Symbiotic Culture of Bacteria and Yeast (SCOBY) in the Food Sector as a Source of Polysaccharides and Other Applications in the Food Sector
Abstract
1. Introduction
2. SCOBY
2.1. Origin of SCOBY
2.2. Chemical Characteristics
2.2.1. Chemistry
2.2.2. Physicochemical Properties
2.3. Microbial Dynamics
2.3.1. Role of Microorganisms in SCOBY and Utilization of Substrates
2.3.2. Metabolic Activity and Functional Products of SCOBY During Fermentation
2.4. Kombucha
3. Uses Focused on Aliments
3.1. Fruit-Based
3.2. Cereals
3.3. Beer
3.4. Dairy
4. Functionality and Benefits of SCOBY Polysaccharides
Health Benefits
5. Factors Affecting Polysaccharide Synthesis
5.1. Conditions in the Fermentation Process
5.2. Traditional Culture Medium
5.3. Alternative Culture Medium
5.4. Functional Improvements and Processing of SCOBY
- (A)
- Washing: This step involves removing the culture medium and all microorganisms with 3% NaOH for 90 min at 25 °C and 70 rpm.
- (B)
- Neutralization: Residues from the first step are removed, washed with water, and the pH is adjusted to 3 with acetic acid, for 30 min at 70 rpm. Finally, it is washed again with distilled water.
- (C)
- Bleaching: With 5% H2O2 for 1 h at 90 °C under stirring at 120 rpm. It is then washed and placed in an 8% NaOH solution for 30 min in an ultrasound bath.
- (D)
- Conditioning: It is washed and immersed in acetic acid with a pH of 3 for 30 min at 70 rpm. Finally, it is washed with plenty of water until the pH reaches 7.
- (i)
- Washing with abundant distilled water.
- (ii)
- Washing with 1.0 M NaOH for 1 h at room temperature.
- (iii)
- Treatment with citric acid at a concentration of 20% w/w, using Na2HPO4 as a catalyst, and employing 2.5 g of SCOBY per 100 mL of the aforementioned solution.
- (iv)
- Incubation of the treated material at 60 °C for 2 h.
- (v)
- Final washing with abundant distilled water, followed by drying at 50 °C.
5.5. Determination of the Molecular Weight and Rheological Properties of Bacterial Cellulose
5.6. SCOBY as an Inoculum Culture
6. Factors Influencing the Multiplication and Production of Polysaccharides
6.1. Carbon Source
6.2. Temperature
6.3. pH
6.4. Fermentation Time
6.5. Oxygen
6.6. Other
7. Alternative Uses
7.1. Medicine
7.2. Antimicrobial
7.3. Others
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yermagambetova, A.; Tazhibayeva, S.; Takhistov, P.; Tyussyupova, B.; Tapia-Hernández, J.A.; Musabekov, K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers 2024, 16, 2854. [Google Scholar] [CrossRef]
- Absharina, D.; Padri, M.; Veres, C.; Vágvölgyi, C. Bacterial Cellulose: Biofabrication to Applications in Sustainable Fashion and Vegan Leather. Fermentation 2025, 11, 23. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
- Laavanya, D.; Shirkole, S.; Balasubramanian, P. Current challenges, applications and future perspective of SCOBY cellulose of Kombucha fermentation. J. Clean. Prod. 2021, 295, 126454. [Google Scholar] [CrossRef]
- Chaudhary, E.; Rahi, D. Commercial Utilization of Microbial Polysaccharides: A Brief Global Perspective. Ann. Exp. Mol. Biol. 2024, 6, 000124. [Google Scholar] [CrossRef]
- Onsun, B.; Toprak, K.; Sanlier, N. Kombucha Tea: A Functional Beverage and All its Aspects. Curr. Nutr. Rep. 2025, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Ferreira de Miranda, J.; Fernandes Ruiz, L.; Borges Silva, C.; Matsue Uekane, T.; Alencar Silva, K.; Goncalves Martins Gonzalez, A.; Fernandes, F.F.; Lima, A.R. Kombucha: A review of substrates, regulations, composition, and biological properties. J. Food Sci. 2022, 87, 503–527. [Google Scholar] [CrossRef]
- Mahmoud, Y.A.G.; El-Naggar, M.E.; Abdel-Megeed, A.; El-Newehy, M.H. Recent advancements in microbial polysaccharides: Synthesis and applications. Polymers 2021, 13, 4136. [Google Scholar] [CrossRef]
- Gagliardi, T.R.; Nascimento, A.D.F.; Valencia, G.A. Kombucha Bacterial Cellulose: A Promising Biopolymer for Advanced Food and Nonfood Applications. Foods 2025, 14, 738. [Google Scholar] [CrossRef]
