Journal Description
Macromol
Macromol
is an international, peer-reviewed, open access journal on all aspects of macromolecular research published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, CAPlus / SciFinder, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 20.4 days after submission; acceptance to publication is undertaken in 3.9 days (median values for papers published in this journal in the first half of 2024).
- Journal Rank: CiteScore - Q2 (Materials Science (miscellaneous))
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Effects of a Combined Elevated-Pressure Hybrid Wood-Modification System Demonstrating Synergistic Effects on Durability Performance
Macromol 2024, 4(3), 634-649; https://doi.org/10.3390/macromol4030038 - 10 Sep 2024
Abstract
►
Show Figures
The combination of different wood-modification technologies to obtain improved performance is increasingly receiving attention in research. In this study, Scots pine (Pinus sylvestris) sapwood was impregnated with furfuryl alcohol (FFA) in pure aqueous 20, 40, and 60% solution strength without adding
[...] Read more.
The combination of different wood-modification technologies to obtain improved performance is increasingly receiving attention in research. In this study, Scots pine (Pinus sylvestris) sapwood was impregnated with furfuryl alcohol (FFA) in pure aqueous 20, 40, and 60% solution strength without adding any catalyst. In a second step, the FFA was polymerized while simultaneously performing thermal modification in a closed system at 130, 150, or 180 °C. After leaching and ageing tests, the nine different combinations were tested in use class 4 applications (in contact with or very close to the ground and frequently wet) according to CEN/TS 15083-2 (2005) decay laboratory test. It was noted that even the minimum-intensity combination of 20% FFA at 130 °C resulted in maximum durability class (DC) 1 performance. On the contrary, DC 4 was assigned to thermally modified control samples, even at the maximum intensity of thermal modification. Similarly, for FFA modifications, previous research has suggested that an uptake of 35% solution strength is required to obtain an adequate durability performance in use class 4 applications. High levels of resistance against termites were also noted by corresponding termite lab tests. Moisture studies showed the combined treatments resulted in improved stability and reduced moisture uptakes. Thus, the results obtained by this study revealed synergistic performance effects, which originate from the combined thermo-chemical modification approach, and which were higher than simple accumulation of the individual performance of purely thermally or chemically modified wood. Thus, the presented findings have provided positive implications for industrial applications of thermo-chemical modification techniques and offers an array of new research opportunities.
Full article
Open AccessReview
Biomacromolecules as Immunomodulators: Utilizing Nature’s Tools for Immune Regulation
by
Dimitrina Miteva, Meglena Kitanova and Tsvetelina Velikova
Macromol 2024, 4(3), 610-633; https://doi.org/10.3390/macromol4030037 - 5 Sep 2024
Abstract
►▼
Show Figures
Although there are numerous available immunomodulators, those of natural origin would be preferable based on their safety profile and effectiveness. The research and clinical interest in immunomodulators have increased in the last decades, especially in the immunomodulatory properties of plant-based therapies. Innovative technologies
[...] Read more.
Although there are numerous available immunomodulators, those of natural origin would be preferable based on their safety profile and effectiveness. The research and clinical interest in immunomodulators have increased in the last decades, especially in the immunomodulatory properties of plant-based therapies. Innovative technologies and extensive study on immunomodulatory natural products, botanicals, extracts, and active moieties with immunomodulatory potential could provide us with valuable entities to develop as novel immunomodulatory medicines to enhance current chemotherapies. This review focuses on plant-based immunomodulatory drugs that are currently in clinical studies. However, further studies in this area are of utmost importance to obtain complete information about the positive effects of medicinal plants and their chemical components and molecules as an alternative to combatting various diseases and/or prevention.
Full article
Figure 1
Open AccessArticle
In Vitro Drug Delivery through the Blood–Brain Barrier Using Cold Atmospheric Plasma
by
Md Jahangir Alam, Abubakar Hamza Sadiq, Jaroslav Kristof, Sadia Afrin Rimi, Mahedi Hasan, Yamano Tomoki and Kazuo Shimizu
Macromol 2024, 4(3), 597-609; https://doi.org/10.3390/macromol4030036 - 2 Sep 2024
Abstract
►▼
Show Figures
This study explores the potential of cold atmospheric plasma (CAP) to facilitate the delivery of large-molecule drugs to the brain. The blood–brain barrier (BBB) restricts the passage of most drugs, hindering treatment for neurological disorders. CAP generates reactive oxygen and nitrogen species (RONS)
[...] Read more.
