Comparative Analysis of Polysaccharide and Nutritional Composition of Biological and Industrial-Scale Cultivated Pleurotus ostreatus Mushrooms for Functional Food and Nutraceutical Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Processing of Fruiting Bodies of Pleurotus ostreatus (PO)
- (a)
- POL: Biologically produced by a local small-scale producer (Penafiel, Porto, Portugal), using pine sawdust and alfalfa as substrates.
- (b)
- POC: Produced by an industrial-scale producer (category II) in Spain and commercially distributed by food retailers.
- (c)
- POA: Produced by an industrial-scale producer (category II) in Portugal and commercially distributed by food retailers.
2.3. Mushrooms Proximate Composition, Energy Calculation, and Water Activity (aw)
2.4. Carbohydrate Analysis
2.4.1. Total Monosaccharide Composition
2.4.2. (1→3)(1→6)-β-glucans and α-glucans Content
2.4.3. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.4.4. Free Sugars (FSs) Analysis
2.4.5. Carbohydrate Molecular Weight (MW) Distribution
2.5. Protein Characterization
2.5.1. Free Amino Acids (FAAs) and Total Amino Acids (TAAs) Analysis
2.5.2. Protein and Peptide Molecular Weight (MW) Distribution
2.6. Mineral Profile
2.7. Fatty Acids (FAs) Profile
Fatty Acids (FAs) Preparation
2.8. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Carbohydrate Composition
3.2.1. Monosaccharide Composition
3.2.2. Glucan Content
3.2.3. Structural Analysis by Nuclear Magnetic Resonance (NMR) Spectroscopy
3.2.4. Free Sugars (FSs) Profile
3.2.5. Molecular Weight (MW) Distribution of Carbohydrates
3.3. Protein Composition
3.3.1. Free Amino Acid (FAA) and Total Amino Acid (TAA) Profile
3.3.2. Molecular Weight (MW) Distribution of Protein and Peptides
3.4. Mineral Composition
3.5. Fatty Acid (FA) Composition
3.6. Characterization by Fourier Transform Infrared (FTIR) Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition 2017, 5, 35–46. [Google Scholar] [CrossRef]
- Araújo-Rodrigues, H.; Sousa, A.S.; Relvas, J.B.; Tavaria, F.K.; Pintado, M. An Overview on Mushroom Polysaccharides: Health-promoting Properties, Prebiotic and Gut Microbiota Modulation Effects and Structure-function Correlation. Carbohydr. Polym. 2024, 333, 121978. [Google Scholar] [CrossRef]
- You, S.W.; Hoskin, R.T.; Komarnytsky, S.; Moncada, M. Mushrooms as Functional and Nutritious Food Ingredients for Multiple Applications. ACS Food Sci. Technol. 2022, 2, 1184–1195. [Google Scholar] [CrossRef]
- Araújo-Rodrigues, H.; Sofia Sousa, A.; Pintado, M.E. Chapter 6. Macromolecules in Fungi with Pharmaceutical Potential. In Edible Fungi: Chemical Composition, Nutrition and Health Effects; Stojković, D., Barros, L., Eds.; Royal Society of Chemistry: Croydon, UK, 2022; pp. 232–272. [Google Scholar]
- Gong, P.; Wang, S.; Liu, M.; Chen, F.; Yang, W.; Chang, X.; Liu, N.; Zhao, Y.; Wang, J.; Chen, X. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydr. Res. 2020, 494, 108037. [Google Scholar] [CrossRef]
- Ghosh, K. A Review: Edible mushrooms as source of dietary fiber and its health effects. J. Phys. Sci. 2016, 21, 129–137. [Google Scholar]
- Bach, F.; Helm, C.V.; Bellettini, M.B.; Maciel, G.M.; Haminiuk, C.W.I. Edible mushrooms: A potential source of essential amino acids, glucans and minerals. Int. J. Food Sci. Technol. 2017, 52, 2382–2392. [Google Scholar] [CrossRef]
- Yadav, D.; Negi, P.S. Bioactive components of mushrooms: Processing effects and health benefits. Food Res. Int. 2021, 148, 110599. [Google Scholar] [CrossRef]
- Sousa, A.S.; Araújo-Rodrigues, H.; Pintado, M.E. The Health-promoting Potential of Edible Mushroom Proteins. Curr. Pharm. Des. 2023, 29, 804–823. [Google Scholar] [CrossRef]
- Araújo-Rodrigues, H.; Amorim, M.; Sousa, C.; Salsinha, A.S.; Marçal, S.; de Freitas, V.; Relvas, J.B.; Tavaria, F.K.; Pintado, M.E. Chemical Composition of Trametes versicolor, Hericium erinaceus, and Pleurotus ostreatus Mushroom Biomass: Deciphering Their Rich α-glucan Composition and Nutritional Value. J. Food Compos. Anal. 2025, 143, 107612. [Google Scholar] [CrossRef]
- Bijla, S.; Sharma, V.P. Status of mushroom production: Global and national scenario. Mushroom Res. 2023, 32, 91–98. [Google Scholar] [CrossRef]
- Gombafórum. The Status of European Mushroom Cultivation. Available online: https://www.gombaforum.hu/en/2025/economy/the-status-of-european-mushroom-cultivation/ (accessed on 8 March 2025).