- Dufresne, C.; Farnworth, E. Tea, Kombucha, and health: A review. Food Res. Int. 2000, 33, 409–421. [Google Scholar] [CrossRef]
- Soares, M.G.; de Lima, M.; Schmidt, V.C. Technological aspects of kombucha, its applications and the symbiotic culture (SCOBY), and extraction of compounds of interest: A literature review. Trends Food Sci. Technol. 2021, 110, 539–550. [Google Scholar] [CrossRef]
- Kitwetcharoen, H.; Phung, L.T.; Klanrit, P.; Thanonkeo, S.; Tippayawat, P.; Yamada, M.; Thanonkeo, P. Kombucha Healthy Drink—Recent Advances in Production, Chemical Composition and Health Benefits. Fermentation 2023, 9, 48. [Google Scholar] [CrossRef]
- Khosravi, S.; Safari, M.; Emam-Djomeh, Z.; Golmakani, M.T. Development of fermented date syrup using Kombucha starter culture. Food Process. Preserv. 2019, 43, e13872. [Google Scholar] [CrossRef]
- Kołodziejczyk, A.M.; Silarski, M.; Kaczmarek, M.; Harasymczuk, M.; Dziedzic-Kocurek, K.; Uhl, T. Shielding properties of the kombucha—Derived bacterial cellulose. Cellulose 2025, 32, 1017–1033. [Google Scholar] [CrossRef]
- Pandey, A.; Singh, M.K.; Singh, A. Bacterial cellulose: A smart biomaterial for biomedical applications. J. Mater. Res. 2024, 39, 2–18. [Google Scholar] [CrossRef]
- Nayak, R.; Cleveland, D.; Tran, G.; Joseph, F. Potential of bacterial cellulose for sustainable fashion and textile applications: A review. J. Mater. Sci. 2024, 59, 6685–6710. [Google Scholar] [CrossRef]
- Vieira Cubas, A.L.; Provin, A.P.; Aguilar Dutra, A.R.; Mouro, C.; Gouveia, I.C. Advances in the Production of Biomaterials through Kombucha Using Food Waste: Concepts, Challenges, and Potential. Polymers 2023, 15, 1701. [Google Scholar] [CrossRef]
- Morales, D.; Gutiérrez-Pensado, R.; Isabel Bravo, F.; Muguerza, B. Novel kombucha beverages with antioxidant activity based on fruits as alternative substrates. LWT 2023, 189, 115482. [Google Scholar] [CrossRef]
- Harrison, K.; Curtin, C. Microbial Composition of SCOBY Starter Cultures Used by Commercial Kombucha Brewers in North America. Microorganisms 2021, 9, 1060. [Google Scholar] [CrossRef]
- Kruk, M.; Trzaskowska, M.; Scibisz, I.; Pokorski, P. Application of the “SCOBY” and Kombucha Tea for the Production of Fermented Milk Drinks. Microorganisms 2021, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.; Sousa, P.; Wurlitzer, N. Alternative raw materials in kombucha production. Int. J. Gastron. Food Sci. 2022, 30, 100594. [Google Scholar] [CrossRef]
- Ofer, N.; Alistar, M. Felt Experiences with Kombucha SCOBY: Exploring First-person Perspective with Living Matter. In Proceedings of the Conference on Human Factors in Computing Systems (CHI’23), Hamburg, Germany, 23–28 April 2023. [Google Scholar] [CrossRef]
- Sigiro, L.M.; Maksum, A.; Donanta, D. Utilization of Cellulose Symbiotic Culture of Bacteria and Yeast (SCOBY) with Sweet Tea Media as Methylene Blue and Brilliant Green Biosorbent Material. J. Mater. Explor. Find. 2023, 2, 10–16. [Google Scholar] [CrossRef]
- Charoenrak, S.; Charumanee, S.; Sirisa-Ard, P.; Bovonsombut, S.; Kumdhitiahutsawakul, L.; Kiatkarun, S.; Pathom-Aree, W.; Chitov, T.; Bovonsombut, S. Nanobacterial Cellulose from Kombucha Fermentation as a Potential Protective Carrier of Lactobacillus plantarum under Simulated Gastrointestinal Tract Conditions. Polymers 2023, 15, 1356. [Google Scholar] [CrossRef]
- Digel, I.; Akimbekov, N.; Rogachev, E.; Pogorelova, N. Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: Biosynthesis and structural properties. Cellulose 2023, 30, 11439–11453. [Google Scholar] [CrossRef]
- Morales, D. Biological activities of kombucha beverages: The need of clinical evidence. Trends Food Sci. Technol. 2020, 105, 323–333. [Google Scholar] [CrossRef]
- Kluz, M.I.; Pietrzyk, K.; Pastuszczak, M.; Kacaniova, M.; Kita, A.; Kapusta, I.; Zagula, G.; Zagrobelna, E.; Strús, K.; Marciniak-Lukasiak, K.; et al. Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars. Foods 2022, 11, 1523. [Google Scholar] [CrossRef]