This study explores the potential of cold atmospheric plasma (CAP) to facilitate the delivery of large-molecule drugs to the brain. The blood–brain barrier (BBB) restricts the passage of most drugs, hindering treatment for neurological disorders. CAP generates reactive oxygen and nitrogen species (RONS) that may disrupt the BBB’s tight junctions, potentially increasing drug permeability. An in vitro BBB model and an immortalized cell line (bEND.3) were used in this experiment. Fluorescein isothiocyanate dextran (FD-4), a model drug, was added to the cells to determine drug permeability. Custom microplasma was used to produce reactive oxygen species (ROS). Trans-endothelial electrical resistance (TEER) measurements assessed the integrity of the BBB after the CAP treatment. A decrease in TEER was observed in the CAP-treated group compared to the controls, suggesting increased permeability. Additionally, fluorescence intensity measurements from the basal side of the trans-well plate indicated higher drug passage in the CAP-treated group. Moreover, the higher presence of ROS in the plasma-treated cells confirmed the potential of CAP in drug delivery. These findings suggest that CAP may be a promising approach for enhancing brain drug delivery.
Full article
Graphical abstract
Open AccessReview
Production of Bioactive Peptides from Microalgae and Their Biological Properties Related to Cardiovascular Disease
by
Ranitha Fernando, Xiaohong Sun and H. P. Vasantha Rupasinghe
Macromol 2024, 4(3), 582-596; https://doi.org/10.3390/macromol4030035 - 12 Aug 2024
Abstract
►▼
Show Figures
Microalgae are a substantial group of unicellular prokaryotic and eukaryotic marine organisms. Due to their high protein content of 50–70%, microalgae have the potential to become a sustainable alternative protein source, as well as aiding in the development of bioactive peptide-based nutraceuticals. A
[...] Read more.
Microalgae are a substantial group of unicellular prokaryotic and eukaryotic marine organisms. Due to their high protein content of 50–70%, microalgae have the potential to become a sustainable alternative protein source, as well as aiding in the development of bioactive peptide-based nutraceuticals. A series of major steps are involved in the production of peptides from microalgae, which include the disruption of the microalgal cell wall, the hydrolysis of proteins, and the extraction or isolation of peptides derived from hydrolysis. Physical methods of cell wall disruptions are favored due to the ability to obtain high-quality protein fractions for peptide production. Bioactive peptides are protein fragments of two to twenty amino acid residues that have a beneficial impact on the physiological functions or conditions of human health. Strong scientific evidence exists for the in vitro antioxidant, antihypertensive, and anti-atherosclerotic properties of microalgal peptides. This review is aimed at summarizing the methods of producing microalgal peptides, and their role and mechanisms in improving cardiovascular health. The review reveals that the validation of the physiological benefits of the microalgal peptides in relation to cardiovascular disease, using human clinical trials, is required.
Full article
Figure 1
Open AccessArticle
Structural, Thermal and Mechanical Assessment of Green Compounds with Natural Rubber
by
Xavier Colom, Jordi Sans, Frederic de Bruijn, Fernando Carrillo and Javier Cañavate
Macromol 2024, 4(3), 566-581; https://doi.org/10.3390/macromol4030034 - 7 Aug 2024
Abstract
►▼
Show Figures
The inadequate disposal of tires poses a significant threat to human health and requires effective recycling solutions. The crosslinked structure of rubber, formed through sulfur bridges during vulcanization, presents a major challenge for recycling because it prevents the rubber scraps from being reshaped
[...] Read more.
The inadequate disposal of tires poses a significant threat to human health and requires effective recycling solutions. The crosslinked structure of rubber, formed through sulfur bridges during vulcanization, presents a major challenge for recycling because it prevents the rubber scraps from being reshaped thermoplastically. Reclaiming or devulcanization aims to reverse this crosslinking, allowing waste rubber to be transformed into products that can be reprocessed and revulcanized, thereby saving costs and preserving resources. Microwave technology shows promise for devulcanization due to its ability to break sulfur crosslinks. In this study, we investigate the devulcanization of ground tire rubber (GTR) through a combined process applied to samples from both car and truck tires subjected to varying periods of microwave irradiation (0, 3, 5 and 10 min). The devulcanized GTR was then blended with natural rubber (NR) and underwent a new vulcanization process, simulating recycling for novel applications. The GTR was mixed with NR in proportions of 0, 10, 30 and 50 parts per hundred rubber (phr). This study also examines the differences between the GTR from car tires and GTR from truck tires. The results showed that the treatment effectively breaks the crosslinks in the GTR, creating double bonds (C=C) and improving the mechanical properties of the revulcanized samples. The crosslinking density and related properties of the samples increased with treatment time, reaching a maximum at 5 min of microwave treatment, followed by a decrease at 10 min. Additionally, the incorporation of GTR enhanced the thermal stability of the resulting materials.
