-
Polyelectrolyte Complex-Based Chitosan/Carboxymethylcellulose Powdered Microgels Loaded with Eco-Friendly Silver Nanoparticles as Innovative Biomaterials for Hemostasis Treatments
-
Postharvest Quality of Plums Treated with Chitosan-Based Edible Coatings
-
Comparative Analysis of Polysaccharide and Nutritional Composition of Biological and Industrial-Scale Cultivated Pleurotus ostreatus Mushrooms for Functional Food and Nutraceutical Applications
-
Chitosan Mixtures from Marine Sources: A Comparative Study of Biological Responses and Practical Applications
-
Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use
Journal Description
Polysaccharides
Polysaccharides
is an international, peer-reviewed, open access journal on all aspects of the science of polysaccharides and their derivatives, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, FSTA, CAPlus / SciFinder, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 36.4 days after submission; acceptance to publication is undertaken in 4.5 days (median values for papers published in this journal in the first half of 2025).
- Journal Rank: JCR - Q1 (Polymer Science) / CiteScore - Q1 (Engineering (miscellaneous))
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Journal Cluster of Polymer and Macromolecular Science: Polymers, Gels, Polysaccharides, Textiles, Macromol, Microplastics and Adhesives.
Impact Factor:
5.5 (2024);
5-Year Impact Factor:
5.2 (2024)
Latest Articles
Wheat Hydrocolloids and Their Importance for Brewing
Polysaccharides 2025, 6(4), 94; https://doi.org/10.3390/polysaccharides6040094 (registering DOI) - 13 Oct 2025
Abstract
►
Show Figures
Wheat is often used as a raw material in the brewing of special styles of beer. Hydrocolloids naturally present in wheat are called pentosans. They constitute approximately 2% of wheat flour. Arabinoxylans (pentosanes) and β-glucan are common compounds in wheat and are mostly
[...] Read more.
Wheat is often used as a raw material in the brewing of special styles of beer. Hydrocolloids naturally present in wheat are called pentosans. They constitute approximately 2% of wheat flour. Arabinoxylans (pentosanes) and β-glucan are common compounds in wheat and are mostly found in the cell wall. Hydrocolloids are commonly used to retain moisture in bread and baked goods. Besides the moisture content, they affect the texture and retrogradation enthalpy of starch molecules. In the baking industry, they can be useful and improve the dough properties, but in the brewing industry, they are commonly designated as problematic compounds. Namely, to a certain extent, they can improve the foam stability; however, they can hinder the filtration process. This review paper aims to give an overview of non-starch compounds and their properties and to emphasize the significance of these macromolecules in the malting and brewing industries, especially in wheat varieties. The objective of this review is to gather information by searching different databases with scientific papers to broaden knowledge on arabinoxylans and β-glucans in brewing.
Full article
Open AccessArticle
Development and Evaluation of Hyaluronic Acid-Chitosan Coated Liposomes for Enhanced Delivery of Resveratrol to Breast Cancer Cells
by
Yin Yin Myat, Khin Khin Gyi, Pornthida Riangjanapatee, Chuda Chittasupho, Songyot Anuchapreeda and Siriporn Okonogi
Polysaccharides 2025, 6(4), 93; https://doi.org/10.3390/polysaccharides6040093 - 10 Oct 2025
Abstract
►▼
Show Figures
Resveratrol (RES), a naturally occurring polyphenolic compound with well-documented anticancer potential, is limited in clinical application due to its poor aqueous solubility and low bioavailability. This study aimed to develop RES-loaded liposomes coated sequentially with chitosan (CS) and hyaluronic acid-chitosan (HA) (RES-HA-CS-Lip) to
[...] Read more.
Resveratrol (RES), a naturally occurring polyphenolic compound with well-documented anticancer potential, is limited in clinical application due to its poor aqueous solubility and low bioavailability. This study aimed to develop RES-loaded liposomes coated sequentially with chitosan (CS) and hyaluronic acid-chitosan (HA) (RES-HA-CS-Lip) to enhance RES stability, delivery, and anticancer efficacy in breast cancer cells. HA-CS-coated liposomes were prepared using a thin-film hydration technique. Their physicochemical characteristics were thoroughly investigated through dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The optimized RES-HA-CS-Lip exhibited spherical morphology with an average particle size of 212 nm, a narrow polydispersity index (<0.4), a zeta potential of +9.04 ± 1.0 mV, and high entrapment efficiency of 82.16%. Stability studies demonstrated superior retention of size, surface charge, and encapsulation efficiency over 28 days at both 4 °C and 25 °C. In vitro release profiles at physiological and acidic pH revealed sustained drug release, with enhanced release under acidic conditions mimicking the tumor microenvironment. Antioxidant activity, assessed via DPPH and ABTS radical-scavenging assays, indicated that RES retained its radical-scavenging potential upon encapsulation. Cytotoxicity assays demonstrated markedly improved anticancer activity against MCF-7 breast cancer cells, with an IC50 of 13.08 μg/mL at 48 h, while maintaining high biocompatibility toward normal HaCaT keratinocytes. RES-HA-CS-Lip demonstrated excellent stability against degradation and aggregation. Overall, these findings highlight HA-CS-coated liposomes as a promising polysaccharide-based nanocarrier that enhances stability, bioactivity, and therapeutic efficacy of RES, representing a potential strategy for targeted breast cancer therapy.
Full article