- Bryszewska, M.A.; Tabandeh, E.; Jędrasik, J.; Czarnecka, M.; Dzierżanowska, J.; Ludwicka, K. SCOBY Cellulose Modified with Apple Powder—Biomaterial with Functional Characteristics. Int. J. Mol. Sci. 2023, 24, 1005. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, X.; Mu, Y.; Zhao, M.; Liu, Y.; Yi, H.; Zhang, L.; Zhang, Z. Characterization of SCOBY-fermented kombucha from different regions and its effect on improving blood glucose. Food Biosci. 2024, 61, 104946. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P.D.; Souchard, J.; Taillandier, P.; Beaufort, S. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int. J. Food Microbiol. 2020, 333, 108778. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Morales, D. Chemical and Aromatic Changes during Fermentation of Kombucha Beverages Produced Using Strawberry Tree (Arbutus unedo) Fruits. Fermentation 2023, 9, 326. [Google Scholar] [CrossRef]
- Leal, J.M.; Suárez, L.V.; Jayabalan, R.; Oros, H.; Escalante-Aburto, A. A review on health benefits of kombucha nutritional compounds and metabolites. J. Food 2017, 16, 390–399. [Google Scholar] [CrossRef]
- Arıkan, M.; Mitchell, A.L.; Finn, R.D.; Gürel, F. Microbial composition of Kombucha determined using amplicon sequencing and shotgun metagenomics. J. Food Sci. 2020, 85, 455–464. [Google Scholar] [CrossRef]
- Adzni Sharifudin, S.; Yong Ho, W.; Keong Yeap, S.; Abdullah, R.; Peng Koh, S. Fermentation and characterisation of potential kombucha cultures on papaya-based substrates. LWT 2021, 151, 112060. [Google Scholar] [CrossRef]
- Su, J.; Tan, Q.; Tang, Q.; Tong, Z.; Yang, M. Research progress on alternative kombucha substrate transformation and the resulting active components. Front. Microbiol. 2023, 14, 1254014. [Google Scholar] [CrossRef]
- Hamed, D.A.; Maghrawy, H.H.; Abdel, H. Biosynthesis of bacterial cellulose nanofibrils in black tea media by a symbiotic culture of bacteria and yeast isolated from commercial kombucha beverage. World J. Microbiol. Biotechnol. 2023, 39, 48. [Google Scholar] [CrossRef] [PubMed]
- Zailani, N.S.; Adnan, A. Subtrates and metabolic pathways in symbiotic culture of bacteria and yeast (SCOBY) fermentation: A mini review. J. Teknol. 2022, 84, 155–165. [Google Scholar] [CrossRef]
- Cánovas, B.M.; Viguera, C.G.; Medina, S.; Perles, R.D. ‘Kombucha’-like Beverage of Broccoli By-Products: A New Dietary Source of Bioactive Sulforaphane. Beverages 2023, 9, 88. [Google Scholar] [CrossRef]
- Shi, Y.; Pu, D.; Zhou, X.; Zhang, Y. Recent progress in the study of taste characteristics and the nutrition and health properties of organic acids in foods. Foods 2022, 11, 3408. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Sarikaya Aydin, S.; Gültekin Subasi, B.; Erskine, E.; Gök, R.; Ibrahim, S.A.; Yilmaz, B.; Özogul, F.; Capanoglu, E. Additional advances related to the health benefits associated with kombucha consumption. Crit. Rev. Food Sci. Nutr. 2023, 64, 6102–6119. [Google Scholar] [CrossRef]
- Rezende Cardoso, R.; Oliveira Neto, R.; Thomaz dos Santos D’Almeida, C.; Pimenta Do Nascimento, T.; Girotto Pressete, C.; Azevedo, L.; Duarte Martino, S.H.; Claudio Cameron, L.; Ferreira Larraz, M.S.; Ribeiro de Barros, F.A. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef] [PubMed]
- Jafari, R.; Sadat Naghavi, N.; Khosravi-Darani, K.; Doudi, M.; Shahanipour, K. Kombucha microbial starter with enhanced production of antioxidant compounds and invertase. Biocatal. Agric. Biotechnol. 2020, 29, 101789. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kałdunska, J.; Kochman, J.; Janda, K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Priyadharshini, T.; Nageshwari, K.; Vimaladhasan, S.; Parag Prakash, S.; Balasubramanian, P. Machine learning prediction of SCOBY cellulose yield from Kombucha tea fermentation. Bioresour. Technol. Rep. 2022, 18, 101027. [Google Scholar] [CrossRef]
- EMR Expert Market Research. Perspectivas del Mercado Mundial del té de Kombucha. 2023. Available online: https://www.expertmarketresearch.com/reports/kombucha-tea-market (accessed on 28 May 2024).