Full article
Graphical abstract
Open AccessArticle
G-Quadruplex DNA as a Macromolecular Target for Semi-Synthetic Isoflavones Bearing B-Ring Tosylation
by
Giovanni Ribaudo, Margrate Anyanwu, Matteo Giannangeli, Erika Oselladore, Alberto Ongaro, Maurizio Memo and Alessandra Gianoncelli
Macromol 2024, 4(3), 556-565; https://doi.org/10.3390/macromol4030033 - 7 Aug 2024
Abstract
►▼
Show Figures
Guanine-rich sequences of nucleic acids, including DNA and RNA, are known to fold into non-canonical structures named G-quadruplexes (G4s). Such arrangements of these macromolecular polymers are mainly located in telomeres and in promoter regions of oncogenes and, for this reason, they represent a
[...] Read more.
Guanine-rich sequences of nucleic acids, including DNA and RNA, are known to fold into non-canonical structures named G-quadruplexes (G4s). Such arrangements of these macromolecular polymers are mainly located in telomeres and in promoter regions of oncogenes and, for this reason, they represent a potential target for compounds with therapeutic applications. In fact, the ligand-mediated stabilization of G4s inhibits telomerase and the activity of transcriptional machinery and counteracts cancer cell immortalization. Flavonoids, along with other classes of small molecules, have been previously tested for their ability to stabilize G4s, but the mechanism of their interaction has not been fully elucidated. In the current work, we report a multi-technique investigation on the binding of tosylated isoflavones obtained by the B-ring modification of compounds from Maclura pomifera to a telomeric DNA sequence. Our study demonstrates that such derivatization leads to compounds showing lower binding affinity but with an increased selectivity toward G4 with respect to double-stranded DNA. The binding mode to the macromolecular target G4 was studied by combining results from electrospray mass spectrometry binding studies, nuclear magnetic resonance experiments and computational simulations. Overall, our findings show that tosylation influences the selectivity toward the macromolecular target by affecting the interaction mode with the nucleic acid.
Full article
Figure 1
Open AccessArticle
Surface Microfabrication of Lactic Acid–Glycolic Acid Copolymers Using a Gas-Permeable Porous Mold
by
Mano Ando, Yuna Hachikubo, Sayaka Miura, Rio Yamagishi, Naoto Sugino, Takao Kameda, Yoshiyuki Yokoyama and Satoshi Takei
Macromol 2024, 4(3), 544-555; https://doi.org/10.3390/macromol4030032 - 5 Aug 2024
Abstract
►▼
Show Figures
We attempted to perform surface microfabrication of the bioabsorbable material lactic acid–glycolic acid copolymer (LG-80) using a micro-imprint lithography technique with a gas-permeable porous mold at less than 5 °C. As a result, high-resolution surface micromachining with a height of 1.26 μm and
[...] Read more.
We attempted to perform surface microfabrication of the bioabsorbable material lactic acid–glycolic acid copolymer (LG-80) using a micro-imprint lithography technique with a gas-permeable porous mold at less than 5 °C. As a result, high-resolution surface micromachining with a height of 1.26 μm and a pitch of 2.97 μm was achieved using a convex sapphire mold with a height of 1.3 μm and a pitch of 3 μm. After processing, the LG-80 exhibited high water repellency, and FT-IR analysis of the surface showed no significant change in its chemical structure, confirming that the surface microfabrication was successful, while retaining the properties of the material. This demonstrated new possibilities for surface microfabrication technology for bioabsorbable materials, which are expected to be applied in the medical and life science fields in products such as surgical implants, tissue regeneration materials, and cell culture scaffold materials. In particular, the use of micro-imprint lithography enables low-cost and high-precision processing, which will be a major step toward the practical application of bioabsorbable materials.
Full article
Graphical abstract
Open AccessArticle
Application of Annealed Bambara Starch as a Stabilizer in Ice Cream Production
by
Faith O. Nwaogazie, Bolanle A. Akinwande, Oluwafemi A. Adebo and Samson A. Oyeyinka
Macromol 2024, 4(3), 533-543; https://doi.org/10.3390/macromol4030031 - 25 Jul 2024
Abstract
►▼
Show Figures
This study investigated the potential of annealed Bambara starch as a locally sourced stabilizer for ice cream, aimed at addressing the high cost of imported stabilizers. Annealed Bambara starch, modified at various temperatures (45, 50, 55, and 60 °C), was incorporated into ice
[...] Read more.