Figure 1
Open AccessArticle
Tailoring Rheological, Viscoelastic, and Starch Structural Properties in Plant-Based Beverages via Homolactic Fermentation of Quinoa and Chickpea Flour Blends
by
John Hurtado-Murillo, Wendy Franco and Ingrid Contardo
Polysaccharides 2025, 6(4), 92; https://doi.org/10.3390/polysaccharides6040092 - 10 Oct 2025
Abstract
►▼
Show Figures
This study investigated the effects of homolactic fermentation on the rheological, viscoelastic, and starch structural properties of quinoa–chickpea flour-based beverages. Three formulations with increasing proportions of chickpea flour (10, 25, and 50%) were fermented for 10 h with Lactobacillus acidophilus LA-5. Apparent viscosity,
[...] Read more.
This study investigated the effects of homolactic fermentation on the rheological, viscoelastic, and starch structural properties of quinoa–chickpea flour-based beverages. Three formulations with increasing proportions of chickpea flour (10, 25, and 50%) were fermented for 10 h with Lactobacillus acidophilus LA-5. Apparent viscosity, deformation capacity, storage modulus (G′), and pasting behavior were measured along with FTIR-based analysis of the starch molecular structure. All fermented samples reached pH values < 4.5 and exhibited improved rheological properties with significant increases in viscosity and storage modulus (G′), particularly in the 50:50 blend. These enhancements were attributed to the synergistic effects of homolactic fermentation and inherent properties of chickpea starch, particularly its high amylose content, large granule size, and long amylopectin chains. FTIR analysis revealed that the short-range molecular order of starches was preserved after fermentation in all beverages, except for the 50:50 blend, as evidenced by the increased degree of order (DO) and double helix (DD) ratios. Overall, these findings demonstrate that integrating chickpea flour and controlled homolactic fermentation is an effective strategy for tailoring the viscosity and stability of plant-based probiotic beverages, providing a theoretical basis for the development of clean-label and functional fermented plant-based systems.
Full article

Figure 1
Open AccessArticle
Methylcellulose Bionanocomposite Films Incorporated with Zein Nanoparticles Containing Propolis and Curcumin for Functional Packaging
by
Michael Ramos Nunes, Cleonice Gonçalves da Rosa, Gabriel Salvador, Sarah Cardoso de Oliveira Teixeira, Maria Clara Marinho da Costa, Aline da Rosa Almeida, Vanessa Valgas dos Santos, Ana Emília Siegloch, Fernando Domingo Zinger, Jaqueline Suave and Dachamir Hotza
Polysaccharides 2025, 6(4), 91; https://doi.org/10.3390/polysaccharides6040091 - 9 Oct 2025
Abstract
►▼
Show Figures
The increasing demand for sustainable alternatives to non-biodegradable plastic packaging is driving the development of active packaging based on biopolymers such as methylcellulose. In this study, innovative methylcellulose nanocomposite films incorporating zein nanoparticles loaded with propolis and curcumin were developed for active packaging
[...] Read more.
The increasing demand for sustainable alternatives to non-biodegradable plastic packaging is driving the development of active packaging based on biopolymers such as methylcellulose. In this study, innovative methylcellulose nanocomposite films incorporating zein nanoparticles loaded with propolis and curcumin were developed for active packaging applications. The zein nanoparticles revealed excellent physicochemical properties, with a zeta potential above 30 mV, suggesting adequate stability. Transmission electron microscopy confirmed nanoparticles containing curcumin and propolis with uniform sizes ranging from approximately 130 to 140 nm with low polydispersity. Release studies revealed that approximately 25% of the curcumin and 35% of the propolis were released from the nanoparticles within 24 h. The release mechanism was best described by the Korsmeyer–Peppas model, suggesting a sustained release profile. The nanoparticles reduced the hydrophobicity and rigidity of the films, as evidenced by a lower elastic modulus and higher percentage elongation, thereby suggesting greater flexibility. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the incorporation of bioactive compounds in the polymer matrix. Differential scanning calorimetry (DSC) revealed the thermal parameters of the synthesized films. Furthermore, the films exhibited antibacterial and antioxidant activities, making them highly suitable for use as biodegradable active packaging.
Full article

Figure 1
Open AccessArticle
Adsorption of Pharmaceutical Compounds from Water on Chitosan/Glutaraldehyde Hydrogels: Theoretical and Experimental Analysis
by
Billy Alberto Ávila Camacho, Miguel Andrés Rojas Pabón, Norma Aurea Rangel Vázquez, Edgar A. Márquez Brazón, Hilda Elizabeth Reynel Ávila, Didilia Ileana Mendoza Castillo and Yectli A. Huerta
Polysaccharides 2025, 6(4), 90; https://doi.org/10.3390/polysaccharides6040090 - 9 Oct 2025
Abstract
►▼
Show Figures
Chitosan-based hydrogels are used in the adsorption of pharmaceutical compounds from water. The adsorption process of diclofenac and naproxen on chitosan hydrogels cross-linked with glutaraldehyde has been studied theoretically and experimentally. According to the thermodynamic properties, the adsorption processes were spontaneous and endothermic,
[...] Read more.
Chitosan-based hydrogels are used in the adsorption of pharmaceutical compounds from water. The adsorption process of diclofenac and naproxen on chitosan hydrogels cross-linked with glutaraldehyde has been studied theoretically and experimentally. According to the thermodynamic properties, the adsorption processes were spontaneous and endothermic, due to the negative values of Gibbs free energy, and the enthalpies of formation were positive. Furthermore, the different systems were studied by electrostatic potential maps, where the functional groups (amino and hydroxyl) represented the active sites of the hydrogel. The maximum adsorption capacity obtained for diclofenac and naproxen was 108.85 and 97.22 mg/g, respectively, at a temperature of 308.15 K. On the other hand, the adsorbent was characterized by FTIR (Fourier Transform Infrared Spectroscopy) and XRD (X-ray Diffraction) before and after the adsorption of the drugs to confirm the binding of the adsorbates on the surface of the material.
Full article