- Anantachoke, N.; Duangrat, R.; Sutthiphatkul, T.; Ochaikul, D.; Mangmool, S. Kombucha Beverages Produced from Fruits, Vegetables, and Plants: A Review on Their Pharmacological Activities and Health Benefits. Foods 2023, 12, 1818. [Google Scholar] [CrossRef]
- Wang, B.; Rutherfurd-markwick, K.; Zhang, X.; Mutukumira, A.N. Kombucha: Production and Microbiological Research†. Foods 2025, 11, 1–18. [Google Scholar] [CrossRef]
- Nyhan, L.M.; Lynch, K.M.; Sahin, A.W. Advances in Kombucha Tea Fermentation: A Review. Appl. Microbiol. 2022, 2, 73–103. [Google Scholar] [CrossRef]
- Ayed, L.; Sana, M.; Hamdi, M. Microbiological, Biochemical, and Functional Aspects of Fermented Vegetable and Fruit Beverages. J. Chem. 2020, 2020, 5790432. [Google Scholar] [CrossRef]
- Koh, S.P.; Sew, Y.S.; Sabidi, S.; Maaraf, S.; Sharifudin, S.A.; Abdullah, R. SCOBY papaya beverages induce gut microbiome interaction as potential antiobesity in weight management control supplement. J. Food Sci. Technol. 2021, 6, 391–405. [Google Scholar] [CrossRef]
- Luvison, A.; Zago Dangui, A.; Priscila De Lima, K. Desenvolvimento de kombucha de alecrim (Rosmarinus officinalis L.) saborizado com manga (Mangifera indica L.). Rev. Bras. Tecnol. Agroindustrial 2023, 17, 4057–4079. [Google Scholar] [CrossRef]
- Álvarez Ron, F.; de la Rosa, M.J.; Hernández, I. Development of a no added sugar kombucha beverage based on germinated corn. Int. J. Gastron. Food Sci. 2021, 24, 100355. [Google Scholar] [CrossRef]
- Muñiz da Silva, M.; Cristina de Souza, A.; Roberto Faria, E.; Molina, G.; de Andrade Neves, N.; Aley Morais, H.; Ribeiro Dias, D.; Freitas Schwan, R.; Lacerda Ramos, C. Use of Kombucha SCOBY and Commercial Yeast as Inoculum for the Elaboration of Novel Beer. Fermentation 2022, 8, 748. [Google Scholar] [CrossRef]
- Iličić, M.; Milanović, S.; Kanurić, K.; Vukić, V.; Vukić, D.; Stojanović, B. Improving the texture and rheology of set and stirred kombucha fermented milk beverages by addition of transglutaminase. Mljekarstvo 2021, 71, 155–164. [Google Scholar] [CrossRef]
- Zhang, J.; Van Mullem, J.; Dias, D.R.; Schwan, R.F. The chemistry and sensory characteristics of new herbal tea-based kombuchas. J. Food Sci. 2021, 86, 740–748. [Google Scholar] [CrossRef]
- Sknepnek, A.; Tomić, S.; Miletić, D.; Lević, S.; Čolić, M.; Nedović, V.; Nikšić, M. Fermentation characteristics of novel Coriolus versicolor and Lentinus edodes kombucha beverages and immunomodulatory potential of their polysaccharide extracts. Food Chem. 2020, 342, 128344. [Google Scholar] [CrossRef]
- Vukié, D.; Pavlié, B.; Vukií, V.; Ilieié, M.; Kanurié, K.; Bjekié, M.; Zekovié, Z. Antioxidative capacity of fresh kombucha cheese fortified with sage herbal dust and its preparations. Food Sci. Technol. 2022, 59, 2274–2283. [Google Scholar] [CrossRef]
- Dartora, B.; Sant’Anna, V.; Hickert, L.R.; Fensterseifer, M.; Ayub Zachia, A.M.; Flôres, S.H.; Perez, K.J. Factors influencing kombucha production: Effects of tea composition, sugar, and SCOBY. Food Sci. Technol. 2023, 43, 2061. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Zarei, M.; Gholami, A.; Lai, C.W.; Chiang, W.H.; Omidifar, N.; Bahrani, S.; Mazraedoost, S. Recent Progress in Chemical Composition, Production, and Pharmaceutical Effects of Kombucha Beverage: A Complementary and Alternative Medicine. Evid.-Based Complement. Altern. Med. 2020, 2020, 4397543. [Google Scholar] [CrossRef]
- Kamiński, K.; Jarosz, M.; Grudzień, J.; Pawlik, J.; Zastawnik, F.; Pandyra, P.; Kołodziejczyk, A.M. Hydrogel bacterial cellulose: A path to improved materials for new eco-friendly textiles. Cellulose 2020, 27, 5353–5365. [Google Scholar] [CrossRef]
- Ojo, A.O.; Smidt Ode, S. Microbial Composition, Bioactive Compounds, Potential Benefits and Risks Associated with Kombucha: A Concise Review. Fermentation 2023, 9, 472. [Google Scholar] [CrossRef]
- Bishop, P.; Pitts, E.R.; Budner, D.; Thompson-witrick, K.A. Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chem. Adv. 2022, 1, 100025. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, M.; Li, Z.; Guan, S.; Cai, B.; Li, Q.; Rong, S. Composition and biological activity of rose and jujube kernel after fermentation with kombucha SCOBY. J. Food Process. Preserv. 2020, 44, e14758. [Google Scholar] [CrossRef]
