomiyama, A.; Celata, G.P.; Hosokawa, S.; Yoshida, S. Terminal velocity of single bubbles in surface tension force dominant regime. Int. J. Multiph. Flow 2002, 28, 1497–1519. [Google Scholar] [CrossRef]
- Gidaspow, D. Multiphase Flow and Fluidization; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar] [CrossRef]
- Tomiyama, A.; Tamai, H.; Zun, I.; Hosokawa, S. Transverse migration of single bubbles in simple shear flows. Chem. Eng. Sci. 2002, 57, 1849–1858. [Google Scholar] [CrossRef]
- Legendre, D.; Magnaudet, J. The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 1998, 368, 81–126. [Google Scholar] [CrossRef]
- Lamb, H. Hydrodynamics, 4th ed.; Cambridge University Press: Cambridge, UK, 1993; p. 728. [Google Scholar]
- Laakkonen, M.; Alopaeus, V.; Aittamaa, J. Validation of bubble breakage, coalescence and mass transfer models for gas–liquid dispersion in agitated vessel. Chem. Eng. Sci. 2006, 61, 218–228. [Google Scholar] [CrossRef]
- Luo, H.; Svendsen, H.F. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J. 1996, 42, 1225–1233. [Google Scholar] [CrossRef]
- Coulaloglou, C.; Tavlarides, L. Description of interaction processes in agitated liquid-liquid dispersions. Chem. Eng. Sci. 1977, 32, 1289–1297. [Google Scholar] [CrossRef]
- Luo, H. Coalescence, Breakup and Liquid Circulation in Bubble Column Reactors. Ph.D. Thesis, University of Trondheim, Trondheim, Norway, 1993. [Google Scholar]
- Prince, M.J.; Blanch, H.W. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J. 1990, 36, 1485–1499. [Google Scholar] [CrossRef]
- Graham, R.L.; Woodall, T.S.; Squyres, J.M. Open MPI. In Parallel Processing and Applied Mathematics. PPAM 2005. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3911, pp. 228–239. [Google Scholar] [CrossRef] [Green Version]
- Yoo, A.B.; Jette, M.A.; Grondona, M. SLURM: Simple Linux Utility for Resource Management. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2003; Volume 2862, pp. 44–60. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, J.; Geveci, B.; Law, C. ParaView: An End-User Tool for Large Data Visualization, Visualization Handbook; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- van Rossum, G. Python 3.6.5. 2018. Available online: https://www.python.org/ (accessed on 6 July 2021).
- Richardson, L.F. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1911, 210, 307–357. [Google Scholar] [CrossRef] [Green Version]
- Engels, H. Zur Anwendung der Richardson-Extrapolation auf die numerische Differentiation. Computing 1971, 8, 255–271. [Google Scholar] [CrossRef]
- Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Ph.D. Thesis, Imperial College of Science, Technology and Medicine, London, UK, 1996. [Google Scholar]
- Baker, T.J. Mesh generation: Art or science? Prog. Aerosp. Sci. 2005, 41, 29–63. [Google Scholar] [CrossRef]
- Zimmerman, D.W. A note on preliminary tests of equality of variances. Br. J. Math. Stat. Psychol. 2004, 57, 173–181. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Bartlett, M.S. Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1937, 160, 268–282. [Google Scholar] [CrossRef]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Hotelling, H., Eds.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Fligner, M.A.; Killeen, T.J. Distribution-Free Two-Sample Tests for Scale. J. Am. Stat. Assoc. 1976, 71, 210. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583. [Google Scholar] [CrossRef]
