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Abstract: Adsorption dehumidification and drying equipment is essential general equipment for
domestic and industrial use. The most commonly used type in industry is the compressed air
adsorption dryer. The analysis results show that the heat loss of the traditional heat air regeneration
system of the compressor dryer is 39.4%, and the exhaust waste heat is 32.4%. The actual use
of heat energy for desiccant regeneration is only 28.2%. Therefore, this study uses an innovative
electrothermal adsorbent unit (ETAU) to regenerate the desiccant. By directly heating the adsorbent,
heat loss can be effectively improved. On the other hand, the composite arrangement of zeolite
and activated alumina is used. The inlet compressed air is firstly treated by the activated alumina,
which has a high adsorption capacity in the high relative humidity condition, then a zeolite is used
as a second part to make the dew point reach –40 ◦C. In the regeneration step, the airflow direction
is reversed, whereby the zeolite is regenerated by the ETAU, and the waste heat of the exhaust
air is used to regenerate the activated alumina, which reduces the temperature of the exhaust air.
Compared with the traditional heat air compressed air system, the two technologies can save about
27% energy in total.

Keywords: electrothermal adsorbent unit; compressed air dryer; desiccant regeneration

1. Introduction

Dry compressed air, one of the four primary dynamic sources in industrial plants, is
used for various industrial applications, such as in high-tech cleaning processes, drying
and cleanliness control, car panel beating and painting processes, food manufacturing,
pharmaceutical manufacturing, and energy storage [1–4]. These applications require
high-quality and low-moisture dry compressed air with a dew point in the −20 ◦C to
−70 ◦C range to maintain process stability and prevent corrosion. Therefore, the process
of drying compressed air is essential. In the refrigeration dehumidification method, the
operating temperature cannot be less than 0 ◦C; hence, an adsorption dehumidification
method unaffected by temperature constraints is necessary for compressed air drying
processes. For example, Yin et al. [5] and Senanayake et al. [6] have used a pressurized
liquid desiccant and activated carbon, respectively, to dehumidify compressed air. A new
type of desiccant, called metal-organic framework (MOF), was also used by Guo et al. [7]
in compressed air dryers. However, all desiccants tend to saturate after adsorption, and
therefore air with low relative humidity [8] or high temperature [9] must generally be used
to regenerate adsorbents.

A typical heatless compressed air dryer extracts 30–50% dry compressed air from a
compressed air system outlet. It drops to atmospheric pressure, creating an environment
with a low relative humidity that regenerates desiccants. This process entails very a high
energy consumption (approximately 2.0 kW/CMMcompressed air). Heated-air regeneration
methods, compared with heatless dryers, enhance the regeneration efficiency of desiccants
and divide them into two major types: regenerated source switching [10] and desiccant
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switching (e.g., desiccant wheel [11] and fluidized bed methods [12]). The regeneration
procedure principle of the compressed air dryer and the atmospheric dryer is the same.
In both heated-air regeneration types, the air must first be heated, following which the
heated air is used to heat the adsorbents. Such indirect heating methods entail excessive
heat losses. Figure 1 shows the energy analysis of the traditional compressed air dryer
by the Industrial Technology Research Institute in Taiwan. Only 28.2% of the heat was
used for adsorbent regeneration. The pipe and container heat loss of the heated-air-flow
compressed air dryer was approximately 39.4%. Moreover, because of the pressure drop
and nonuniform distribution in the adsorbent packed-bed, overheating (to 200 ◦C) was
necessary to ensure that each portion of the packed-bed could achieve the regeneration
temperature of 140 ◦C (the desiccant is zeolite). Therefore, the heat waste was as high as
32.4%. The heat loss and the heat waste of exhaust air are two leading causes of energy
consumption in compressed air dryers.
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Figure 1. Energy analysis of heated-air-flow compressed air dryer.