- Wanderley, B.R.; Lima, M.E.; Oliveira, A.K.; Sartori, G.V.; Stroschein, M.R.; Amboni, R.D.; Fritzen-Freire, C.B.; Aquino, A.C. Influence of the addition of strawberry guava (Psidium cattleianum) pulp on the content of bioactive compounds in kombuchas with yerba mate (Ilex paraguariensis). Food Sci. Technol. 2023, 43, e00063. [Google Scholar] [CrossRef]
- Lazzaroli, C.; Sordini, B.; Daidone, L.; Veneziani, G.; Esposto, S.; Urbani, S.; Selvaggini, R.; Servili, M.; Taticchi, A. Recovery and valorization of food industry by-products through the application of Olea europaea L. leaves in kombucha tea manufacturing. Food Biosci. 2023, 53, 102551. [Google Scholar] [CrossRef]
- van Wyk, N.; Binder, J.; Ludszuweit, M.; Köhler, S.; Brezina, S.; Semmler, H.; Pretorius, I.S.; Rauhut, D.; Senz, M.; von Wallbrunn, C. The Influence of Pichia kluyveri Addition on the Aroma Profile of a Kombucha Tea Fermentation. Foods 2023, 12, 1938. [Google Scholar] [CrossRef] [PubMed]
- Yıkmış, S.; Tuğgüm, S. Evaluation of Microbiological, Physicochemical and Sensorial Properties of Purple Basil Kombucha Beverage. Turk. J. Agric.—Food Sci. Technol. Ava 2019, 7, 1321–1327. [Google Scholar] [CrossRef]
- Tu, C.; Tang, S.; Azi, F.; Hu, W.; Dong, M. Use of kombucha consortium to transform soy whey into a novel functional beverage. J. Funct. Foods 2019, 52, 81–89. [Google Scholar] [CrossRef]
- Watawana, M.I.; Jayawardena, N.; Gunawardhana, C.B.; Waisundara, V.Y. Original article Enhancement of the antioxidant and starch hydrolase inhibitory activities of king coconut water (Cocos nucifera var. aurantiaca) by fermentation with kombucha ‘tea fungus’. Int. J. Food Sci. Technol. 2016, 51, 490–498. [Google Scholar] [CrossRef]
- Nikbakht, A.; van Zyl, E.M.; Larson, S.; Fenlon, S.; Coburn, J.M. Bacterial Cellulose Purification with Non-Conventional, Biodegradable Surfactants. Polysaccharides 2024, 5, 857–871. [Google Scholar] [CrossRef]
- Chong, A.Q.; Chin, N.L.; Talib, R.A.; Basha, R.K. Modelling pH Dynamics, SCOBY Biomass Formation, and Acetic Acid Production of Kombucha Fermentation Using Black, Green, and Oolong Teas. Processes 2024, 12, 1301. [Google Scholar] [CrossRef]
- Yu, H.; Lanot, A.; Mao, N. The relationship between molecular weight of bacterial cellulose and the viscosity of its copper (II) ethylenediamine solutions. Cellulose 2024, 31, 7973–7992. [Google Scholar] [CrossRef]
- Phung, L.T.; Kitwetcharoen, H.; Chamnipa, N.; Boonchot, N.; Thanonkeo, S.; Tippayawat, P.; Klanrit, P.; Yamada, M.; Thanonkeo, P. Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Sci. Rep. 2023, 13, 7859. [Google Scholar] [CrossRef]
- Zofia, N.Ł.; Aleksandra, Z.; Tomasz, B.; Martyna, Z.D.; Magdalena, Z.; Zofia, H.B.; Tomasz, W. Effect of Fermentation Time on Antioxidant and Anti-Ageing Properties of Green Coffe Kombucha Ferments. Molecules 2020, 25, 5394. [Google Scholar] [CrossRef]
- Tran, T.; Billet, K.; Torres-Cobos, B.; Vichi, S.; Verdier, F.; Martin, A.; Alexandre, H.; Grandvalet, C.; Tourdot-Maréchal, R. Use of a Minimal Microbial Consortium to Determine the Origin of Kombucha Flavor. Front. Microbiol. 2022, 13, 836617. [Google Scholar] [CrossRef]
- Czarnecki, B.A.; Chamberlain, K.M.; Loscher, I.M.; Swartz, E.R.; Black, L.M.; Oberholtzer, E.C.; Scalia, J.C.; Watson, B.A.; Shearer, L.E.; Richardson, J.N.; et al. Optimizing Oxygen Exposure during Kombucha Brewing Using Air-Permeable Silicone Bags. Fermentation 2024, 10, 371. [Google Scholar] [CrossRef]
- Andrade, D.K.; Wang, B.; Lima, E.M.; Shebeko, S.K.; Ermakov, A.M.; Khramova, V.N.; Ivanova, I.V.; Rocha, R.D.; Vaz-Velho, M.; Mutukumira, A.N.; et al. Kombucha: An Old Tradition into a New Concept of a Beneficial, Health-Promoting Beverage. Foods 2025, 14, 1547. [Google Scholar] [CrossRef] [PubMed]
- Alkan, G.; Konar Erol, N.M.; Yıkmış, S.; Er, H.; Öğüt, S.; Yinanç, A. Kombucha’s functional features and fermentation dynamics: A bibliometric assessment in sustainable food production. Front. Sustain. Foods Syst. 2025, 9, 1593348. [Google Scholar] [CrossRef]