Graphical abstract
Open AccessArticle
Gallic Acid Functionalization Improves the Pharmacological Profile of Fucoidan B: A Polysaccharide with Antioxidant Properties
by
Joicy Ribeiro dos Santos, Diego Araujo Sabry, Guilherme Lanzi Sassaki and Hugo Alexandre Oliveira Rocha
Polysaccharides 2025, 6(4), 89; https://doi.org/10.3390/polysaccharides6040089 - 8 Oct 2025
Abstract
Fucoidan B (FucB) is a sulfated polysaccharide with recognized biological activity. In this study, FucB was chemically modified through redox conjugation with gallic acid (GA) to obtain FucB-GA, aiming to enhance its antioxidant properties. Structural characterization using FTIR, NMR, and electrophoresis confirmed the
[...] Read more.
Fucoidan B (FucB) is a sulfated polysaccharide with recognized biological activity. In this study, FucB was chemically modified through redox conjugation with gallic acid (GA) to obtain FucB-GA, aiming to enhance its antioxidant properties. Structural characterization using FTIR, NMR, and electrophoresis confirmed the successful covalent binding of GA to FucB without major structural degradation. The conjugation increased the phenolic content and reduced crystallinity, as shown by XRD and SEM, indicating greater amorphous character, which can favor biological applications. Thermogravimetric analysis demonstrated enhanced thermal stability in FucB-GA. Antioxidant activity was evaluated through various in vitro assays. FucB-GA showed superoxide radical scavenging activity of 91.96%, copper chelating capacity of 43.2%, antioxidant capacity of 37 mg AEE/g, and reducing power of 94.22%, significantly higher results than FucB, while no sample chelated iron. Under the conditions analyzed, gallic acid alone showed minimal or no activity in most assays. These results suggest that conjugation with GA increases the antioxidant potential of FucB, while also improving the activity and bioavailability of GA, likely due to the increase in electron-donating and metal-binding groups. Overall, the study supports the development of FucB-GA as a promising antioxidant compound for pharmaceutical or nutraceutical applications.
Full article
(This article belongs to the Special Issue Seaweed Polysaccharides: Innovations in Isolation, Characterization, Chemical Modification and Processing)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Control of Precipitation of Cellulose Solutions in N-Methylmorpholine-N-oxide by Introducing Polyacrylonitrile Additives
by
Maria Mironova, Igor Makarov, Ekaterina Palchikova, Georgy Makarov, Markel Vinogradov, Maxim Orlov and Ivan Komarov
Polysaccharides 2025, 6(4), 88; https://doi.org/10.3390/polysaccharides6040088 - 8 Oct 2025
Abstract
►▼
Show Figures
The precipitation of cellulose and polyacrylonitrile and its copolymer (PAN) solutions is a well-known process that has been extensively described in numerous studies. It is suggested that “soft” precipitants (aqueous solutions of solvent, alcohols) be used in place of “rigid” ones (water) to
[...] Read more.
The precipitation of cellulose and polyacrylonitrile and its copolymer (PAN) solutions is a well-known process that has been extensively described in numerous studies. It is suggested that “soft” precipitants (aqueous solutions of solvent, alcohols) be used in place of “rigid” ones (water) to control the rate at which solutions precipitate. Diffusion processes can also be controlled by lowering the temperature of the interacting system’s constituent parts. The appearance and structure of the resulting fibers (films) are directly correlated with the rate of coagulation. Adding a composite additive to the solution is an unusual method of altering the rate of polymer phase release. The introduced additive should dissolve in a common solvent, which will ensure the competition of precipitation between the polymer phases. It is shown that using optical methods it is possible to trace the evolution of the polymer phase precipitation and the formed morphology. For 12% solutions of cellulose, PAN and mixed systems in N-methylmorpholine-N-oxide (NMMO) the kinetics of the movement of isoconcentration planes was traced and the growth rates of the precipitated polymer zone were estimated. The introduction of PAN additives into cellulose enables the influence of diffusion processes and minimizes the formation of finger-like defects (vacuoles). When the PAN content in the system is 30% or more, the formation of defects in the precipitated solution is significantly suppressed, which is crucial for achieving a uniform morphology.
Full article