This study investigated the potential of annealed Bambara starch as a locally sourced stabilizer for ice cream, aimed at addressing the high cost of imported stabilizers. Annealed Bambara starch, modified at various temperatures (45, 50, 55, and 60 °C), was incorporated into ice cream formulations and compared with ice cream stabilized using xanthan gum and guar gum. The ice creams exhibited variations in percentage overrun (77.03–124.61%), foam stability (90.88–96.61%), viscosity (24.87–33.26%), and melting resistance. Conventionally stabilized ice cream outperformed in overrun, foam stability, viscosity, and melting rate properties. Descriptive sensory tests showed high intensity scores for color, aroma, taste, mouthfeel, and body attributes across all samples, with no weak intensity scores. Considering the performance of conventionally stabilized ice cream, those stabilized with Bambara starch annealed at 45 and 50 °C were recommended as potential alternatives, highlighting the potential of annealed Bambara starch as a cost-effective and locally sourced stabilizer for ice cream. Further studies should investigate the impact of annealing at different temperatures on the structural changes of Bambara starch to gain more insights into its effects on ice cream structure, facilitating its use in other food systems.
Full article
Figure 1
Open AccessReview
New Trends in Composite Coagulants for Water and Wastewater Treatment
by
Eleftheria K. Tsoutsa, Athanasia K. Tolkou, George Z. Kyzas and Ioannis A. Katsoyiannis
Macromol 2024, 4(3), 509-532; https://doi.org/10.3390/macromol4030030 - 22 Jul 2024
Abstract
►▼
Show Figures
Coagulation/Flocculation (C/F) process aims to efficiently eliminate turbidity, TSS, COD, BOD, toxic metals, phosphates, and UV254nm from wastewater. Both natural and synthetic coagulants, used alone or in conjunction with flocculants, play crucial roles in this treatment. This review summarizes recent trends in
[...] Read more.
Coagulation/Flocculation (C/F) process aims to efficiently eliminate turbidity, TSS, COD, BOD, toxic metals, phosphates, and UV254nm from wastewater. Both natural and synthetic coagulants, used alone or in conjunction with flocculants, play crucial roles in this treatment. This review summarizes recent trends in coagulants for wastewater treatment, highlighting a wide array of inorganic and organic coagulants that have demonstrated significant efficacy based on reviewed studies. Notably, Crab Shell Bio-Coagulant (CS) excels in turbidity remov5al, achieving a remarkable 98.91% removal rate, while oak leaves protein shows superior performance in TSS and COD removal. Synthetic inorganic coagulants like PALS, PSiFAC1.5:10:15, and PAPEFAC1.5-10-15 demonstrate outstanding turbidity removal rates, over 96%. POFC-2 coagulant stands out for efficiently removing TSS and COD from domestic wastewater, achieving up to 93% removal for TSS and 89% for COD. Moreover, the utilization of FeCl3 as an inorganic coagulant alongside chitosan as an organic flocculant shows promise in reducing turbidity, COD, and polyphenols in wastewater from vegetable oil refineries. PE-2, a novel organic coagulant, demonstrates exceptional efficacy in eliminating turbidity, TSS, COD, and BOD from sugar industry wastewater. Chitosan shows effectiveness in removing TOC and orthophosphates in brewery wastewater. Additionally, CTAB shows high efficiency in removing various toxic metal ions from wastewater. The hybrid coagulants: PAAP0.1,0.5 and PPAZF accomplish exceptional turbidity removal rates, approximately 98%.
Full article
Figure 1
Open AccessReview
Pulmonary Drug Delivery through Responsive Materials
by
Nikolaos Politakos, Vasilis G. Gregoriou and Christos L. Chochos
Macromol 2024, 4(3), 490-508; https://doi.org/10.3390/macromol4030029 - 11 Jul 2024
Abstract
►▼
Show Figures
Drug delivery is essential to provide correct treatments in many ways. The critical points in any drug delivery method are patient compliance, maximum efficacy in therapy, minimum toxicity, and enabling new medical treatments. Pulmonary drug delivery is one way of delivering therapeutics locally
[...] Read more.
Drug delivery is essential to provide correct treatments in many ways. The critical points in any drug delivery method are patient compliance, maximum efficacy in therapy, minimum toxicity, and enabling new medical treatments. Pulmonary drug delivery is one way of delivering therapeutics locally and systemically. The lung microenvironment and mechanical and biological barriers must be surpassed for successful drug delivery. This makes the delivery challenging. Formulations that can be delivered through the lung and have a responsive character are of great interest since they can hold the key to the successful delivery of therapeutics. This review has gathered fundamental studies related to materials (polymeric, lipidic, inorganic, and biomolecules) that are responsive to pH, enzymes, ROS, magnetism, and other variables, and it shows the advances and applications in pulmonary drug delivery for different diseases in vitro as well as in vivo.