- Ministry of Development and Technology, P. Poland Is the Largest Exporter of Mushrooms in Europe. Available online: https://www.trade.gov.pl/en/news/poland-is-the-largest-exporter-of-mushrooms-in-europe/ (accessed on 8 March 2025).
- IndustryARC. Portugal Mushrooms and Truffles Market (IMFBR 0308); IndustryARC: Hyderabad, India, 2025. [Google Scholar]
- IndustryARC. Spain Mushrooms and truffles Market (IMFBR 0115); IndustryARC: Hyderabad, India, 2025. [Google Scholar]
- Deepalakshmi, K.; Mirunalini, S. Pleurotus ostreatus: An oyster mushroom with nutritional and medicinal properties. J. Biochem. Technol. 2014, 5, 718–726. [Google Scholar]
- Enshasy, H.; Maftoun, P.; Johari, H.J.; Soltani, M.; Malik, R.; Othman, N. The Edible Mushroom Pleurotus spp.: I. Biodiversity and Nutritional Values. Int. J. Biotechnol. Wellness Ind. 2015, 4, 67–83. [Google Scholar] [CrossRef]
- Hoa, H.T.; Wang, C.-L.; Wang, C.-H. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef]
- Karataş, A. Effects of different agro-industrial waste as substrates on proximate composition, metals, and mineral contents of oyster mushroom (Pleurotus ostreatus). Int. J. Food Sci. Technol. 2022, 57, 1429–1439. [Google Scholar] [CrossRef]
- Sánchez, C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 2010, 85, 1321–1337. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Ma, F.; Zhang, X.; Zhang, J. Carbohydrate changes during growth and fruiting in Pleurotus ostreatus. Fungal Biol. 2016, 120, 852–861. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the AOAC (Volume 1); Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef]
- Rodrigues, D.M.F.; Freitas, A.C.; Rocha-Santos, T.A.P.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.P.; Duarte, A.C. Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. J. Food Sci. Technol. 2015, 52, 6927–6939. [Google Scholar] [CrossRef]
- Blakeney, A.B.; Harris, P.J.; Henry, R.J.; Stone, B.A. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 1983, 113, 291–299. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high performance liquid chromatography. Microchem. J. 2009, 93, 195–199. [Google Scholar] [CrossRef]
- Nakahara, D.; Nan, C.; Mori, K.; Hanayama, M.; Kikuchi, H.; Hirai, S.; Egashira, Y. Effect of mushroom polysaccharides from Pleurotus eryngii on obesity and gut microbiota in mice fed a high-fat diet. Eur. J. Nutr. 2020, 59, 3231–3244. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-Y.; Chung, L.-M.; Lee, S.-J.; Ahn, J.-K.; Kim, E.-H.; Kim, M.-J.; Kim, S.-L.; Moon, H.-I.; Ro, H.-M.; Kang, E.-Y.; et al. Comparison of free amino acid, carbohydrates concentrations in Korean edible and medicinal mushrooms. Food Chem. 2009, 113, 386–393. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Pereira, J.O.; Ferreira, C.; Faustino, M.; Durão, J.; Pintado, M.E.; Carvalho, A.P. Peptide-rich extracts from spent yeast waste streams as a source of bioactive compounds for the nutraceutical market. Innov. Food Sci. Emerg. Technol. 2022, 81, 103148. [Google Scholar] [CrossRef]
- Pripi-Nicolau, L.; De Revel, G.; Bertrand, A.; Maujean, A. Formation of Flavor Components by the Reaction of Amino Acid and Carbonyl Compounds in Mild Conditions. J. Agric. Food Chem. 2000, 48, 3761–3766. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, L.L.; Fontes, A.L.; Gomes, A.M.; Rodríguez-Alcalá, L.M. Considerations about the in situ derivatization and fractionation of EFA and NEFA in biological and food samples. MethodsX 2015, 2, 475–484. [Google Scholar] [CrossRef]