Figure 1
Open AccessArticle
Extraction, Quantification, and Characterization of Chitin from Marine Biofouling Organisms Amphipods (Jassa sp.) and Hydroids (Coryne sp.)
by
Christopher Selvoski, Camila Flor Lobarbio, Matthew Plowman-Holmes, Peter Bell, Benie Chambers and Mathew Cumming
Polysaccharides 2025, 6(4), 87; https://doi.org/10.3390/polysaccharides6040087 - 3 Oct 2025
Abstract
As the demand for chitin grows, new chitin sources with unique physicochemical properties are required. Abundant biofouling species, such as amphipods and hydroids, have chitinous skeletal systems that can be utilized for chitin production. However, little is known about these chitin sources. This
[...] Read more.
As the demand for chitin grows, new chitin sources with unique physicochemical properties are required. Abundant biofouling species, such as amphipods and hydroids, have chitinous skeletal systems that can be utilized for chitin production. However, little is known about these chitin sources. This study investigated the viability of amphipods (Jassa sp.) and hydroids (Coryne sp.) obtained from aquaculture biofouling assemblages as novel sources of chitin. Chitin was extracted from these sources and characterized in terms of its degree of acetylation (DA), crystallinity index (CrI), molecular weight (MW), thermal stability, and surface morphology. Physiochemical characteristics where then compared against commercially available shrimp chitin. Results show that a 32.75% chitin yield can be obtained from hydroids. The percentage DA for amphipod (AC) and hydroid (HC) chitin is 58.4–59.2% and 64.8–66.7%, respectively. AC is characterized as α-chitin with a low molecular weight (MW), while HC is medium-MW β-chitin. This finding is significant because it shows hydroids to be a new source of rare β-chitin. In addition, AC has higher thermal stability than HC. AC and HC greatly differ in terms of surface morphology. Therefore, the chitin biomaterials extracted from amphipods and hydroids have different but favorable properties that can be used for diverse applications.
Full article
(This article belongs to the Special Issue Chitin and Collagen: Isolation, Purification, Characterization, and Applications, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Tuning the Properties of Redox-Responsive Chitosan Networks Through Diacid Chain Length and EDC–Carboxylic Acid Molar Ratio
by
Gabriel Lombardo, Andrés G. Salvay, María C. Pagliaricci, Norma B. D’Accorso, Ezequiel Rossi and María I. Errea
Polysaccharides 2025, 6(4), 86; https://doi.org/10.3390/polysaccharides6040086 - 29 Sep 2025
Abstract
►▼
Show Figures
In this work, redox-responsive chitosan derivatives were prepared by crosslinking with disulfide-bridged dicarboxylic acids. Taking into account that structural variations in diacids can lead to significant differences in properties, especially swelling capacity, this study aimed to evaluate the impact of increasing alkyl chain
[...] Read more.
In this work, redox-responsive chitosan derivatives were prepared by crosslinking with disulfide-bridged dicarboxylic acids. Taking into account that structural variations in diacids can lead to significant differences in properties, especially swelling capacity, this study aimed to evaluate the impact of increasing alkyl chain length and hydrophobicity. Two dicarboxylic acids of different hydrophobic character and chain length were used: dithiodiglycolic acid (DTGA) and dithiopropionic acid (DTPA). The resulting materials were fully characterized. Despite their structural similarity, the derivatives exhibited distinct behaviors: DTGA derivatives formed stable hydrogels, whereas DTPA ones remained compact upon contact with water. These results were confirmed by swelling measurements and oscillatory rheology. The EDC:COOH molar ratio was also evaluated, revealing a strong effect on the degree of crosslinking. Moreover, DTGA systems prepared at a 1:1 ratio showed significantly higher swelling than those synthesized at 3:1. Regarding redox responsiveness, it was assessed by quantifying thiol content before and after reduction with sodium borohydride, and reversibility was assessed through reduction–oxidation cycles. Finally, preliminary experiments evaluated the materials’ ability to incorporate benzalkonium chloride as a model biocide, and their release was tested in the presence of thiosulfate-reducing bacteria, providing initial insight into their behavior in redox-responsive delivery systems.
Full article

Figure 1
Open AccessArticle
Acetylated Xylan as Renewable Feedstock for Biodegradable Food Packaging: Synthesis, Structural Characterization and Performance Evaluation
by
Petronela Nechita, Mirela Iana-Roman and Silviu-Marian Năstac
Polysaccharides 2025, 6(3), 85; https://doi.org/10.3390/polysaccharides6030085 - 19 Sep 2025
Abstract
This study investigates the potential of acetylated xylan as a functional component in coatings for biodegradable paper-based food packaging. Acetylated xylan was synthesized in the laboratory via the reaction of native beechwood xylan with acetic anhydride. Multilayer coatings composed of acetylated xylan, chitosan,
[...] Read more.
This study investigates the potential of acetylated xylan as a functional component in coatings for biodegradable paper-based food packaging. Acetylated xylan was synthesized in the laboratory via the reaction of native beechwood xylan with acetic anhydride. Multilayer coatings composed of acetylated xylan, chitosan, and zinc oxide nanoparticles (ZnO NPs) were applied to paper substrates as single and double layers (approximately 5 g/m2) to enhance their barrier and antimicrobial properties. The coated papers were evaluated for mechanical properties, resistance to water, oil, and grease, antimicrobial activity against pathogenic bacteria, and biodegradability in soil. The combination of xylan derivatives with chitosan significantly improved surface hydrophobicity (contact angle ~87°) and achieved complete inhibition (100%) of Staphylococcus aureus and Salmonella spp., without compromising biodegradability. Incorporation of ZnO NPs further enhanced both the barrier properties and antimicrobial efficacy, particularly against S. aureus. A high biodegradation rate (~92%) was recorded after 42 days of soil burial. These results demonstrate the suitability of xylan-based multilayer coatings as sustainable alternatives for food packaging applications.
Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Polyelectrolyte Complex-Based Chitosan/Carboxymethylcellulose Powdered Microgels Loaded with Eco-Friendly Silver Nanoparticles as Innovative Biomaterials for Hemostasis Treatments
by
Ariel Gonzalez, Micaela Ferrante, Liesel Gende, Vera A. Alvarez and Jimena S. Gonzalez
Polysaccharides 2025, 6(3), 84; https://doi.org/10.3390/polysaccharides6030084 - 16 Sep 2025
Abstract
Uncontrolled hemorrhage is a major global health issue, causing high mortality rates in both civilian and military settings. The risk of infection in bleeding wounds highlights the need for effective hemostatic materials. Natural polysaccharides are promising for developing hemostatic microgels, and silver nanoparticles
[...] Read more.
Uncontrolled hemorrhage is a major global health issue, causing high mortality rates in both civilian and military settings. The risk of infection in bleeding wounds highlights the need for effective hemostatic materials. Natural polysaccharides are promising for developing hemostatic microgels, and silver nanoparticles (AgNPs) offer antimicrobial benefits. This study aimed to synthesize a novel powdered hemostatic material using spray drying, leveraging chitosan (CHI) and carboxymethylcellulose (CMC) combined with eco-friendly AgNPs that provide antimicrobial properties. AgNPs were synthesized via a green method using CMC as a reducing and stabilizing agent, then characterized by UV-Vis, TEM, FTIR, and DLS. CHI/CMC and CHI/CMC-AgNPs microgels were created using a scalable spray drying technique and then evaluated for their morphological, physical, thermal, swelling, hemostatic, and antimicrobial properties. Characterization showed that AgNPs had monodisperse sizes and a unique UV-Vis peak at 428 nm. CHI/CMC microgels had an irregular spherical shape, with AgNPs slightly increasing their size. CHI/CMC and CHI/CMC-10AgNPs (with 10% v/v AgNPs) demonstrated appropriate swelling capacity and hemocompatibility and reduced coagulation time by 20%. However, CHI/CMC-20AgNPs (with 20% v/v AgNPs) exhibited high hemolysis. Both CHI/CMC-10AgNPs and CHI/CMC-20AgNPs displayed antimicrobial activity. In conclusion, a novel powdered hemostatic micromaterial was successfully developed, exhibiting improved properties and efficacy as a next-generation hemostatic agent.
Full article
(This article belongs to the Collection Bioactive Polysaccharides)
►▼
Show Figures