For solving the heat loss problem in the desiccant regeneration process, the direct
electrothermal regeneration technique, illustrated in Figure 2, was invented. The adsorbent
(desiccant) is attached to an electrothermal metal, so it is directly heated through solid
thermal conductivity, which reduces the time required for heating and the heat loss in
the system. Through a low-cost roll-to-roll process, the adsorbent and metal were curled
into a wheel form. With an innovative parallel channel design, corrugated metal sheets
curled with the adsorbent automatically produce airflow channels in the wheel. This
structure reduced the pressure drop by approximately 80%, enhancing the heat and mass
transfer and ensuring uniform heating. Any solid desiccant, such as zeolite and silica
gel, can be used in this process to produce appropriate electrothermal adsorbent units
(ETAUs) suitable for various air dehumidification applications, including industrial drying,
domestic dehumidification and cooling [13–15], and even waste gas treatment [16], which
uses ETAUs replace the original desiccant wheels.
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The other energy consumption problem of compressed air dryers is that exhaust air
temperature is too high. This can be alleviated by replacing a portion of the zeolite desiccant
packed-bed with activated alumina desiccants. Every desiccant has its own particular
isothermal adsorption curve. For example, Figure 3 shows different isothermalcurves for
MOFs and zeolites collected by Karmakar et al. [17]. By arranging packed-beds with two
kinds of desiccant, the dehumidification performance can increase. For example, in the
high relative humidity condition, UIO-66 (a type of MOF desiccant) or activated alumina
have a higher adsorption capacity, so they are suitable to dehumidify wet compressed air
first and make the dew point compressed air reach −20 to −30 ◦C. The second part of
the desiccant could be the zeolite, having a higher capacity in the low relative humidity
condition, for dehumidifying compressed air to get lower dew point of −40 to −70 ◦C.

Processes 2021, 9, x FOR PEER REVIEW 3 of 18 
 

 

 
Figure 2. Structure of the main components in the proposed direct electrothermal regeneration 
technique. 

The other energy consumption problem of compressed air dryers is that exhaust air 
temperature is too high. This can be alleviated by replacing a portion of the zeolite desic-
cant packed-bed with activated alumina desiccants. Every desiccant has its own particular 
isothermal adsorption curve. For example, Figure 3 shows different isothermalcurves for 
MOFs and zeolites collected by Karmakar et al. [17]. By arranging packed-beds with two 
kinds of desiccant, the dehumidification performance can increase. For example, in the 
high relative humidity condition, UIO-66 (a type of MOF desiccant) or activated alumina 
have a higher adsorption capacity, so they are suitable to dehumidify wet compressed air 
first and make the dew point compressed air reach −20 to −30 °C. The second part of the 
desiccant could be the zeolite, having a higher capacity in the low relative humidity con-
dition, for dehumidifying compressed air to get lower dew point of −40 to −70 °C. 

 
(a) 

 
(b) 

Figure 3. (a) Isotherm adsorption curve of different desiccants, and (b) Adsorption capacity of the 
composite desiccant construction system. 

Figure 3. (a) Isotherm adsorption curve of different desiccants, and (b) Adsorption capacity of the
composite desiccant construction system.

By combining two kinds of desiccants, the adsorption capacity of the total system
can increase. As shown in Figure 4, the regenerated flow had the opposite direction as
the dehumidification flow in the regeneration stage, so the exhaust air from the second
part with zeolite at a temperature of 140 ◦C could be used to regenerate the first part
containing activated alumina, whose regeneration temperature is about 80 ◦C. Then, the
final temperature of exhaust air can be reduced.
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Through these two techniques, the direct electrothermal regeneration technique
(ETAU) and the composite desiccant construction, the energy consumption of compressed
air dryers can be reduced. The heat loss in the regeneration stage can reduce from 39.4%
to 22.6% by ETAU, and the composite desiccant construction decreases the exhaust air
temperature from 130–140 ◦C to 70–80 ◦C. Therefore, the total energy used ratio in desiccant
regeneration increased from 28.2% to 55.3%. As a result, the composite ETAU prototype
system, compared with the traditional compressed air adsorption dryer, can save 20–30%
energy consumption.

2. Theoretical Analysis
2.1. Electrothermal Adsorbent Unit (ETAU) Regeneration Method

Figure 5 presents a comparison of indirect and direct heating systems. In the indirect
heating method (Figure 5a), air flows over an electrically heated plate maintained at a
constant temperature (Tm). First, the air is heated to a temperature (Tair), following which it
flows over a layer of adsorbent granules, whose temperature is denoted as Tad. In the direct
heating method (Figure 5b), a layer of adsorbent granules is attached to the plate using an
adhesive. Electrical heat is transferred from the plate to the adsorbent through conduction.
As indicated by the thermal resistance diagrams, in the indirect heating method, the
transfer path of electrical heat toward the adsorbent comprises two forced convective
resistances, one between the plate and air, (1/(hconv Asurface)), and another between air and
the adsorbent, (1/(hconv Agrain)). hconv is a heat transfer coefficient of the airflow at Tair,
whereas Asurface and Agrain are the areas of the plate and adsorbent granules in contact
with air, respectively. By contrast, in the direct heating method, the only impedance is
the conductive resistance between the plate and the adsorbent (d/(kad Acontact)). d, kad,
and Acon are the granule diameter, the thermal conductivity of the adsorbent, and total
contact area of the adsorbent between the plate and adhesive, respectively. To compare the
performance of the two methods, consider an example in which a plate of a known size
(5d × d) is used to heat five granules using both methods. The overall resistance in each
method is derived based on the following assumptions:

(1) The adsorbent is zeolite with d = 3 mm and kad = 0.20 W⁄mK.
(2) In the indirect heating method, the plate heats the air through one of its surfaces

(Asurface = 5d2), whereas the adsorbent granules are completely exposed to air
(Agrain = 5d2 π). The forced convective coefficient for the low-speed airflow over
a solid surface [18] is used: hconv ∼= 10 W⁄(m2 K).

(3) The thick of the adhesive layer is 0.16~0.2 mm, and the adsorbent’s diameter is
0.5~0.9 mm. Therefore In the direct heating method, the granules are in contact
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with the plate through the adhesive across 1/10 of the surface area of the adsorbent:
Acontact = 1/10 Agrain.

(4) The desiccant conducts a pressed procession after it adheres to the electrothermal
metal, so the thermal resistance between the two is minimal and can be ignored.
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In this setup, the overall thermal resistance between the plate and adsorbent is
1061 K/W and 2930 K/W for the direct and indirect methods, respectively. Given the
same temperature difference between the plate and the adsorbent, the direct method has
0.36 times lower resistance and, therefore, an approximately three times higher heating
rate than the indirect method, meaning that the direct method is more energy efficient.

2.2. The Length of the Alumina Packed-Bed in Composite System

Using the exhaust air from ETAUs to regenerate the activated alumina packed-bed, the
airflow at the activated alumina packed-bed outlet has a suggested temperature not below
80 ◦C. Therefore, there is a limit for the length of the packing bed section in the composite
setup system. This limit value is desired for the maximum amount of adsorbent in the
tank. To estimate it, the authors used a simple thermal analysis, as depicted in Figure 6.
It assumes the packing bed as a cylinder of porous medium with known dimensions and
physical properties. The bed is subjected to an axial, hot airflow over a period of time,
during which the velocity and temperature of the air at the inlet are known. The axial air
temperature distribution in the bed at a different time is then be calculated. The packed-
bed and airflow parameters used in the analysis are listed in Tables 1 and 2, respectively,
corresponding to our current setup and test measurements. The regenerated temperature
of zeolite is 140 ◦C, and the regeneration flow was controlled at a minimum for saving
energy. When the regeneration temperature is reached, the authors keep it for 30 min to
ensure that all adsorbents can be completely regenerated. The total regeneration time is
about 5460 s.
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Table 1. Design parameters of material used for the packed-bed section.

Packing Bed

Diameter (mm) 610
Length (mm) 300
Packing porosity 0.27
Initial temperature (◦C) 40

Activated alumina adsorbent

Particle diameter (mm) 4
Density (kg/m3) 1053
Specific heat capacity (J/kgK) 880

Table 2. Design parameters of regeneration airflow.

Step 1 2 3 4 5

Duration (s) 0–60 60–160 160–4160 4160–4260 4260–5460

Inlet temperature (◦C) 140

Velocity (10−3 m/s) 39.6 34.2 78.4 22.9 34.2

Furthermore, to calculate the heat transfer rate between air and bed, the heat transfer
coefficient should be known. This analysis adopts an empirical correlation for the volu-
metric heat transfer coefficient hvol (W/m3K) of airflow and a pellet packing bed [19]. The
thermal resistance between the desiccant and the electrothermal metal is minimal and can
be ignored.

hvol = 700(G/d)0.76 (1)

where G is the mass flux of the airflow in kg/m2s, and d is the average diameter of the
pellets in m. Other assumptions include that all properties are uniform over the cross-
section area of the bed at any axial position. The heat capacity of tank walls and heat
transfer between adsorbent pellets are neglected. The authors then calculated the air
temperature with the following energy balance equations [4]:

ερ f cp f
∂Tf

∂t
= −Gcp f

∂Tf

∂z
− hvol

(
Tf − Ts

)
+ (1 − ε)ρs

.
wcpw

(
Tf − Ts

)
(2)