- Maltini, E.; Torreggiani, D.; Venir, E.; Bertolo, G. Water activity and the preservation of plant foods. Food Chem. 2003, 82, 79–86. [Google Scholar] [CrossRef]
- Mathlouthi, M. Water content, water activity, water structure and the stability of foodstuffs. Food Control 2001, 12, 409–417. [Google Scholar] [CrossRef]
- Khan, M.A.; Tania, M. Nutritional and Medicinal Importance of Pleurotus Mushrooms: An Overview. Food Rev. Int. 2012, 28, 313–329. [Google Scholar] [CrossRef]
- Majesty, D.; Ijeoma, E.; Winner, K.; Prince, O. Nutritional, Anti-nutritional and Biochemical Studies on the Oyster Mushroom, Pleurotus ostreatus. EC Nutr. 2018, 14, 36–59. [Google Scholar]
- Effiong, M.E.; Umeokwochi, C.P.; Afolabi, I.S.; Chinedu, S.N. Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Front. Nutr. 2023, 10, 1279208. [Google Scholar] [CrossRef]
- Chirinang, P.; Intarapichet, K.-O. Amino acids and antioxidant properties of the oyster mushrooms, Pleurotus ostreatus and Pleurotus sajor-caju. Sci. Asia 2009, 35, 326–331. [Google Scholar] [CrossRef]
- Ma, J.; Piao, X.; Mahfuz, S.; Long, S.; Wang, J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Anim. Nutr. 2022, 9, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, R.C.G.; Brugnari, T.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends Food Sci. Technol. 2016, 50, 103–117. [Google Scholar] [CrossRef]
- Mau, J.-L.; Lin, H.-C.; Chen, C.-C. Non-volatile components of several medicinal mushrooms. Food Res. Int. 2001, 34, 521–526. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C.F.R. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef]
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- Alkin, M.; Söğüt, E.; Seydim, A.C. Determination of bioactive properties of different edible mushrooms from Turkey. J. Food Meas. Charact. 2021, 15, 3608–3617. [Google Scholar] [CrossRef]
- Balan, V.; Zhu, W.; Krishnamoorthy, H.; Benhaddou, D.; Mowrer, J.; Husain, H.; Eskandari, A. Challenges and opportunities in producing high-quality edible mushrooms from lignocellulosic biomass in a small scale. Appl. Microbiol. Biotechnol. 2022, 106, 1355–1374. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chang, M.C.; Meng, J.L.; Feng, C.P.; Wang, Y. A Comparative Proteome Approach Reveals Metabolic Changes Associated with Flammulina velutipes Mycelia in Response to Cold and Light Stress. J. Agric. Food Chem. 2018, 66, 3716–3725. [Google Scholar] [CrossRef]
- Vetter, J. The Mushroom Glucans: Molecules of High Biological and Medicinal Importance. Foods 2023, 12, 1009. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, X.; Cui, L.; Ma, C. Extraction and bioactivities of the chemical composition from Pleurotus ostreatus: A review. J. Futur. Foods 2024, 4, 111–118. [Google Scholar] [CrossRef]
- Deveci, E.; Çayan, F.; Tel-Çayan, G.; Duru, M.E. Structural characterization and determination of biological activities for different polysaccharides extracted from tree mushroom species. J. Food Biochem. 2019, 43, e12965. [Google Scholar] [CrossRef]
- EFSA. Dietary Reference Values for the EU. Available online: https://multimedia.efsa.europa.eu/drvs/index.htm (accessed on 20 March 2025).