Figure 1
Open AccessArticle
Valorization of Avocado Seeds for Active Packaging: Comparative Analysis of Extracted Starch- and Seed Flour-Based Materials with Cinnamon Essential Oil
by
Pedro Francisco Muñoz-Gimena, Alejandro Aragón-Gutiérrez, Enrique Blázquez-Blázquez, Marina P. Arrieta, Laura Peponi and Daniel López
Polysaccharides 2025, 6(3), 83; https://doi.org/10.3390/polysaccharides6030083 - 10 Sep 2025
Abstract
►▼
Show Figures
This work aims to develop bio-based and biodegradable materials for active food packaging purposes by comparing the properties of avocado seed flour (ASF) and avocado extracted starch (AES). A 36.4% dry basis yield is obtained for the extracted AES from ASF. ASF presents
[...] Read more.
This work aims to develop bio-based and biodegradable materials for active food packaging purposes by comparing the properties of avocado seed flour (ASF) and avocado extracted starch (AES). A 36.4% dry basis yield is obtained for the extracted AES from ASF. ASF presents a higher crystallinity, and SEM images show a mixture of starch granules and other materials, whereas AES presents lower ash, protein, and lipid content relative to ASF. To make a comparison between the two, ASF or AES are mixed with glycerol at different concentrations, then twin-screw extruded and injection-molded to develop thermoplastic starch-based materials. The morphological, mechanical, barrier, antioxidant, antimicrobial, and disintegrability properties are evaluated to compare their different compositions. ASF-based films exhibit better barrier properties and a 134% higher intrinsic antioxidant capacity. Conversely, the homogenous nature of AES-based materials results in better interactions with the plasticizer, allowing a wide range of mechanical properties. Moreover, cinnamon essential oil (CEO) was incorporated into the preferred compositions of both ASF and AES to improve antimicrobial properties. Adding a 5% concentration of CEO to samples was sufficient to completely inhibit the growth of P. expansum. These results support waste valorization for developing active packaging materials with high antioxidant and antimicrobial properties without competing for resources with the food industry.
Full article

Graphical abstract
Open AccessReview
Rationalizing Polysaccharide Extraction with Deep Eutectic Solvents: From Supramolecular Architecture to Emerging AI-Guided Solvent Design
by
Faisal Al-Akayleh, Ahmed S. A. Ali Agha, Ali R. Olaimat and Nidal A. Qinna
Polysaccharides 2025, 6(3), 82; https://doi.org/10.3390/polysaccharides6030082 - 10 Sep 2025
Abstract
►▼
Show Figures
Deep eutectic solvents (DESs) have emerged as sustainable and tunable alternatives to conventional solvents for the extraction of polysaccharides. This review presents a structure-informed framework linking DES composition to polysaccharide solubility, emphasizing the differential responsiveness of amorphous, interfacial, and crystalline domains. Amorphous polysaccharides
[...] Read more.
Deep eutectic solvents (DESs) have emerged as sustainable and tunable alternatives to conventional solvents for the extraction of polysaccharides. This review presents a structure-informed framework linking DES composition to polysaccharide solubility, emphasizing the differential responsiveness of amorphous, interfacial, and crystalline domains. Amorphous polysaccharides are efficiently extracted under mild DES conditions, while crystalline polymers often require stronger hydrogen bond acceptors or thermal/mechanical activation. Beyond dissolution, DESs modulate key properties of the extracted polysaccharides, including molecular weight, monomer composition, and bioactivity. Comparative analysis highlights how acidic, basic, or metal-coordinating DESs selectively target distinct polymer classes. Emerging innovations, such as in situ DES formation, mechanochemical systems, and switchable solvents, enhance efficiency and reduce downstream processing demands. Furthermore, the integration of machine learning and COSMO-RS modeling enables predictive solvent design, reducing reliance on empirical screening. By combining mechanistic insight, compositional tailoring, and computational tools, this review provides a scientifically grounded perspective for advancing DES-mediated extraction processes and enabling structure-preserving, application-oriented recovery of polysaccharides in food, pharmaceutical, and biorefinery domains.
Full article