Full article
Figure 1
Open AccessArticle
Peach Gum Polysaccharide as an Additive for Thermoplastic Starch to Produce Water-Soluble Films
by
Juan Vicente Miguel Guillem, Andrea Juan-Polo, Cristina Pavon and Juan López-Martínez
Macromol 2024, 4(3), 475-489; https://doi.org/10.3390/macromol4030028 - 8 Jul 2024
Abstract
►▼
Show Figures
Thermoplastic starch (TPS) has gained considerable attention during the last few years in developing starch-based biodegradable food packaging materials or edible coatings due to its high availability and low cost. TPS is manufactured from starch plasticized with food-grade plasticizers, making it suitable for
[...] Read more.
Thermoplastic starch (TPS) has gained considerable attention during the last few years in developing starch-based biodegradable food packaging materials or edible coatings due to its high availability and low cost. TPS is manufactured from starch plasticized with food-grade plasticizers, making it suitable for food contact applications. In addition, TPS is bio-based and biodegradable, which, from an environmental perspective, closes the circle of the circular economy. However, the industrial application of TPS is somewhat limited due to its poor mechanical performance and low water resistance. However, the low water resistance could increase the water sensitivity of TPS, which could be advantageous for coating application or food encapsulation. The present work aims to tailor the water sensitivity of TPS by adding peach gum polysaccharide to obtain water-soluble films. With this aim, peach gum polysaccharide (PGP) was extracted from peach gum (PG) using the thermal hydrolysis method. Films of TPS-PG and TPS-PGP were prepared and characterized by their water sensitivity and mechanical, microstructural, and thermal properties. The results show that PGP allows the obtaining of films with water sensitivities higher than 70% but also improves TPS elongation at break, making the material more suitable for application as film.
Full article
Figure 1
Open AccessArticle
Fabrication and Characterization of Collagen–Magnetic Particle Composite Microbeads for Targeted Cell Adhesion and Proliferation
by
Daichi Tanoshiri, Sakura Inoue, Shigehisa Aoki, Akira Kimoto, Yushi Oishi and Takayuki Narita
Macromol 2024, 4(3), 462-474; https://doi.org/10.3390/macromol4030027 - 4 Jul 2024
Abstract
►▼
Show Figures
The integration of the biocompatibility of collagen and the remote-control ability of magnetic elements serves as both a cell scaffold and an actuator. We studied the preparation, characterization, and potential applications of collagen–magnetic particle composite microbeads (CMPMBs). The interplay among collagen concentration, particle
[...] Read more.
The integration of the biocompatibility of collagen and the remote-control ability of magnetic elements serves as both a cell scaffold and an actuator. We studied the preparation, characterization, and potential applications of collagen–magnetic particle composite microbeads (CMPMBs). The interplay among collagen concentration, particle size, and surface roughness was found to influence cell adhesion and proliferation. Adsorption and desorption tests showed the reversible attachment of the particles to magnetic sheets, enabling precise spatial control and targeted cell delivery. The particles demonstrated their utility as cell carriers, supporting cell migration and proliferation. These findings showcase the potential of CMPMBs as a promising platform for advanced cell delivery and tissue regeneration applications. The ability to fine-tune particle properties and manipulate them using magnetic fields offers new possibilities for creating complex tissue constructs and controlling cellular behavior, which could contribute to the development of more effective regenerative therapies and tissue engineering approaches.
Full article
Figure 1
Open AccessReview
Harnessing Brewery Spent Grain for Polyhydroxyalkanoate Production
by
Robe D. Terfa, Priyanshi N. Patel, Hwidong D. Kim, Matthew D. Gacura, Gary Vanderlaan, Longyan Chen, Xiaoxu Ji and Davide Piovesan
Macromol 2024, 4(3), 448-461; https://doi.org/10.3390/macromol4030026 - 22 Jun 2024
Abstract
The utility of brewery spent grain (BSG), a byproduct of the beer production process, for the synthesis of polyhydroxyalkanoates (PHAs), is a significant advancement towards sustainable and cost-effective biopolymer production. This paper reviews the upcycling potential of BSG as a substrate for PHA
[...] Read more.