(1 − ε)ρscps
∂Ts

∂t
= −hvol

(
Ts − Tf

)
+

∂

∂z

(
ks

∂Ts

∂z

)
+ (1 − ε)ρs

.
w
[

Hads + cpw

(
Ts − Tf

)]
− 4hloss

Di
(Ts − T∞) (3)

where T, u, ρ, c, k, and ε denote the temperature, velocity, density, specific heat capacity,
thermal conductivity, and packing bed porosity, respectively. The symbol z is the distance
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(m) with a direction that follows the regeneration airflow. Symbol
.

w (kg/kg s) is the
moisture content increase rate of alumina, and H (kJ/kg) is the adsorption heat. Subscripts
f and s indicate air and adsorbent. Symbol hloss (kW/m2K) is the heat transfer coefficient
of heat loss, Di is the diameter of the packed bed, and T∞ is the temperature of the
environment. The results are shown in Figure 7. It can be seen that at the end of the
regeneration process, the air temperature drops to 86 ◦C at a position 30 cm downstream
from the bed inlet, which indicates the limit length of the activated alumina packed-bed in
our hybrid system.
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3. Electrothermal Adsorbent Unit (ETAU) Manufacture
3.1. Desiccant Coating Method

Figure 8 depicts the morphology of ETAU and the structure of the unique adhesive.
The electrothermal metal in an ETAU is iron–chrome–aluminum of thickness 0.03 mm,
and both sides of the metal are coated with a double-sided adhesive of thickness 0.16 mm.
Finally, 4Å zeolite particles with diameters in the 0.5–0.9 mm range are coated on the
adhesive to produce the primary sandwich structure of the ETAU. The regeneration tem-
perature of zeolite particles is higher than 140 ◦C; thus, the adhesive must withstand
temperatures exceeding 140 ◦C. An inorganic double-sided adhesive, silicone, bonds the
inorganic adsorbent and the electrothermal metal. The middle layer in the silicone is an
organic adhesive, called polyimide, which buffers the upward and downward migration of
heat to prevent structural collapse. Figure 9a depicts the adsorbent-coated electrothermal
metal sheet. The maximum durability of the unit at temperatures up to 200 ◦C satisfied the
operational requirements. As shown in Figure 9b, the adsorbent remained intact even after
the sheet was curled into the wheel. Adsorbent shedding did not occur even after several
repeated heating and cooling experiments, proving the unique adhesive worked.
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3.2. Air Channel

The final morphology of the proposed ETAU is a wheel; therefore, if the metal sheet is
curled without an appropriate gap, the ETAU is distorted by the upward and downward
movement of heat (Figure 10). An uneven ETAU shape can disrupt airflow uniformity and
decrease the dehumidification performance. A corrugated metal sheet is employed in the
proposed technique to form air channels and gaps between the two curled layers in the
wheel. When the corrugated metal sheet is placed on the adsorbent-coated electrothermal
metal sheet and curled together, air channels and gaps are formed because of the shape
of the corrugated sheet. If a wheel has a huge gap, it loses structural support, whereas
if a wheel has a minimal gap, it deforms; therefore, a specific sheet with a thickness
of 0.05 mm and a width 80 mm was selected for use. After shaping with adsorbent-
coated electrothermal metal sheets, the gap (air channel) between two electrothermal
metal sheet layers was about 2.5 mm (Figure 11). The distance between the two-channel
centers was about 5.0 mm. The measured error and the product tolerance are less than
1%. According to [20–22], the Reynolds number (Re) number in the air channel of the
ETAU is less than 2300, so the flow is laminar. Therefore, the Nusselt and Sherwood
numbers depend on the shape of the air channel, aspect ratio, and thickness ratio in this
condition, and their calculated values are 3.34 and 1.46, respectively. Compared with the
desiccant packed bed, the parallel channel design in the ETAU reduced the pressure drop
and achieved temperature uniformity within the ETAU. Moreover, corrugated metal sheets
can withstand the tension strains due to expansion and shrinkage caused by heat and cold
shock. According to [23], when the pressure drop in the compressed air system is reduced
by 1 kg/cm2, the power consumption of the total system will reduce 4~8%. Thus, ETAU
with a low-pressure drop benefits the energy-saving of the entire system.
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3.3. Continuous and Rapid Roll-to-Roll Production

An affordable and rapid continuous roll-to-roll procedure was used to produce the
ETAU. This procedure, which is conducive to being commercialized, entails the following
steps: (a) metal sheet cleaning, (b) adhesive coating, (c) adsorbent coating, and (d) curling
with the corrugated metal sheet (Figure 12).