- Iman, R.L.; Conover, W.J. The Use of the Rank Transform in Regression. Technometrics 1979, 21, 499. [Google Scholar] [CrossRef]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1978, 6, 65–70. [Google Scholar]
- Meusel, W.; Löffelholz, C.; Husemann, U.; Dreher, T.; Greller, G.; Kauling, J.; Eibl, D.; Kleebank, S.; Bauer, I.; Glöckler, R.; et al. Recommendations for Process Engineering Characterisation of Single-Use Bioreactors and Mixing Systems by Using Experimental Methods; DECHEMA: Frankfurt am Main, Germany, 2020. [Google Scholar]
- Aubin, J.; Mavros, P.; Fletcher, D.F.; Bertrand, J.; Xuereb, C. Effect of axial agitator configuration (up-pumping, down-pumping, reverse rotation) on flow patterns generated in stirred vessels. Chem. Eng. Res. Des. 2001, 79, 845–856. [Google Scholar] [CrossRef] [Green Version]
- Fukuma, M.; Muroyama, K.; Yasunishi, A. Specific gas-liquid interfacial area and liquid-phase mass transfer coefficient in a slurry bubble column. J. Chem. Eng. Jpn. 1987, 20, 321–324. [Google Scholar] [CrossRef] [Green Version]
- Prasher, B.D.; Wills, G.B. Mass Transfer in an Agitated Vessel. Ind. Eng. Chem. Process. Des. Dev. 1973, 12, 351–354. [Google Scholar] [CrossRef]
- Perez, J.F.; Sandall, O.C. Gas absorption by non-Newtonian fluids in agitated vessels. AIChE J. 1974, 20, 770–775. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Gomez, E. Theoretical prediction of gas–liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chem. Eng. Sci. 2004, 59, 2489–2501. [Google Scholar] [CrossRef]
- Akita, K.; Yoshida, F. Bubble Size, Interfacial Area, and Liquid-Phase Mass Transfer Coefficient in Bubble Columns. Ind. Eng. Chem. Process. Des. Dev. 1974, 13, 84–91. [Google Scholar] [CrossRef]
- Johnson, A.I.; Huang, C. Mass transfer studies in an agitated vessel. AIChE J. 1956, 2, 412–419. [Google Scholar] [CrossRef]
- Brüning, S. Strömungssimulation als Werkzeug zur Bioreaktorcharakterisierung. Ph.D. Thesis, Technischen Universität München, Munich, Germany, 2012. [Google Scholar]
- Kawase, Y.; Moo-Young, M. Mathematical models for design of bioreactors: Applications of. Kolmogoroff’s theory of isotropic turbulence. Chem. Eng. J. 1990, 43. [Google Scholar] [CrossRef]
- Laín, S.; Bröder, D.; Sommerfeld, M.; Göz, M.F. Modelling hydrodynamics and turbulence in a bubble column using the Euler-Lagrange procedure. Int. J. Multiph. Flow 2002, 28, 1381–1407. [Google Scholar] [CrossRef]
- Lote, D.A.; Vinod, V.; Patwardhan, A.W. Comparison of models for drag and non-drag forces for gas-liquid two-phase bubbly flow. Multiph. Sci. Technol. 2018, 30, 31–76. [Google Scholar] [CrossRef]
- Santos-Moreau, V.; Lopes, J.C.B.; Fonte, C.P. Estimation of kLa Values in Bench-Scale Stirred Tank Reactors with Self-Inducing Impeller by Multiphase CFD Simulations. Chem. Eng. Technol. 2019, 42, 1545–1554. [Google Scholar] [CrossRef]
- Karimi, M.; Akdogan, G. Comparison of different drag coefficient correlations in the CFD modelling of a Laboratory-Scale Rushton-Turbine Flotation Tank. In Proceedings of the Ninth International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia, 10–12 December 2012; pp. 1–7. [Google Scholar]