The utility of brewery spent grain (BSG), a byproduct of the beer production process, for the synthesis of polyhydroxyalkanoates (PHAs), is a significant advancement towards sustainable and cost-effective biopolymer production. This paper reviews the upcycling potential of BSG as a substrate for PHA production, utilizing various biotechnological approaches to convert this abundant waste material into high-value biodegradable polymers. Through a comprehensive review of recent studies, we highlight the biochemical composition of BSG and its suitability for microbial fermentation processes. This research delves into different methodologies for PHA production from BSG, including the use of mixed microbial cultures (MMCs) for the synthesis of volatile fatty acids (VFAs), a critical precursor in PHA production, and solid-state fermentation (SSF) techniques. We also examine the optimization of process parameters such as pH, temperature, and microbial concentration through the application of the Doehlert design, revealing the intricate relationships between these factors and their impact on VFA profiles and PHA yields. Additionally, this paper discusses challenges and future perspectives for enhancing the efficiency and economic viability of PHA production from BSG. By harnessing the untapped potential of BSG, this research contributes to the development of a circular economy model, emphasizing waste valorization and the creation of sustainable alternatives to conventional plastics.
Full article
(This article belongs to the Special Issue Sustainable Processes to Multifunctional Bioplastics and Biocomposites)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Viscoelastic Properties of Biscuit Doughs with Different Lipidic Profiles Fortified with a Casein Hydrolysate
by
Ricardo Troncoso, Ana Torrado, Nelson Pérez-Guerra and Clara A. Tovar
Macromol 2024, 4(2), 437-447; https://doi.org/10.3390/macromol4020025 - 13 Jun 2024
Abstract
►▼
Show Figures
The effects of using a hard (artisanal) margarine (which has a higher lipidic and lower aqueous contents) and using a soft (commercial) margarine (which has a lower lipidic and higher aqueous contents), along with a casein hydrolysate, on the rheological properties of different
[...] Read more.
The effects of using a hard (artisanal) margarine (which has a higher lipidic and lower aqueous contents) and using a soft (commercial) margarine (which has a lower lipidic and higher aqueous contents), along with a casein hydrolysate, on the rheological properties of different biscuit short doughs were examined. The characteristic parameters in the linear viscoelastic range (LVER) were analysed by stress sweep at 6.3 rad/s and 25 °C. The two margarines showed similar values of strain amplitude (γmax), but the hard margarine exhibited a significantly higher firmness in the LVER, as expected. An analogous result was found for the biscuit doughs made with hard margarine and soft margarine. The addition of a casein hydrolysate (CH) to both biscuit doughs produced an increase in the loss factor, indicating a loss of the solid-like character in the dough networks. Nevertheless, a different trend in the consistency of the dough, which depended on the type of margarine, was found. While, after adding CH, the dough made with soft margarine showed a significant reduction in rigidity, the dough with hard margarine exhibited an increased firmness upon CH addition. Yield stress tests showed that CH facilitates the transition from elastic to plastic deformation at the yield point more intensely in the dough with soft margarine.
Full article
Graphical abstract
Open AccessArticle
The Effect of Different Extraction Conditions on the Physicochemical Properties of Novel High Methoxyl Pectin-like Polysaccharides from Green Bell Pepper (GBP)
by
Onome Obodo-Ovie, Mohammad Alyassin, Alan M. Smith and Gordon A. Morris
Macromol 2024, 4(2), 420-436; https://doi.org/10.3390/macromol4020024 - 8 Jun 2024
Abstract
►▼
Show Figures
Green peppers are massively produced all over the world; however, substantial quantities of peppers are wasted. Functional polysaccharides can be produced from pepper waste. A conventional acid extraction method was used to obtain pectin-like materials from green bell pepper (GBP). A 23
[...] Read more.
Green peppers are massively produced all over the world; however, substantial quantities of peppers are wasted. Functional polysaccharides can be produced from pepper waste. A conventional acid extraction method was used to obtain pectin-like materials from green bell pepper (GBP). A 23 experimental design (two-level factorials with three factors: temperature, pH, and time) was used to study the relationship between the extraction conditions and the measured physicochemical properties. The extracted polysaccharides were further analysed regarding their physicochemical and functional properties. The yields were in the range of (11.6–20.7%) and the highest yield value was extracted at pH 1. The polysaccharides were classified as “pectin-like”, as the galacturonic acid content was lower than 65%. Glucose and galactose were the major neutral sugars, and their relative amounts were dependent on the extraction conditions. The degree of esterification (DE) of the pectin-like extracts was greater than 50% and they were therefore classified as high methoxyl regardless of the extraction conditions. Also, important levels of phenolic materials (32.3–52.9 mg GAE/g) and proteins (1.5–5.4%) were present in the extract and their amounts varied depending on the extraction conditions. The green bell pepper polysaccharides demonstrated antioxidant and emulsifying activities and could also be used adequately to stabilise oil/water emulsion systems. This finding shows that green bell pepper could be used as an alternative source of antioxidants and an emulsifier/stabilising agent, and furthermore, the extraction conditions could be fine-tunned to produce polysaccharides with the desired quality depending on their application.