A metal sheet cleaning process was employed to remove the lubricating oil film from
the metal sheet in order to ensure adherence of the adhesive. The metal sheet was cleaned,
following which both of its sides were coated with double-sided adhesive layers; then,
the sheet was subjected to the adsorbent coating process. Finally, the adsorbent-coated
structure was curled to form a wheel. The upper and lower parts of the frame, which
supports the ETAU, were fabricated from nonconductive Teflon. After electrode assembly,
the side of the ETAU was filled with cotton insulation and covered with iron support
frames. The ETAU was subjected to a voltage resistance test of 2.5 kV/60 s to ensure its
stability. The diameter of ETAU is designed to be 385 mm to match the size of pressure
buckets presently used in compressed dry air systems, and the height of the proposed
ETAU product is 113 mm. Figure 13 illustrates a structural schematic of the ETAU. The
desiccant weight in an ETAU is about 3.8 kg. No problems were noted while the ETAU
was operated for over 2000 h.
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4. Performance Test Result and Discussion

Table 3 characterizes the measurement devices used in the experiment. ETAUs were
installed in pressure buckets, and the temperature was measured at numerous points by
using K-type thermocouples. After adjustment, the measurement accuracy was ±0.5 ◦C.
Mirror dew point meters with an accuracy of ±0.2 ◦C were utilized at the inlets and outlets
of the compressed air dryers. The flowmeter measurement ranged from 8 to 80 m/s, with
an accuracy of ±1%. The pressure gauge measurement range was −101 to 2944 kPa, with
an accuracy of ±2 kPa. The accuracy of the electricity meter measurements was ±0.1%.
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In this study, the experimental error was identical to the instrumental error. The energy
efficiency index is defined as follows:

Energy e f f iciency index =
Energy consumption (kW)

Supply compressed air (CMM)
. (4)

Table 3. Measurement devices used in the experiment.

Equipment Range Error

K-type thermocouples 0~260 ◦C ±0.5 ◦C

Inlet mirror dew point meters −35 to −10 ◦C ±0.2 ◦C

Outlet mirror dew point meters −65 to −25 ◦C ±0.2 ◦C

Vortex Flowmeter 8 to 80 m/s ±1%

Pressure gauge −101 to 2944 kPa ±2 kPa

Electricity meter Maximum current 80 A ±0.1%

The temperature measuring point tightly adheres to the adsorbent, and the position is
in the middle of the radius of each ETAU. The height of the temperature sensor is in the
middle of the thickness in each ETAU. This temperature measurement point represents the
entire ETAU’s temperature. The pressure gauges are installed at the inlet and outlet of the
test systems.

4.1. ETAU Basic Test

The horizontal temperature distribution of the ETAU was obtained through infrared
temperature measurement tests (Figure 11). Unlike a conventional packed-bed system, the
proposed ETAU has air channels and uses a unique heating method—direct conductive
heat transfer—which guarantees uniform horizontal temperature distribution. Regarding
vertical temperature distribution, the compared test result with a 90 cm tall system was
shown in Figure 14. The diameter of them is 385 mm. The nine colored curves in the two
diagrams indicate the temperature at each 10 cm height in the system. A conventional
heated-air-flow system must exhibit a temperature gradient in the vertical direction, as
shown in Figure 14a. Even after 140 min of heating, the last three layers of the conventional
system did not achieve the setup temperature of 140 ◦C, and 70 min were required to in-
crease the temperature of the first layer to 140◦C. By contrast, the ETAU system (Figure 14b)
only needed 15 min to reach the setup temperature; moreover, the power supply to each
ETAU could be controlled individually, meaning that a uniform vertical temperature dis-
tribution could be achieved easily. Consequently, the required regeneration time of the
ETAU system was reduced, and the uniformity was increased by approximately 78% and
42%, respectively. The packed bed’s pressure drop and the ETAU are 678 Pa and 208 Pa,
respectively, when the airflow is 1 m3/min. (CMM) at atmospheric pressure.

4.2. ETAUs Compressed Air Dryer

Table 4 lists the pressure, temperature, relative humidity, and dew point measure-
ments for the procedure of the compressed air drying system. Air was compressed using a
compressor; consequently, considerable heat was released, which increased the air temper-
ature to 43 ◦C. Moreover, the water content in the air decreased because of the compression.
After the compressed air was dehumidified through a refrigeration chiller, the compressed
air temperature was reduced to approximately 8 ◦C, and the dew point of it drops to
about −18 ◦C. This low temperature and high relative humidity condition are beneficial
for adsorption drying, so the dew point of compressed air was reduced to less than −40 ◦C
after through the adsorption dryer.
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Table 4. The procedure of the compressed air drying system.