- Young, J.S.; Palepu, R.R.; Macdonald, M.; Mcalpine, J.R.; Broadbent, J.R. Development of a symbiotic culture of bacteria and yeast (SCOBY) farm to manufacture artificial skin for front of neck airway access simulation. Anaesth. Intensive Care 2024, 52, 184–187. [Google Scholar] [CrossRef]
- Bağlan, İ.; Yanbakan, E.; Tuncel, T.; Koçak Sezgin, A.; Bozoğlan, E.; Berikten, D.; Kar, F. 3D printed kombucha biomaterial as a tissue scaffold and L929 cell cytotoxicity assay. J. Cell. Mol. Med. 2024, 28, e18316. [Google Scholar] [CrossRef]
- Lacerda, U.V.; Costa, C.V.P.; Cardoso, R.R.; D’Almeida, C.T.S.; Carmo, M.A.V.; Lima, A.D.; Cruz, L.S.; de Souza, A.B.; Fernandes, P.O.; Maltarollo, V.G.; et al. Antioxidant, Antiproliferative, Antibacterial, and Antimalarial Effects of Phenolic-Rich Green Tea Kombucha. Beverages 2025, 11, 7. [Google Scholar] [CrossRef]
- Hafiz Hamsan, M.; Abdul Halim, N.; Ngah Demon, S.Z.; Sa’aya Nasuha, N.S.; Zamani Kadir, M.F.; Zainal Abidin, Z.H.; Ahmad Poad, N.; Abu Kasim, N.F.; Mamat Razali, N.A.; BAziz, S.; et al. Multifunction Web-like Polymeric Network Bacterial Cellulose Derived from SCOBY as Both Electrodes and Electrolytes for Pliable and Low-Cost Supercapacitor. Polymers 2022, 14, 3196. [Google Scholar] [CrossRef]
- Bell, F.; Chow, D.; Choi, H.; Alistar, M. Scoby Breastplate: Sllowly Growing a Microbial Interface. Assoc. Comput. Mach. 2023, 1, 1–15. [Google Scholar] [CrossRef]
- Karimkhani, M.M.; Jamshidi, A.; Nasrollahzadeh, M.; Armin, M.; Jafari, S.M.; Zeinali, T. Fermentation of Rubus dolichocarpus juice using Lactobacillus gasseri and Lacticaseibacillus casei and protecting phenolic compounds by Stevia extract during cold storage. Sci. Rep. 2024, 14, 5711. [Google Scholar] [CrossRef] [PubMed]
Microorganisms | Genera | Species | Source |
---|---|---|---|
Bacteria | Gluconobacter | G. oxydans | [12,27] |
G. entanni | |||
G. xylus G. rhaeticus | |||
Gluconacetobacter | G. kombuchae G. saccharivorans G. europaeus | [27] | |
Acetobacter | A. xylinus A. aceti A. pasteurianus A. nitrogenifigens A. intermedius | [4,19,30] | |
Liquorilactobacillus | [21] | ||
Ligilactobacillus | [21] | ||
Lactobacillus | L. satsumensis L. nagelli L. kefiranofaciens | [21,31] | |
Oenococcus | O. oeni | [32] | |
Leuconostoc | L. mesenteroides | [27] | |
Yeast | Brettanomyces | B. anomalus B. bruxellensis | [33,34] |
Saccharomyces | S. cerevisiae S. ludwigii | [27] | |
Candida | C. vini C. stellata C. tropicalis | [18,21,27,35] | |
Pichia | P. membranaefaciens P. kluyveri | [4] | |
Saccharomycodes | S. ludwigii | [27] | |
Zygosaccharomyces | Z. bisporus Z. rouxii Z. bailii Z. parabailii Z. Kombuchaensis | [12] | |
Schizosaccharomyces | S. pombe | [27] | |
Torulasporal | T. delbruekii | [12] | |
Hanseniaspora | H. vineae H. valbyensis | [21,33] | |
Debaryomyces | [18] | ||
Kluyveromyces | K. marxianus | [27,31] | |
Kloeckera | K. apiculate | [27] |
SCOBY | Food Matrix | Conditions | Chemical and Phytochemical | Functionality | Source |
---|---|---|---|---|---|
A SCOBY from a local producer, second from the “Oh My Kefir!” brand, and the third prepared using an undisclosed procedure | Cherry (Prunus avium), plum (Prunus domestica), strawberry (Fragaria × ananassa), persimmon (Diospyros kaki), grape (Vitis vinifera), orange (Citrus × sinensis), pomegranate (Punica granatum). | Freeze-dried fruits, stored at -20 °C, tap water at 80 °C, 80 g/L powdered tea, 70 g/L sugar. Homogenization at 24.5 ± 0.5 °C. Pasteurization. Storage in the absence of light, for 21 days, at room temperature, pH 2.5–4.2. | Reduction in total carbohydrate content. Alcohol < 1.2%. | Antioxidant activity. Phenolic content. | [18] |
Local producer in Iran | Date syrup | Black tea, 1 L of regular water, 7% sucrose, 250 mL of syrup, 10% of the initial inoculum, SCOBY, fermentation at 30 °C for 15 days. | Increase in Brix degrees, respectively, decreasing the concentration of acetic acid. Gradual and significant reduction in pH from 5.3 to 3 over the course of 15 days. | Release of phenolic components, increased scavenging of free radicals in relation to the increase in Brix degrees. | [3] |