Figure 1
Open AccessArticle
Microwave–Assisted OSA–Faba Bean Starch Production for Probiotic Microencapsulation
by
Mayra Esthela González-Mendoza, Fernando Martínez-Bustos, Eduardo Castaño-Tostado, María del Carmen Cortez-Trejo and Silvia Lorena Amaya-Llano
Polysaccharides 2025, 6(3), 81; https://doi.org/10.3390/polysaccharides6030081 - 7 Sep 2025
Abstract
►▼
Show Figures
Probiotics offer significant health benefits; however, their efficacy is often compromised by low survival rates in stressful conditions. Microencapsulation using modified starches presents a promising strategy to enhance probiotic viability. This study aimed to evaluate microwave-assisted octenyl succinic anhydride (OSA) modification of faba
[...] Read more.
Probiotics offer significant health benefits; however, their efficacy is often compromised by low survival rates in stressful conditions. Microencapsulation using modified starches presents a promising strategy to enhance probiotic viability. This study aimed to evaluate microwave-assisted octenyl succinic anhydride (OSA) modification of faba bean starch to provide a protective matrix for the microencapsulation of Lactobacillus rhamnosus GG (LGG) through spray drying. Starch was extracted from faba beans and hydrolyzed, and a factorial design was employed for OSA esterification (3% w/w) using a conventional microwave (30 or 60 s at power levels of 2 or 10). The starches were characterized, and the most effective treatment was selected for the microencapsulation of LGG, varying the inlet temperature (120 and 140 °C) and flow rate (7 and 12 mL/min) at 30% solids content. Microwaves significantly reduced the processing time for starch esterification. Microwave-assisted OSA modification produced starches with low viscosity (<0.015 Pa·s), high amylose and resistant starch content, and good solubility, making them suitable for probiotic encapsulation. The microencapsulation of LGG resulted in a powder yield of 41–55%, with particle sizes ranging from 5 to 20 µm and survival rates of 81–90%. This study presents an effective method of producing OSA-modified starch from faba beans using microwave energy, demonstrating strong potential for probiotic delivery applications.
Full article

Figure 1
Open AccessArticle
Chitosan Mixtures from Marine Sources: A Comparative Study of Biological Responses and Practical Applications
by
Verginica Schröder, Gabriela Mitea, Ileana Rău, Manuela Rossemary Apetroaei, Irina Mihaela Iancu and Miruna-Maria Apetroaei
Polysaccharides 2025, 6(3), 80; https://doi.org/10.3390/polysaccharides6030080 - 5 Sep 2025
Abstract
Chitosan, a biopolymer with molecular variability, continues to demonstrate promising potential for biomedical and biotechnological applications. In this study, mixtures of β-oligochitosan, with a low molar mass (MM) of 1.5 kDa (CH1), α-oligochitosan, MM = 26.39 kDa (CH2), and α-chitosan, MM = 804.33
[...] Read more.
Chitosan, a biopolymer with molecular variability, continues to demonstrate promising potential for biomedical and biotechnological applications. In this study, mixtures of β-oligochitosan, with a low molar mass (MM) of 1.5 kDa (CH1), α-oligochitosan, MM = 26.39 kDa (CH2), and α-chitosan, MM = 804.33 kDa (CH3) were analyzed. The tested solutions, chitosan alone and mixtures (CH1:CH2 and CH1:CH3), prepared in different mass ratios (1:1, 2:1, 3:1), were characterized in terms of MM and degree of deacetylation (DDA). The antimicrobial activity on S. aureus, E. coli, and C. parapsilosis was evaluated. The fractional inhibitory concentration index (FICI) was also calculated for mixtures. Using the Brine Shrimp Lethality Assay (BSLA), the in vivo interactions, which involve the internalization of chitosan in the cells, were assessed. The results showed that α-β chitosan mixtures exhibited an in vitro antimicrobial antagonistic effect (FICI > 1) for all samples. In contrast, significantly improved larval survival (%), development, and motility (p < 0.0001), with a close correlation between cellular inclusions and naupliar stages (R = 0.94), were detected in vivo testing. These data support the strategic use of chitosan mixtures with variable characteristics in biotechnological applications, with potential for optimizing intake, biological activity, and controlling cytotoxicity.
Full article
(This article belongs to the Special Issue Chitin and Collagen: Isolation, Purification, Characterization, and Applications, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Fish Gelatin Edible Films with Prebiotics and Structuring Polysaccharides for Probiotic Delivery: Physicochemical Properties, Viability, and In Vitro Gastrointestinal Release
by
Gabriel M. da Silva, Newton Carlos Santos, Luanna A. da Silva, Thalis L. B. de Lima, Mateus de Oliveira Leite, Virgínia Mirtes de Alcântara Silva, Liandra de S. Oliveira, Victor Herbert de Alcântara Ribeiro, Ariadne Soares Meira, Poliana H. D. Felix, Raquel Alves de Luna Dias, Deyzi Gouveia, Josivanda P. Gomes and Ana Paula T. Rocha
Polysaccharides 2025, 6(3), 79; https://doi.org/10.3390/polysaccharides6030079 - 5 Sep 2025
Abstract
►▼
Show Figures
This study aimed to develop synbiotic edible films based on fish gelatin containing Lacticaseibacillus rhamnosus GG, evaluating the impact of different prebiotics (inulin and fructooligosaccharides, FOSs) and structuring polysaccharides (pectin and alginate) on their physical, mechanical, thermal properties, cell viability, and in vitro
[...] Read more.
This study aimed to develop synbiotic edible films based on fish gelatin containing Lacticaseibacillus rhamnosus GG, evaluating the impact of different prebiotics (inulin and fructooligosaccharides, FOSs) and structuring polysaccharides (pectin and alginate) on their physical, mechanical, thermal properties, cell viability, and in vitro gastrointestinal behavior. Seven film formulations were prepared from fish gelatin solutions (3%, w/v) containing glycerol (30%, w/w, as plasticizer), with the addition of prebiotics (inulin or FOSs, 1:1 w/w to gelatin), either alone or in combination with pectin (1%, w/v) or alginate (0.5%, w/v). Specifically, F1 contained gelatin, glycerol, and L. rhamnosus GG (control); F2 and F5 included inulin or FOSs, respectively; F3 and F6 combined inulin or FOSs with pectin; and F4 and F7 combined inulin or FOSs with alginate. After incorporation of the probiotic, the solutions were cast and dried at 37 °C for 24 h. The incorporation of prebiotics and polysaccharides significantly influenced probiotic viability after film drying (p < 0.05). The control formulation (F1) showed the highest reduction (26.10%), while F4 (inulin + alginate) and F7 (FOS + alginate) exhibited the lowest losses of 10.41% and 10.98%, respectively. These films also demonstrated better performance during simulated digestion, with F7 showing the smallest reduction after 6 h (0.5 log), maintaining 7.0 colony-forming units per gram (CFU g−1), which is considered adequate for functional effects. Physically, the films varied in solubility (27.50% to 41.37%), thickness (0.085 to 0.095 mm), water vapor permeability (WVP) (8.17 to 11.75 g·mm/m2·d·kPa), and moisture content (13.47% to 17.50%). Mechanically, F4 showed the highest tensile strength (24.5 MPa), while F1 had the highest elongation at break (62%). During storage, F7 and F4 showed the lowest viability losses (29.8% and 29.4%, respectively) under refrigeration. Overall, the results indicate that the association of prebiotics with structuring polysaccharides improves stability, cellular protection, and functional performance of the films.
Full article