Atmosphere After Compressed Air Storage Barrel Refrigeration Dryer Adsorption Dryer

Pressure (kPa) 101 885 876 865 836

Temperature (◦C) 30 43 25 8 25

Relative humidity (%RH)
(High pressure) - 100% 100% 100% 2.6%

Relative humidity (%RH)
(Atmosphere) 80% 12% 11.5% 11.3% 0.3%

Pressure dew point (◦C) - 43 25 8 −22.2

Dew point (◦C) 26.1 7.5 −6.1 −18.3 −42

The refrigeration chiller can reduce a lot of dehumidification load of adsorption dryers.
However, if the compressed air goes directly through the adsorption without refrigeration
dryers, the adsorption time must decrease when the regeneration condition is the same.

Figure 15 illustrates the configuration of the 3-CMM ETAU compressed air dryer that
features a twin-tower structure. This commercial system uses a timer to switch between
adsorption and desorption modes. Nine 10 cm thick of ETAUs were used in each tower
to ensure adequate system performance. Figure 15a depicts the regeneration step for
tower A, in which the ETAU is powered and is heated. Simultaneously, in tower B, the
adsorption step sets the dew point of the compressed air of the outlet lower than −40 ◦C.
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After completing the regeneration step in tower A, the valve is switched, and the cooling
step is executed. Figure 15b indicates that 5~10% of the dry compressed air from the tower
B outlet is diverted back to tower A for cooling the adsorbent. The temperature of zeolite
must be lower than 80 ◦C so that the proper adsorption performance can be shown. The
humidity of the atmosphere air is too high. Therefore, if the atmosphere air is used to cool
the zeolite, the dehumidification process will happen in the cooling step. The situation
is not expected, so the dry air from the high-pressure air outlet must be used for cooling.
After the adsorbent is cooled, the outlet of tower A is closed, and pressure is generated
in tower A and maintained constant. When the dew point of tower B outlet increases to
more than −40 ◦C, the system undergoes a short period of parallel adsorption, during
which adsorption occurs in both towers A and B. Finally, the valve is switched to start
the regeneration step in tower B and adsorption in tower A (Figure 15c). Repeated cycles
enable the ETAU double-tower system to continually produce dry compressed air at a dew
point of −40 ◦C.
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Figure 15. System configuration of an ETAU compressed air dryer: (a) regeneration, (b) cooling,
(c) and adsorption steps in tower A.

In contrast to conventional heating practices, the ETAU directly heats the adsorbent
by using an electrothermal metal; therefore, if the system uses copious regeneration flow,
the adsorbent is cooled. However, desorption vapors from the adsorbent cannot move
out without regeneration flow, so the regeneration flow was controlled at a minimum
for saving energy. The airflow used was listed in Table 2. The first ETAU is marked #1
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(regeneration inlet), the second #2, and so on (Figure 15). Though on-off controller, the
regeneration temperature of all ETAUs reached 140 ◦C in 30 min., as shown in Figure 16.
Because the exhausted air from #1 must be preheated the #2, the on-off control frequency at
#2 must lower than #1. The first ETAU had the largest temperature-increasing load, so the
temperature setting goal of #1 was slower and step by step. The total regeneration time was
1.5 h to make sure all desiccants can total regenerated. After transfer to the cooling step,
the cooling rate of the ETAUs were also faster due to the air channels. The temperature of
all ETAUs can lower than 60 ◦C in 1 h when the cooling flow is about 0.21 m3/min. (CMM),
which is 7.3% of the supply of dry compressed air. Both the regeneration and cooling flows
used in the ETAU system were less than traditional heat-air-flow compressed air dryers
benefiting the energy-saving of the total system. The adsorption period ended when the
dew point of outlet compressed air was higher than −40 ◦C, and the authors defined this as
the adsorption time. The parameters of the system can be varied according to the operating
environmental conditions and the requirements of the application. Table 5 compiles the test
results of the ETAU compressed air dryer in different test conditions. The dehumidification
load decreased when the compressed air flow or dew point of inlet compressed air is
reduced, so the adsorption time of ETAU compressed air dryer can increase. Moreover,
the dew point of outlet compressed air was lower when the air volume or dew point of
inlet air was drop off, which means the moisture retention time subtle increased. However,
the adsorption time was not in a proportional increase relationship with this alteration, as
shown in Table 5.
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Table 5. ETAU compressed air dryer test results.