- Halvorsen, B.M.; Du Plessis, J.P.; Woudberg, S. The performance of drag models on flow behaviour in the CFD simulation of a fluidized bed. WIT Trans. Eng. Sci. 2006, 52, 3–12. [Google Scholar] [CrossRef]
- Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic Press: Cambridge, MA, USA, 2012; pp. 1–467. [Google Scholar] [CrossRef]
- Dey, S.; Karmakar, M.; Chandra, P.; Chatterjee, P. Studies on various drag models in fluidized bed for abatement of environmental pollution. Int. J. Environ. Sci. 2015, 5, 1011–1021. [Google Scholar] [CrossRef]
- Colombo, M.; Fairweather, M.; Lo, S.; Splawski, A. Multiphase RANS simulation of turbulent bubbly flows. Int. Top. Meet. Nucl. React. Therm. Hydraul. 2015, 4, 2644–2657. [Google Scholar]
- Basavarajappa, M.; Miskovic, S. Investigation of gas dispersion characteristics in stirred tank and flotation cell using a corrected CFD-PBM quadrature-based moment method approach. Miner. Eng. 2016, 95, 161–184. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, Y.; Wang, H. CFD analysis of inter-phase forces in a bubble stirred vessel. Chem. Eng. Res. Des. 2013, 91, 29–35. [Google Scholar] [CrossRef]
- Kolev, N.I. Multiphase Flow Dynamics 2: Mechanical Interactions; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–363. [Google Scholar] [CrossRef]
- Zhang, D.; Deen, N.G.; Kuipers, J.A. Numerical simulation of the dynamic flow behavior in a bubble column: A study of closures for turbulence and interface forces. Chem. Eng. Sci. 2006, 61, 7593–7608. [Google Scholar] [CrossRef]
- Oertel, H., Jr. Prandtl—Führer durch die Strömungslehre; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2017. [Google Scholar] [CrossRef]
- Brennen, C.E. A Review of Added Mass and Fluid Internal Forces. Technical Report. 1982. Available online: https://resolver.caltech.edu/CaltechAUTHORS:BREncel82 (accessed on 6 July 2021).
- Pudasaini, S.P. A fully analytical model for virtual mass force in mixture flows. Int. J. Multiph. Flow 2019, 113, 142–152. [Google Scholar] [CrossRef]
- Ahmadi, W. Study of Turbulent Dispersion Modelling Effects on Dispersed Multiphase Flows. Properties. Dissertation, Technische Universität Darmstadt, Darmstadt, Germany, 2013. [Google Scholar]
- Peirano, E.; Chibbaro, S.; Pozorski, J.; Minier, J.P. Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows. Prog. Energy Combust. Sci. 2006, 32, 315–371. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, J.; Marchisio, D.L.; Fox, R.O.; Dhanasekharan, K. On the Comparison between Population Balance Models for CFD Simulation of Bubble Columns. Ind. Eng. Chem. Res. 2005, 44, 5063–5072. [Google Scholar] [CrossRef] [Green Version]
- Venneker, B.C.; Derksen, J.J.; Van den Akker, H.E. Population balance modeling of aerated stirred vessels based on CFD. AIChE J. 2002, 48, 673–685. [Google Scholar] [CrossRef]
- Mawson, R.A. Bubble Coalescence and Breakup Modeling for Computing Mass Transfer Coefficient. Ph.D. Thesis, Utah State Universty, Logan, UT, USA, 2012. [Google Scholar]
- Kaiser, S.C. Characterization and Optimization of Single-Use Bioreactors and Biopharmaceutical Production Processes Using Computational Fluid Dynamics. Ph.D. Thesis, Technischen Universität Berlin, Berlin, Germany, 2014. [Google Scholar]