- Sari, M.; Prange, A.; Lelley, J.I.; Hambitzer, R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem. 2017, 216, 45–51. [Google Scholar] [CrossRef] [PubMed]
- McCleary, B.V.; Draga, A. Measurement of β-Glucan in mushrooms and mycelial products. J. AOAC Int. 2016, 99, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Rop, O.; Mlcek, J.; Jurikova, T. Beta-glucans in higher fungi and their health effects. Nutr. Rev. 2009, 67, 624–631. [Google Scholar] [CrossRef]
- Reddy Shetty, P.; Batchu, U.R.; Buddana, S.K.; Sambasiva Rao, K.R.S.; Penna, S. A comprehensive review on α-D-Glucans: Structural and functional diversity, derivatization and bioapplications. Carbohydr. Res. 2021, 503, 108297. [Google Scholar] [CrossRef]
- Muszyńska, B.; Grzywacz-Kisielewska, A.; Kała, K.; Gdula-Argasińska, J. Anti-inflammatory properties of edible mushrooms: A review. Food Chem. 2018, 243, 373–381. [Google Scholar] [CrossRef]
- Rodrigues Barbosa, J.; dos Santos Freitas, M.M.; da Silva Martins, L.H.; de Carvalho, R.N. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr. Polym. 2020, 229, 115550. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, C.; Li, C.; Huang, Q.; Fu, X. Physicochemical characterization, antioxidant and hypoglycemic activities of selenized polysaccharides from Sargassum pallidum. Int. J. Biol. Macromol. 2019, 132, 308–315. [Google Scholar] [CrossRef]
- Bell, V.; Silva, C.R.P.G.; Guina, J.; Fernandes, T.H. Mushrooms as future generation healthy foods. Front. Nutr. 2022, 9, 1050099. [Google Scholar] [CrossRef]
- Nidhi, D. Mushroom Polysaccharides as a Potential Prebiotics. Int. J. Health Sci. Res. 2018, 2, 115–126. [Google Scholar]
- Govindan, S.; Shanmugam, J.; Rajendran, G.; Ramani, P.; Unni, D.; Venkatachalam, B.; Janardhanan, A.; Aswini, K.; Rajendran, R.L.; Gangadaran, P.; et al. Antidiabetic activity of polysaccharide from Hypsizygus ulmarius in streptozotocin-nicotinamide induced diabetic rats. Bioact. Carbohydr. Diet. Fibre 2023, 29, 100350. [Google Scholar] [CrossRef]
- Niego, A.G.; Rapior, S.; Thongklang, N.; Raspé, O.; Jaidee, W.; Lumyong, S.; Hyde, K.D. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J. Fungi 2021, 7, 397. [Google Scholar] [CrossRef] [PubMed]
- Urbancikova, I.; Hudackova, D.; Majtan, J.; Rennerova, Z.; Banovcin, P.; Jesenak, M. Efficacy of Pleuran (β-Glucan from Pleurotus ostreatus) in the Management of Herpes Simplex Virus Type 1 Infection. Evidence-based Complement. Altern. Med. 2020, 2020, 8562309. [Google Scholar] [CrossRef] [PubMed]
- Jesenak, M.; Majtan, J.; Rennerova, Z.; Kyselovic, J.; Banovcin, P.; Hrubisko, M. Immunomodulatory effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int. Immunopharmacol. 2013, 15, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, W.; Zhu, Y.; Chen, Y.; Zhang, W.; Yu, P.; Mao, G.; Zhao, T.; Feng, W.; Yang, L.; et al. Structural elucidation and antioxidant activity a novel Se-polysaccharide from Se-enriched Grifola frondosa. Carbohydr. Polym. 2017, 161, 42–52. [Google Scholar] [CrossRef]