Supply Air
(m3/min., CMM)

The Adsorption Time
(Before the Dew Point of Outlet Air Was Higher Than −40 ◦C)

The Dew Point of Inlet Compressed Air:
−8~−10 ◦C

The Dew Point of Inlet Compressed Air:
−18~−20 ◦C

3 3 hours 4 hours

1.8 3.5 hours 5 hours
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4.3. Composite ETAUs Compressed Air Dryer

Another disadvantage of the traditional compressed air dryer is the high temperature
of the exhaust air. The authors used a 30 cm thick alumina packed-bed to replace the top
three ETAUs in the nine ETAUs compressed air dryer, and the exhaust air from the ETAUs
can be used for the regeneration process of the activated alumina, which regeneration
temperature is 80 ◦C. As shown in Figure 17, the final exhaust air temperature is only about
80 ◦C. The result is a little different from our prediction because the thermal capacity of
the tank wall was ignored in our prediction. The heat source comes from the ETAUs, so
the heat loss of the container is less compared with traditional heated-air regeneration
systems. However, the activated alumina regeneration process just like a conventional
method of heating by exhaust air, so the last 10 cm alumina packed-bed, marked #3,
only had the highest temperature, 80 ◦C. Alumina #1 had a temperature of 130 ◦C, and
Alumina #2 reached 100 ◦C. The lower regeneration temperature makes activated alumina
have a mediate dehumidification performance, but the zeolite loses its dehumidification
performance if the regeneration temperature is as low as 80~100 ◦C. The 30 cm activated
alumina packed-bed makes the dew point of compressed air reduce to −20~−30 ◦C. It
means the dehumidification load of zeolite in the ETAU is diminished. The dew point
of compressed air is finally under -40 ◦C due to the zeolite, which is wholly regenerated
at 140 ◦C in the ETAUs. During the cooling stage of the composite ETAUs system, the
activated alumina above will continue to be heated because the hot air blowing upwards
from below. Therefore, after the final cooling stage is completed, the temperature of the
last layer of activated alumina will be about 80 ◦C, which can ensure that all activated
alumina is completely regenerated. The experimental results are shown in Figure 18. At
the same inlet dew point of −8~−10 ◦C and the outlet dew point of −40 ◦C, the composite
system has a longer adsorption time. The regeneration time is 90 min, and the cooling time
is 60 min in both systems. The composite system has higher dehumidification performance
due to the presence of the activated alumina. The adsorption capacity of activated alumina
is higher than that of zeolite, so a load of zeolite is significantly reduced. The adsorption
time can be extended by 1 h compared with the nine ETAUs system. The regeneration
energy consumption is also reduced due to only 6 ETAUs in the composite ETAUs system,
so the energy consumption index reduces about 10%, down to 0.86 kW/CMMcompressed air.
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Table 6 compares the performance of commercial adsorption dryers and the proposed
ETAU prototype systems. The heatless adsorption system exhibited an energy efficiency
index of approximately 2.31 kW/CMMcompressed air. Moreover, the compressed air consump-
tion ratio in the cooling (regeneration) step was approximately 30.1%. The heated-air-flow ad-
sorption system exhibited an energy efficiency index of roughly 1.19 kW/CMMcompressed air.
The compressed air consumption ratio in the cooling step is one of the critical factors
affecting the energy consumption in the adsorption dryer. Efficient regeneration and
cooling methods can considerably reduce the energy use of compressed air. The ETAU
system exhibited the best performance because of the direct heating adsorbent. Further-
more, the uniform air channels made the compressed air consumption ratio of the ETAU
only 7.3% in the cooling step. The compressor used 7.7 kW to produce one compressed
air unit (m3/min., CMM), yielding an air consumption energy index in the cooling step
of 0.56 kW/CMMcompressed air in all the ETAU systems. The regeneration energy and
total energy efficiency indices of the ETAU system were 0.41 kW/CMMcompressed air and
0.91 kW/CMMcompressed air, respectively. In terms of the composite ETAU system, the regen-
eration energy and total energy efficiency indices were 0.32 and 0.86 kW/CMMcompressed air.

Table 6. Performance of a commercial adsorption dryer and the proposed ETAU system.