Full article
Graphical abstract
Open AccessReview
Recyclability Perspectives of the Most Diffused Biobased and Biodegradable Plastic Materials
by
Maria-Beatrice Coltelli, Vito Gigante, Laura Aliotta and Andrea Lazzeri
Macromol 2024, 4(2), 401-419; https://doi.org/10.3390/macromol4020023 - 7 Jun 2024
Abstract
The present chapter focuses on the recyclability of both renewable and biodegradable plastics, considering the recovery of matter (mechanical or chemical recycling) from the polymeric materials currently most diffused on the market. Biobased and compostable plastics are carbon neutral; thus, they do not
[...] Read more.
The present chapter focuses on the recyclability of both renewable and biodegradable plastics, considering the recovery of matter (mechanical or chemical recycling) from the polymeric materials currently most diffused on the market. Biobased and compostable plastics are carbon neutral; thus, they do not contribute significantly to greenhouse gas (GHG) emissions. Nevertheless, recycling can be beneficial because it allows a prolongation of the material life cycle so that carbon is stored for a longer time up to the final composting. The chemical or mechanical recycling option is linked both to the possibility of reprocessing bioplastics without detrimental loss of properties as well as to the capability of selecting homogenous fractions of bioplastics after waste collection. Moreover, the different structural features of biodegradable bioplastics have resulted in different chemical recycling opportunities and also in different behaviors during the reprocessing operations necessary for recycling. All these aspects are discussed systematically in this review, considering biodegradable bioplastics, their blends and composites with natural fibers.
Full article
(This article belongs to the Special Issue Sustainable Processes to Multifunctional Bioplastics and Biocomposites)
►▼
Show Figures
Figure 1
Open AccessArticle
Quantitative Structure–Activity Relationship Models for the Angiotensin-Converting Enzyme Inhibitory Activities of Short-Chain Peptides of Goat Milk Using Quasi-SMILES
by
Alla P. Toropova, Andrey A. Toropov, Alessandra Roncaglioni and Emilio Benfenati
Macromol 2024, 4(2), 387-400; https://doi.org/10.3390/macromol4020022 - 4 Jun 2024
Abstract
►▼
Show Figures
The inhibitory activity of peptides on angiotensin-converting enzyme (ACE) is a measure of their antihypertensive potential. Quantitative structure–activity relationship (QSAR) models obtained based on the analysis of sequences of amino acids are suggested. The average determination coefficient for the active training sets is
[...] Read more.
The inhibitory activity of peptides on angiotensin-converting enzyme (ACE) is a measure of their antihypertensive potential. Quantitative structure–activity relationship (QSAR) models obtained based on the analysis of sequences of amino acids are suggested. The average determination coefficient for the active training sets is 0.36 ± 0.07. The average determination coefficient for validation sets is 0.79 ± 0.02. The paradoxical situation is caused by applying the vector of ideality of correlation, which improves the statistical quality of a model for the calibration and validation sets but is detrimental to the statistical quality of models for the training sets.
Full article
Figure 1
Open AccessArticle
Autoclaving Achieves pH-Neutralization, Hydrogelation, and Sterilization of Chitosan Hydrogels in One Step
by
Yusuke Yamashita, Yoshihiro Ohzuno, Masahiro Yoshida and Takayuki Takei
Macromol 2024, 4(2), 376-386; https://doi.org/10.3390/macromol4020021 - 24 May 2024
Abstract
►▼
Show Figures
Conventionally, chitosan hydrogels are acidic and contain toxic chemicals because chitosan is soluble only in acidic solvents and requires toxic additives such as chemical crosslinkers and polymerization agents to fabricate chitosan hydrogels. These properties prevent chitosan hydrogels from being used for medical applications.
[...] Read more.
Conventionally, chitosan hydrogels are acidic and contain toxic chemicals because chitosan is soluble only in acidic solvents and requires toxic additives such as chemical crosslinkers and polymerization agents to fabricate chitosan hydrogels. These properties prevent chitosan hydrogels from being used for medical applications. In this study, chitosan hydrogels were prepared by a simple and versatile process using urea hydrolysis by autoclaving (steam sterilization, 121 °C, 20 min). When autoclaved, urea hydrolyzes in an acidic chitosan aqueous solution, and ammonia is produced, which increases the pH of the solution, and chitosan becomes insoluble, leading to the formation of a chitosan hydrogel. The pH and osmotic concentration of chitosan hydrogels could be adjusted to be suitable for physiological conditions (pH: 7.0–7.5, and osmotic concentration: 276–329 mOsm/L) by changing the amount of urea added to chitosan solutions (chitosan: 2.5% (w/v), urea: 0.75–1.0% (w/v), pH: 5.5). The hydrogels had extremely low cytotoxicity without the washing process. In addition, not only pure chitosan hydrogels, but also chitosan derivative hydrogels were prepared using this method. The autoclaving technique for preparing low-toxic and wash-free sterilized chitosan hydrogels in a single step is practical for medical applications.