- Synytsya, A.; Novák, M. Structural diversity of fungal glucans. Carbohydr. Polym. 2013, 92, 792–809. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, L.; Kong, X.; Chen, L. Characterization and in vitro antioxidant activities of polysaccharides from Pleurotus ostreatus. Int. J. Biol. Macromol. 2012, 51, 259–265. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, P.; Shen, J.; Qian, Y.; Liu, M.; Ruan, Y.; Wang, X.; Zhang, S.; Ma, B. Physicochemical properties and bioactivities of original and Se-enriched polysaccharides with different molecular weights extracted from Pleurotus ostreatus. Int. J. Biol. Macromol. 2019, 141, 150–160. [Google Scholar] [CrossRef]
- Maity, K.K.; Patra, S.; Dey, B.; Bhunia, S.K.; Mandal, S.; Das, D.; Majumdar, D.K.; Maiti, S.; Maiti, T.K.; Islam, S.S. A heteropolysaccharide from aqueous extract of an edible mushroom, Pleurotus ostreatus cultivar: Structural and biological studies. Carbohydr. Res. 2011, 346, 366–372. [Google Scholar] [CrossRef]
- Gardeli, C.; Mela, N.; Dedousi, M.; Kandyliari, A.; Kaparakou, E.; Diamantopoulou, P.; Pappas, C.; Mallouchos, A. The Influence of Substrate and Strain on Protein Quality of Pleurotus ostreatus. Appl. Sci. 2024, 14, 4040. [Google Scholar] [CrossRef]
- Yin, C.; Fan, X.; Fan, Z.; Shi, D.; Yao, F.; Gao, H. Comparison of non-volatile and volatile flavor compounds in six Pleurotus mushrooms. J. Sci. Food Agric. 2019, 99, 1691–1699. [Google Scholar] [CrossRef]
- Wu, G. Functional Amino Acids in Growth, Reproduction, and Health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Cruz, M.; Losoya, C.; Nobre, C.; Loredo, A.; Rodríguez, R.; Contreras, J.; Belmares, R. Edible mushrooms as a novel protein source for functional foods. Food Funct. 2020, 11, 7400–7414. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, J.; Ng, T.B. A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochem. Biophys. Res. Commun. 2000, 275, 810–816. [Google Scholar] [CrossRef]
- González, A.; Nobre, C.; Simões, L.S.; Cruz, M.; Loredo, A.; Rodríguez-Jasso, R.M.; Contreras, J.; Texeira, J.; Belmares, R. Evaluation of functional and nutritional potential of a protein concentrate from Pleurotus ostreatus mushroom. Food Chem. 2021, 346, 128884. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, M.; Wu, S.; Liao, X.; Wang, J.; Wu, Q.; Zhuang, M.; Ding, Y. A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Res. Int. 2020, 134, 109230. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Wang, H.; Xie, H.; Zhang, Y.; Wang, M. Simultaneous extraction and purification of polysaccharides and proteins from Pleurotus ostreatus using an aqueous two-phase system. J. Food Sci. 2025, 90, e17674. [Google Scholar] [CrossRef]