- Marchisio, D.L.; Fox, R.O. Computational Models for Polydisperse Particulate and Multiphase Systems; Cambridge University Press: Cambridge, UK, 2013; Volume 39, p. 22. [Google Scholar] [CrossRef] [Green Version]
- Van’t Riet, K. Review of Measuring Methods and Results in Nonviscous Gas-Liquid Mass Transfer in Stirred Vessels. Ind. Eng. Chem. Process. Des. Dev. 1979, 18, 357–364. [Google Scholar] [CrossRef]
Water | |
---|---|
Property | Value |
Density | m−3 |
Kinematic viscosity | 0.8927 · 10−6 m2 s−1 |
Molecular weight | 18 |
Prandtl number | |
Rheology model | Newtonian fluid |
Specific heat capacity | 4182 J kg−1 K−1 |
Temperature | |
Air | |
Property | Value |
Density | 1.1839 kg m−3 |
Kinematic viscosity | 1.579 · 10−9 m2 s−1 |
Molecular weight | |
Prandtl number | |
Rheology model | Newtonian fluid |
Specific heat capacity | 1007 J kg−1 K−1 |
Temperature | |
General | |
Property | Value |
Atmospheric pressure | |
Gravitational acceleration g | m s−2 |
Surface tension | N m−1 |
Interfacial Force Models | |
---|---|
Interfacial Force Coefficient | Model |
Drag | Schiller and Naumann [76] Schiller and Naumann with swarm correction [76] Ergun [77] Ishii and Zuber [78] Tomiyama correlated [79] Gidaspow, Ergun, Wen, and Yu [80] |
Lift | Tomiyama [81] Legendre and Magnaudet [82] Constant lift coefficient Neglecting the lift force |
Virtual mass | Lamb [83] Constant virtual mass coefficient Neglecting the virtual mass force |
Turbulent dispersion | Gosman [64] Neglecting the turbulent dispersion force |
Breakup and coalescence models | |
Phenomenon | Model |
Breakup | Exponential kernel Laakkonen, Alopaeus, and Aittamaa with DSD [84] Laakkonen, Alopaeus, and Aittamaa without DSD [84] Lehr, Millies, and Mewes [32] Luo and Svendsen [85] |
Coalescence | Coulaloglou and Tavlarides [86] Luo [87] Prince and Blanch [88] Lehr, Millies, and Mewes [32] |
Mesh | Cells | Average Non-Orthogonality | Mass Transfer Coefficient [m s ] | Discretization Error [%] |
---|---|---|---|---|
Mesh 1 | 256,253 | 5.024 | 2.33 · 10−4 | 4.4 |
Mesh 2 | 807,957 | 4.119 | 2.42 · 10−4 | 4.0 |
Mesh 3 | 1,155,407 | 3.808 | 2.39 · 10−4 | 2.9 |
Mesh 4 | 1,842,135 | 3.478 | 2.43 · 10−4 | 3.3 |
Model | a [m ] | [m s ] | [h ] | [%] |
---|---|---|---|---|
Johnson and Hunag [113] | 1.83 · 10−5 | |||
Prasher and Wills [109] | 1.38 · 10−5 | |||
Perez and Sandall [110] | 5.41 · 10−3 | |||
Akita and Yoshida [112] | 1.83 · 10−4 | |||
Kawase and Moo-Young [115] | 2.43 · 10−4 | |||
Garcia-Ochoa and Gómez [111] | 9.11 · 10−4 | |||
Brüning [114] | 2.94 · 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidel, S.; Eibl, D. Influence of Interfacial Force Models and Population Balance Models on the kLa Value in Stirred Bioreactors. Processes 2021, 9, 1185. https://doi.org/10.3390/pr9071185
Seidel S, Eibl D. Influence of Interfacial Force Models and Population Balance Models on the kLa Value in Stirred Bioreactors. Processes. 2021; 9(7):1185. https://doi.org/10.3390/pr9071185
Chicago/Turabian StyleSeidel, Stefan, and Dieter Eibl. 2021. "Influence of Interfacial Force Models and Population Balance Models on the kLa Value in Stirred Bioreactors" Processes 9, no. 7: 1185. https://doi.org/10.3390/pr9071185
APA StyleSeidel, S., & Eibl, D. (2021). Influence of Interfacial Force Models and Population Balance Models on the kLa Value in Stirred Bioreactors. Processes, 9(7), 1185. https://doi.org/10.3390/pr9071185