Figure 1
Open AccessArticle
Evaluating the Impact of High-Esterified Pectin on Retrogradation and Film-Forming Properties of High-Amylose Starch
by
Jéssica Ferraz, Maria Fernanda Ortolani Pollini, Vinicius Martinho Borges Cardoso, Sara Nunes, Marlus Chorilli, Cesar Augusto Roque-Borda and Andréia Bagliotti Meneguin
Polysaccharides 2025, 6(3), 78; https://doi.org/10.3390/polysaccharides6030078 - 3 Sep 2025
Abstract
►▼
Show Figures
Achieving precise drug release in the colon remains a key objective in therapies for inflammatory bowel disease (IBD). Natural polysaccharides, including high-amylose starch (HAS) and pectin, offer relevant characteristics for localized drug delivery due to their biocompatibility, biodegradability, and adaptability. In this work,
[...] Read more.
Achieving precise drug release in the colon remains a key objective in therapies for inflammatory bowel disease (IBD). Natural polysaccharides, including high-amylose starch (HAS) and pectin, offer relevant characteristics for localized drug delivery due to their biocompatibility, biodegradability, and adaptability. In this work, high-esterified pectin (HEP) was incorporated during the retrogradation of HAS to further form cohesive films without the need for organic solvents or high temperatures. The resulting matrices showed improved mucoadhesive performance, particularly under colonic conditions, where hydrophobic ester groups in HEP enhanced tissue adherence. This feature is critical for prolonged residence time in inflamed mucosa. Variations in HEP content directly influenced matrix density, fluid interaction, and mechanical resistance, without compromising film integrity. The high degree of esterification limited pH-dependent swelling and promoted alternative release mechanisms potentially related to enzymatic degradation. Such behavior contrasts with traditional low-esterified pectin (LEP) systems, suggesting that HEP may act as a structural modifier rather than a neutral excipient. Despite its widespread use in food systems, HEP remains underexplored in pharmaceutical matrices, especially in combination with retrograded starch (RS). The physicochemical and biointerfacial properties observed here underscore their applicability for the rational design of colonic delivery systems and provide a foundation for formulation strategies tailored to chronic intestinal disorders.
Full article

Graphical abstract
Open AccessArticle
The Stability of Four Kinds of Cellulose Pickering Emulsions and Optimization of the Properties of Mayonnaise by a Soybean Byproduct Pickering Emulsion
by
Zhanxin Zheng, Ziwei Feng, Liu Liu, Yuhuan Zhang, Jianke Li and Xiaoxia Wu
Polysaccharides 2025, 6(3), 77; https://doi.org/10.3390/polysaccharides6030077 - 1 Sep 2025
Abstract
►▼
Show Figures
Soybean residue, kudzu root residue, astragalus residue and pomegranate peel residue are byproducts of food processing with high yield. In the food processing industry in Northwest China, these waste residues contain a large amount of nutrients and have a large amount of emissions.
[...] Read more.
Soybean residue, kudzu root residue, astragalus residue and pomegranate peel residue are byproducts of food processing with high yield. In the food processing industry in Northwest China, these waste residues contain a large amount of nutrients and have a large amount of emissions. In this study, cellulose was extracted from four kinds of waste residue and characterized to study its emulsification performance and application effect. The results are as follows: The extracted cellulose had typical cellulose crystal structure and good thermal stability. Among the four kinds of cellulose, the physical, chemical and functional properties of the soybean byproduct were significantly better than those of standard cellulose and other sources of cellulose. The Pickering emulsions fixed by four kinds of cellulose and soybean lecithin have similar properties. The emulsification performance of the immobilized soybean byproduct cellulose Pickering emulsion is the best. Soybean byproduct cellulose was used as an oil substitute for the development of new mayonnaise. The results showed that when 8% soybean byproduct cellulose Pickering emulsion was used to replace vegetable oil, the quality of reduced-fat mayonnaise was better. This soybean byproduct cellulose has potential development and application value in industrial food.
Full article