- Li, H.; Gao, J.; Zhao, F.; Liu, X.; Ma, B. Bioactive Peptides from Edible Mushrooms—The Preparation, Mechanisms, Structure—Activity Relationships and Prospects. Foods 2023, 12, 2935. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Khan, A. Comparative Study of the Nutritional Composition of Oyster Mushrooms Cultivated in Bangladesh. Bangladesh J. Mushroom 2008, 2, 9–14. [Google Scholar]
- Oluwafemi, G.I.; Fagbemi, T.N.; Seidu, K.T.; Fagbemi, T.N. Chemical Composition, Functional Properties and Protein Fractionation of Edible Oyster Mushroom (Pleurotus ostreatus). Ann. Food Sci. Technol. 2016, 17, 218–223. [Google Scholar]
- Abugri, D.A.; McElhenney, W.H. Fatty Acid Profiling in Selected Cultivated Edible and Wild Medicinal Mushrooms in Southern United States. J. Exp. Food Chem. 2016, 2, 1000108. [Google Scholar] [CrossRef]
- Sande, D.; de Oliveira, G.P.; Moura, M.A.F.E.; Martins, B.d.A.; Lima, M.T.N.S.; Takahashi, J.A. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res. Int. 2019, 125, 108524. [Google Scholar] [CrossRef] [PubMed]
- Ogwok, P.; Muyinda, R.; Nakisozi, H.; Bamuwamye, M. Fatty acid profile of wild edible and cultivated mushrooms (Pleurotus ostreatus, Amanita spp. and Termitomyces microcarpus). Nutr. Food Sci. 2017, 47, 357–368. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, L.; Qu, H.; Zhou, H.; Yang, H.; Chen, H. Physicochemical characterization, adsorption function and prebiotic effect of chitin-glucan complex from mushroom Coprinus comatus. Int. J. Biol. Macromol. 2022, 206, 255–263. [Google Scholar] [CrossRef]
Chemical Parameter | POL | POC | POA |
---|---|---|---|
Water content 1 | 7.43 ± 0.02 a | 6.34 ± 0.00 c | 7.17 ± 0.05 b |
Carbohydrates 2,+ | 66.28 ± 0.74 b | 74.05 ± 0.89 a | 74.15 ± 0.29 a |
Protein 2 | 22.55 ± 1.09 a | 16.00 ± 1.36 b | 15.75 ± 0.08 b |
Ash 2 | 7.97 ± 0.26 a | 7.06 ± 0.10 b | 7.49 ± 0.06 b |
Fat 2 | 4.21 ± 0.14 a | 2.88 ± 0.00 b | 2.75 ± 0.35 b |
Energy 3,* | 345.63 ± 1.50 a | 344.35 ± 0.47 a | 339.04 ± 1.57 b |
aw | 0.337 ± 0.01 a | 0.334 ± 0.01 a | 0.335 ± 0.01 a |
Monomer | POL | POC | POA |
---|---|---|---|
Ara | 0.30 ± 0.00 a,b | 0.31 ± 0.04 a | 0.24 ± 0.02 b |
Xyl | 0.58 ± 0.06 a | 0.31 ± 0.01 b | 0.36 ± 0.07 b |
Man | 4.75 ± 0.12 a | 2.13 ± 0.19 b | 2.46 ± 0.41 b |
Gal | 1.23 ± 0.05 a | 0.98 ± 0.08 a | 0.93 ± 0.18 a |
Glc | 28.69 ± 7.07 b | 45.50 ± 5.27 a | 44.69 ± 2.49 a |
Total | 35.55 ± 5.11 b | 49.23 ± 5.57 a | 48.69 ± 2.87 a |
Parameter | POL | POC | POA |
---|---|---|---|
Total glucans * | 28.14 ± 1.77 b | 45.06 ± 1.06 a | 47.58 ± 0.75 a |
(1→3)(1→6)-β-glucans + | 20.51 ± 1.82 c | 29.26 ± 0.59 b | 34.30 ± 0.45 a |