Apple powder | Static conditions in darkness, 3 weeks, room temperature. | The cellulose reached a thickness of 1–2 cm. | [28] | ||
Milk with lactose and lactose-free milk | 78% SCOBY, 10% kombucha tea, 8% milk, homogenized and pasteurized at 90 °C for 5 min. 2.5% and 5% were added to dairy beverages, fermentation at 42 °C for 8 h. | Reduction in sugar content by 30%. | Active microflora content and organic acids. | [53] | |
SCOBY obtained from the Microbial Physiology Laboratory at the Federal University of Lavras (Brazil). | Camellia sinensis tea | Under sterile conditions, 50 g of sucrose and 2 g of tea were added to 1 L of water, with 100 mL of Kombucha, at approximately 26 °C for 25 days. For the second inoculum, 2.5 g of yeast Saccharomyces cerevisiae, 250 mL of water, 12 g of SCOBY, and 10 mL of the first inoculum were fermented at room temperature for 10 days. | Decrease in pH from 5.5 to 4 as the final value. Reduction in density due to efficient sugar consumption. Presence of ethanol up to 48 h, increasing at 168 h. | No significant differences in total polyphenol content were observed, with similar results for antioxidant activity, a behavior attributed to the release of different enzymes. | [53] |
Commercial SCOBY | Rosemary tea and mango pulp | 2.5 g of SCOBY, 5–10% rosemary tea, 5% sucrose, 5–10% starter liquid, 5% mango pulp, fermentation at 26–30 °C for 8 days. | Reduction in pH, reduction in sugar content for unflavored kombucha treatments, those with flavoring showed a slower reduction in sucrose over a longer period, alcohol content below 0.5%. | Reduction in antioxidant activity, increase in phenolic and tannin content. | [51] |
SCOBY acquired from Prairie Dairy Co., in Injang China. | Chinese date (Ziziphus jujuba) and rose (Rosa rugosa Thunb) core. | 10 g date powder, 2 g sucrose, 0.002 g ascorbic acid, 2 mL tea infusion, and 180 mL potable water, 20 mL inoculum, fermentation at 30 °C for 10 days. | Total phenolic content of 0.296 g/L, increase in flavonoids by 52.2%, increase in antioxidants by 77.8%, increase in reducing power by 8.7%. | [63] | |
10 g rose petals, 2 g sucrose, 0.002 g ascorbic acid, 2 mL tea infusion, and 180 mL potable water, 20 mL inoculum, fermentation at 30 °C for 10 days. | Increase in quercetin by 2.73%, increase in gallic acid by 15.9% | [63] | |||
10 g of rose petals and 10 g of Chinese date core, 2 g sucrose, 0.002 g ascorbic acid, 2 mL tea infusion, and 180 mL potable water, 20 mL inoculum, fermentation at 30 °C for 10 days. | Total phenolic content of 0.922 g/L, increase in flavonoids by 43.3%, increase in antioxidants by 72.2%, increase in reducing power by 21%. | ||||
SCOBY obtained from The Netherlands | Black tea, green tea, white tea, chrysanthemum tea, honeysuckle tea, and mint tea. | 10 g of each tea, 50 g of sucrose, 1 L of mineral water, 100 mL of inoculum, and the SCOBY. Fermentation at 25 °C for 13 days. | Reduction in sucrose, increase in fructose, glucose, ethanol, and acetic acid. | ||
SCOBY inoculum obtained from the University of Belgrade, Serbia | Mycelium of Coriolus versicolor and Lentinula edodes | 25 g of mushroom powder, 1 L of water, 70 g/L of sucrose, 10% (v/v) Kombucha broth inoculum, at 24 °C for 11 days. | Reduction in pH and increase in acetic bacteria, high organoleptic acceptance. | High content of polysaccharides, phenols, and flavonoids. | [56] |
SCOBY acquired in Toulouse, France | Black tea (Royal Ceylon, Lipton®) | 10 g of black tea, 70 g of sucrose, 1 L of water, 20 mL of which 10 mL was added to vinegar cider, 20 g/L of SCOBY, fermented at 25 °C for 15 days. | High sugar concentration and lower ethanol production. | Phenolic and antioxidant activity, highlighting anti-inflammatory potential against the enzyme 15-lipoxygenase. Inhibition of HCT-116 cell line. | [30] |
Green tea, yerba mate (Ilex paraguariensis), and guava pulp (Psidium cattleyanum) | 0.75% green tea, 0.25% yerba mate, 5% (w/v) sucrose, and 10% (v/v) inoculum, fermented at 20 °C for 9 days. After fermentation, 10% (v/v) guava pulp was added. | Decrease in pH, 10% reduction in total soluble solids, increase in acidity. Presence of ascorbic acid. | Phenolic content between 64 and 184 mg GAE/100 mL and presence of antioxidant compounds. | [64] | |