Graphical abstract
Open AccessArticle
Preservation of Rabbit Meat in High-Density Polyethylene Packaging Bags Reinforced with Ethyl Cellulose Nanoparticles Loaded with Rosemary Extract
by
Brenda Sánchez-Camacho, María de la Luz Zambrano-Zaragoza, José Eleazar Aguilar-Toalá, Rosy Gabriela Cruz-Monterrosa, Monzerrat Rosas-Espejel and Jorge L. Mejía-Méndez
Polysaccharides 2025, 6(3), 76; https://doi.org/10.3390/polysaccharides6030076 - 29 Aug 2025
Abstract
In this work, ethyl cellulose nanoparticles loaded with rosemary extract (RCL-NPs) were synthesized and utilized to reinforce high-density polyethylene (HDPE) packaging bags as a nanotechnological alternative for rabbit meat preservation. The synthesized RCL-NPs were characterized by DLS and for their stability. The analyzed
[...] Read more.
In this work, ethyl cellulose nanoparticles loaded with rosemary extract (RCL-NPs) were synthesized and utilized to reinforce high-density polyethylene (HDPE) packaging bags as a nanotechnological alternative for rabbit meat preservation. The synthesized RCL-NPs were characterized by DLS and for their stability. The analyzed variables of rabbit meat packaged samples included drained liquid, weight loss, color, pH, texture, and hardness. The total phenolic content (TPC) and antioxidant capacity of rosemary extract were also investigated. The results demonstrated that RCL-NPs were 117.30 nm in size with a negative surface charge (−24.59 mV) and low PDI (0.12). According to the Higuchi model, the release rate of RCL-NPs was sustained from 0 to 24 h. The encapsulation efficiency of the implemented synthesis route was 99.97%. The TPC of rosemary extract was 566.13 ± 1.72 mg GAE/L, whereas their antioxidant activity utilizing the DPPH and FRAP assays was 27.86 ± 0.32 mM Trolox/L and 0.31 mM Trolox/L, respectively. Contrary to control samples, rabbit meat samples conserved in HDPE packaging bags reinforced with RCL-NPs prevent drained liquid and weight loss, while preserving *L (60 ± 2.5–66.10 ± 2.0) and *b (10.67 ± 2.28–11.62 ± 2.39), pH (5.22 ± 0.05–5.80 ± 0.03), and texture (10.37 ± 0.82–0.70 ± 0.50). In the same regard, the developed material conserved the hardness of rabbit meat samples, exhibiting values that ranged from 27.79 ± 7.23 to 27.60 ± 3.05 N during the evaluated period (0–13 days). The retrieved data demonstrate the efficacy of RCL in preserving the quality of rabbit meat when integrated with additional food packaging materials.
Full article
(This article belongs to the Collection Bioactive Polysaccharides)
►▼
Show Figures

Figure 1
Open AccessArticle
Characterization of Carboxymethylcellulose and Alginate-Based Dressings Incorporated with Plant Extract
by
Karen Alejandra Olán-Jiménez, Rosa Isela Cruz-Rodríguez, Beatriz del Carmen Couder-García, Nadia Jacobo-Herrera, Nancy Ruiz-Lau, Maritza del Carmen Hernández-Cruz, Teresa Ayora-Talavera and Alfredo Briones-Aranda
Polysaccharides 2025, 6(3), 75; https://doi.org/10.3390/polysaccharides6030075 - 21 Aug 2025
Abstract
►▼
Show Figures
In this study, hydrogel dressings based on alginate and carboxymethylcellulose were developed, supplemented with extracts from Tagetes nelsonii, Agave americana, and Aloe vera gel, for the treatment and healing of wounds. For this purpose, the physical and mechanical characterization of the
[...] Read more.
In this study, hydrogel dressings based on alginate and carboxymethylcellulose were developed, supplemented with extracts from Tagetes nelsonii, Agave americana, and Aloe vera gel, for the treatment and healing of wounds. For this purpose, the physical and mechanical characterization of the films was carried out using different concentrations of the crosslinker, calcium chloride. Additionally, T. nelsonii was the extract that exhibited the highest antioxidant capacity as well as in vivo wound-healing activity. Subsequently, plant extracts were added, the dressings were characterized, and antibacterial activity was determined by the Kirby–Bauer method against Staphylococcus aureus and Pseudomonas aeruginosa. The results indicated that the prepared dressings have potential for use in wound treatment and healing, with the dressing containing T. nelsonii extract being the only one with antibacterial activity. Therefore, all of them can be used for acute wounds on body parts such as the palms of the hands, knees, elbows, and soles of the feet.
Full article

Graphical abstract
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics

Conferences
Special Issues
Special Issue in
Polysaccharides
Chitin and Collagen: Isolation, Purification, Characterization, and Applications, 2nd Edition
Guest Editor: Azizur RahmanDeadline: 30 October 2025
Special Issue in
Polysaccharides
Seaweed Polysaccharides: Innovations in Isolation, Characterization, Chemical Modification and Processing
Guest Editor: Martin GerickeDeadline: 30 November 2025
Special Issue in
Polysaccharides
Recent Progress on Lignocellulosic-Based Materials
Guest Editors: Adrian C. Puiţel, Mircea Teodor NechitaDeadline: 30 December 2025
Special Issue in
Polysaccharides
New Insights into Polysaccharide-Based Scaffolds: Design, Production and Applications
Guest Editor: Antonio LaezzaDeadline: 1 August 2026
Topical Collections
Topical Collection in
Polysaccharides
Current Opinion in Polysaccharides
Collection Editors: Cédric Delattre, Paolina Lukova, Guillaume Pierre