Full article
Graphical abstract
Open AccessArticle
Effect of Tacticity on London Dispersive Surface Energy, Polar Free Energy and Lewis Acid-Base Surface Energies of Poly Methyl Methacrylate by Inverse Gas Chromatography
by
Tayssir Hamieh
Macromol 2024, 4(2), 356-375; https://doi.org/10.3390/macromol4020020 - 19 May 2024
Abstract
►▼
Show Figures
This research was devoted to study the effect of the tacticity on the surface physicochemical properties of PMMA. (1) Background: The determination of the surface free energy of polymers is generally carried out by inverse gas chromatography (IGC) at infinite dilution. The dispersive,
[...] Read more.
This research was devoted to study the effect of the tacticity on the surface physicochemical properties of PMMA. (1) Background: The determination of the surface free energy of polymers is generally carried out by inverse gas chromatography (IGC) at infinite dilution. The dispersive, polar and surface acid-base properties of PMMA at different tacticities were obtained via IGC technique with the help of the net retention time and volume of adsorbed. (2) Methods: The London dispersion equation was used to quantify the polar free energy of adsorption, while the London dispersive surface energy of PMMAs was determined using the thermal model. (3) Results: The results showed non-linear variations of of atactic, isotactic, and syndiotactic PMMAs with three maxima characterizing the three transition temperatures of PMMAs. The obtained values of the enthalpic and entropic Lewis’s acid-base parameters showed that the basicity of the atactic PMMA was about four times larger than its acidity. (4) Conclusions: A large difference in the behavior of the various PMMAs was proven in the different values of the polar acid and base surface energies of the three PMMAs with an important effect of the tacticity of PMMA on its acid-base surface energies.
Full article
Graphical abstract
Open AccessReview
Microneedles’ Device: Design, Fabrication, and Applications
by
Cristiana Oliveira, José A. Teixeira, Nelson Oliveira, Sónia Ferreira and Cláudia M. Botelho
Macromol 2024, 4(2), 320-355; https://doi.org/10.3390/macromol4020019 - 15 May 2024
Cited by 1
Abstract
►▼
Show Figures
The delivery of therapeutical molecules through the skin, particularly to its deeper layers, is impaired due to the stratum corneum layer, which acts as a barrier to foreign substances. Thus, for the past years, scientists have focused on the development of more efficient
[...] Read more.
The delivery of therapeutical molecules through the skin, particularly to its deeper layers, is impaired due to the stratum corneum layer, which acts as a barrier to foreign substances. Thus, for the past years, scientists have focused on the development of more efficient methods to deliver molecules to skin distinct layers. Microneedles, as a new class of biomedical devices, consist of an array of microscale needles. This particular biomedical device has been drawing attention due to its ability to breach the stratum corneum, forming micro-conduits to facilitate the passage of therapeutical molecules. The microneedle device has several advantages over conventional methods, such as better medication adherence, easiness, and painless self-administration. Moreover, it is possible to deliver the molecules swiftly or over time. Microneedles can vary in shape, size, and composition. The design process of a microneedle device must take into account several factors, like the location delivery, the material, and the manufacturing process. Microneedles have been used in a large number of fields from drug and vaccine application to cosmetics, therapy, diagnoses, tissue engineering, sample extraction, cancer research, and wound healing, among others.
Full article
Graphical abstract
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Polymers, Nanomaterials, Molecules, Chemistry, Macromol
Conjugated Polymers: Preparation, Properties and Applications
Topic Editors: Carmine Coluccini, Paolo CoghiDeadline: 31 October 2024
Topic in
Macromol, Molecules, Nanomaterials, Pharmaceutics, Polymers
Advances in Controlled Release and Targeting of Drugs
Topic Editors: Carmine Coluccini, Paolo Coghi, Xingxing FanDeadline: 20 March 2025
Conferences
Special Issues
Special Issue in
Macromol
Sustainable Processes to Multifunctional Bioplastics and Biocomposites
Guest Editor: Valentina SessiniDeadline: 15 November 2024
Special Issue in
Macromol
Editorial Board Members’ Collection Series: Advances in Cellulose-Based Materials
Guest Editors: John H.T. Luong, Zhaobin QiuDeadline: 31 January 2025
Topical Collections
Topical Collection in
Macromol
Advances in Biodegradable Polymers
Collection Editor: Dimitrios Bikiaris