Homemade SCOBY | Organic black tea (Camellia sinensis L.) and Moraiolo olive leaves (Olea europaea L.) | Two solutions: organic tea at 6 g/L and olive leaves at 12 g/L, both infused with 53 g/L of sucrose, SCOBY, and 14% (v/v) inoculum, fermented at 25 °C for 12 days. | Decrease in pH to less than 4.2 along with the reduction in reducing sugars, increasing the acidity of the medium. | High release of phenolic content from 267 to 385 mg/L, with 72% being tannins, presence of antioxidants that scavenge free radicals, presence of catechin, alkaloids, increase in oleuropein and hydroxytyrosol. | [65] |
Black tea | 50 g/L of sucrose, 2 g/L of black tea, SCOBY, 1 × 107 cells/mL of Pichia kluyveri, at room temperature for 4 days. | Increase in acetic acid and fruity flavor due to the addition of P. kluyveri, without presence of ethanol above 0.5% v/v. | Production of phenolic components unrelated to the addition of P. kluyveri. | [66] | |
SCOBY obtained from Namik Kemal University in Tekirdag. | Tea made from purple basil and black tea. | 100% black tea/100% purple basil tea/75% basil tea and 25% black tea/50% basil tea and 50% black tea, 10% sucrose, 10% inoculum. | Decrease in pH across all treatments without significant differences among them, increase in total acidity of the samples. | High content of phenolic compounds and antioxidant activity. | [67] |
Local SCOBY | Black tea, soy serum | 1% black tea, 10% (w/v) sucrose, inoculum at a ratio of 1:10. Subsequently, 1:10 of the previous content was added to soy serum. Fermentation at 28 °C. | Decrease in pH, increase in titratable acidity, increase in reducing sugars content on the first day followed by a decline and stabilization by the third day. | Presence of four confirmed organic acids: gluconic, formic, acetic, and citric acids. Release of phenolic compounds, presence of isoflavones. Increase in glycitein and genistein compared to the unfermented substrate. | [68] |
Sage (Salvia officinalis L.) | Fresh cheese, 10% kombucha inoculum, coagulation enzyme 0.005%. Fermentation at 35 °C until pH reaches 4.5. | Acidification at 12 h, pH of 4.5. | Increase in polyphenols compared to raw milk, some of which exhibit antioxidant activity. | [57] | |
King Coconut (Cocos nucifera var. Aurantiaca) | 300 mL coconut water, 3% (w/v) SCOBY, fermentation for 2 days at 24 °C. | Decrease in pH on the first day, the liquid showed increased viscosity. | Significant increase in phenols and antioxidants. | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago-Santiago, R.M.; Michel, M.R.; Rodríguez-Herrera, R.; Aguilar-Zárate, P.; Ascacio-Valdés, J.A.; Flores-Gallegos, A.C. Symbiotic Culture of Bacteria and Yeast (SCOBY) in the Food Sector as a Source of Polysaccharides and Other Applications in the Food Sector. Polysaccharides 2025, 6, 97. https://doi.org/10.3390/polysaccharides6040097
Santiago-Santiago RM, Michel MR, Rodríguez-Herrera R, Aguilar-Zárate P, Ascacio-Valdés JA, Flores-Gallegos AC. Symbiotic Culture of Bacteria and Yeast (SCOBY) in the Food Sector as a Source of Polysaccharides and Other Applications in the Food Sector. Polysaccharides. 2025; 6(4):97. https://doi.org/10.3390/polysaccharides6040097
Chicago/Turabian StyleSantiago-Santiago, Rosa Maria, Mariela R. Michel, Raúl Rodríguez-Herrera, Pedro Aguilar-Zárate, Juan Alberto Ascacio-Valdés, and Adriana C. Flores-Gallegos. 2025. "Symbiotic Culture of Bacteria and Yeast (SCOBY) in the Food Sector as a Source of Polysaccharides and Other Applications in the Food Sector" Polysaccharides 6, no. 4: 97. https://doi.org/10.3390/polysaccharides6040097
APA StyleSantiago-Santiago, R. M., Michel, M. R., Rodríguez-Herrera, R., Aguilar-Zárate, P., Ascacio-Valdés, J. A., & Flores-Gallegos, A. C. (2025). Symbiotic Culture of Bacteria and Yeast (SCOBY) in the Food Sector as a Source of Polysaccharides and Other Applications in the Food Sector. Polysaccharides, 6(4), 97. https://doi.org/10.3390/polysaccharides6040097