Adsorption Dryer Type Heatless Heat-Air-Flow ETAU Composite ETAU

Outlet dew point (◦C) −40 −40 −40 −40

Inlet air flow (m3/min.,CMM) 3.11 2.86 3.01 3.00

Outlet air flow (m3/min., CMM) 2.17 2.62 2.79 2.78

Compressed air consumption ratio in cooling step (%) 30.1 8.1 7.3 7.3

Compressed air consumption energy index
(kW/CMMcompressed air) 2.31 0.62 0.56 0.56

Regeneration energy index (kW/CMMcompressed air) — 0.57 0.41 0.32

Total energy efficiency index (kW/CMMcompressed air) 2.31 1.19 0.97 0.86

5. Conclusions

Figure 19 presents the energy analysis of the proposed composite ETAU system.
Because there is insulating cotton around each ETAU, and no heating on the pipe, the
heat losses of pipes and the container were 0% and 22.6%, respectively. Moreover, the
uniform pressure drop and temperature distributions of the ETAU system are achieved
without any overheating. The exhaust heat waste in the composite ETAU system was as
low as 22.1%. The adsorbent regeneration process used 55.3% of the total energy, indicating
that the ETAU system is relatively more efficient. Compared with commercially available
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heated-air adsorption dryers, the composite ETAU system saves energy consumption by
27% through electrothermal regeneration technic and composite system configuration.

Processes 2021, 9, x FOR PEER REVIEW 17 of 18 
 

 

pressure drop and temperature distributions of the ETAU system are achieved without 
any overheating. The exhaust heat waste in the composite ETAU system was as low as 
22.1%. The adsorbent regeneration process used 55.3% of the total energy, indicating that 
the ETAU system is relatively more efficient. Compared with commercially available 
heated-air adsorption dryers, the composite ETAU system saves energy consumption by 
27% through electrothermal regeneration technic and composite system configuration. 

In the proposed and successfully developed ETAU, the proposed adsorbent (zeolite) 
was attached to the electrothermal metal by using a heat-resistant adhesive. Wheel-
shaped units were manufactured through a high-efficiency, low-cost, roll-to-roll process. 
The manufactured ETAUs exhibited low-pressure drop and uniform temperature distri-
bution because the ETAU design had air channels. Experimental results revealed that the 
temperature uniformity and regeneration time of the ETAU dryers were twice and one-
third that of the heated-air-flow dryers, respectively. The energy consumption index of 
the ETAU compressed air dryer prototype was 0.97 kW/CMMcompressed air, and the compo-
site ETAU one was 0.86 kW/CMMcompressed air, indicating energy savings of more than 25% 
compared with conventional adsorption dryers. This innovative adsorbent regeneration 
method for compressed air dryers yielded remarkable results and is suitable for other ad-
sorbent applications. 

 
Figure 19. Energy analysis of the composite ETAU system. 

Author Contributions: Conceptualization, Y.-H.K. and C.-H.C.; methodology, Y.-H.K.; software, J.-
H.L.; validation, J.-C.P., C.-H.C. and Y.-H.K.; formal analysis, J.-H.L.; investigation, C.-H.C.; re-
sources, M.-L.H.; data curation, J.-C.P.; writing—original draft preparation, C.-H.C.; writing—re-
view and editing, C.-H.C.; visualization, M.-L.H.; supervision, J.-J.C.; project administration, Y.-
H.K. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained 
from Ministry of Economics Affairs, Taiwan and are available from the authors with the permission 
of Ministry of Economics Affairs, Taiwan. (https://www.moeaboe.gov.tw/ECW/popu-
lace/home/Home.aspx, accessed on 21 June 2021) 

Acknowledgments: The authors would like to acknowledge the support from the Energy Fund of 
Ministry of Economics Affairs, Taiwan. Moreover, we extend our appreciation to Chang-Yi Shen for 
generating the figures. This manuscript was edited by Wallace Academic Editing. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 19. Energy analysis of the composite ETAU system.

In the proposed and successfully developed ETAU, the proposed adsorbent (zeolite)
was attached to the electrothermal metal by using a heat-resistant adhesive. Wheel-shaped
units were manufactured through a high-efficiency, low-cost, roll-to-roll process. The
manufactured ETAUs exhibited low-pressure drop and uniform temperature distribution
because the ETAU design had air channels. Experimental results revealed that the tem-
perature uniformity and regeneration time of the ETAU dryers were twice and one-third
that of the heated-air-flow dryers, respectively. The energy consumption index of the
ETAU compressed air dryer prototype was 0.97 kW/CMMcompressed air, and the composite
ETAU one was 0.86 kW/CMMcompressed air, indicating energy savings of more than 25%
compared with conventional adsorption dryers. This innovative adsorbent regeneration
method for compressed air dryers yielded remarkable results and is suitable for other
adsorbent applications.
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