α-glucans * and β-glucans with other linkages | 7.63 ± 0.60 c | 15.81 ± 1.06 a | 13.08 ± 0.37 b |
Ratio α-glucans/β-glucans | 0.37 | 0.54 | 0.38 |
Peak Area | Ratio α/β Anomeric Protons | ||||
---|---|---|---|---|---|
α1-H-1 | α 2-H-1 | Total α | β-H-1 | ||
POL | 1.00 | 0.96 | 1.96 | 0.91 | 2.16 |
POC | 1.00 | 0.60 | 1.60 | 0.98 | 1.64 |
POA | 1.00 | 1.65 | 2.65 | 1.06 | 2.51 |
Free Sugar | POL | POC | POA |
---|---|---|---|
Xyl | N.D. | 0.11 ± 0.04 b | 0.88 ± 0.15 a |
Fru | 0.26 ± 0.03 | N.D | N.D. |
Gal | N.D. | 0.78 ± 0.06 | N.D. |
Glc | 2.35 ± 0.06 a | 0.78 ± 0.10 c | 1.85 ± 0.18 b |
Suc | 0.51 ± 0.03 a | 0.13 ± 0.01 b | 0.18 ± 0.04 b |
Cel | 0.96 ± 0.15 a | N.D. | 0.55 ± 0.05 b |
Tre | 4.78 ± 0.15 c | 14.88 ± 0.49 a | 11.06 ± 0.83 b |
Total | 8.86 ± 0.32 c | 16.68 ± 0.68 a | 14.53 ± 1.23 b |
Aas | POL | POC | POA | |||
---|---|---|---|---|---|---|
FAAs | TAAs | FAAs | TAAs | FAAs | TAAs | |
Asp | 1.48 ± 0.13 a | 507.17 ± 56.16 a,2 | 0.30 ± 0.00 b | 403.10 ± 53.36 a,2 | 0.46 ± 0.05 b | 431.73 ± 57.27 a,2 |
Glu | 10.17 ± 0.52 a | 1425.80 ± 33.35 a,3 | 5.84 ± 0.46 c | 1242.10 ± 150.35 a,3 | 7.27 ± 0.38 b | 1327.35 ± 71.41 a,3 |
Cys | 0.58 ± 0.04 b | N.D. | 0.45 ± 0.05 c | N.D. | 0.70 ± 0.01 a | N.D. |
Asn | 6.06 ± 0.16 a | N.D. | 3.42 ± 0.42 b | N.D. | 2.98 ± 0.13 b | N.D. |
Ser | 8.85 ± 0.39 a | 582.26 ± 0.47 a | 3.75 ± 0.52 b | 418.89 ± 43.18 b | 3.08 ± 0.28 b | 533.08 ± 9.37 a |
Gly | 6.84 ± 0.31 a | 592.02 ± 7.93 a | 3.30 ± 0.45 b | 430.01 ± 53.22 b | 0.48 ± 0.01 c | 464.33 ± 39.76 b |
Thr * | 7.76 ± 0.40 a | 16.30 ± 0.32 a | 2.19 ± 0.28 c | 11.97 ± 0.43 c | 4.19 ± 0.28 b | 13.76 ± 0.57 b |
Arg | 9.59 ± 0.18 a | 393.32 ± 53.02 a | 4.38 ± 0.31 c | 354.02 ± 10.78 a | 5.75 ± 0.25 b | 410.47 ± 6.66 a |
Ala | 11.05 ± 0.62 b | 5382.72 ± 532.21 a | 8.15 ± 0.12 b | 665.30 ± 35.56 c | 15.01 ± 1.88 a | 1534.22 ± 29.18 b |
Tyr | 6.45 ± 0.38 a | 487.16 ± 61.72 a | 4.09 ± 0.23 b | 376.61 ± 21.59 a | 4.05 ± 0.09 b | 422.78 ± 48.64 a |
Val * | 0.22 ± 0.02 c | 262.74 ± 30.38 a | 0.35 ± 0.02 a | 225.35 ± 12.60 a | 0.27 ± 0.00 b | 257.80 ± 30.46 a |
Met * | 0.90 ± 0.08 b | 378.67 ± 27.96 a | 0.94 ± 0.09 a,b | 220.76 ± 11.14 b | 1.11 ± 0.02 a | 266.22 ± 23.10 b |
Trp * | 13.27 ± 0.45 a | N.D. | 4.76 ± 0.02 b | N.D. | 4.98 ± 0.21 b | N.D. |
Phe * | 5.64 ± 0.60 a | 473.92 ± 26.53 a | 5.46 ± 0.60 a | 352.31 ± 19.78 b | 4.07 ± 0.09 b | 362.56 ± 9.74 b |
Ile * | 4.36 ± 0.34 a | 446.04 ± 34.89 a | 2.45 ± 0.11 b | 337.78 ± 45.49 b | 2.52 ± 0.07 b | 292.17 ± 29.72 b |
Leu * | 6.29 ± 0.51 a | 719.39 ± 2.83 a | 3.93 ± 0.14 b | 659.39 ± 48.51 a | 4.28 ± 0.24 b | 668.05 ± 11.28 a |
Lys * | 15.96 ± 1.05 a | 288.01 ± 10.63 c | 5.44 ± 0.47 b | 573.01 ± 4.27 a | 6.92 ± 0.14 b | 405.96 ± 22.18 b |
Total + | 116.31 ± 0.69 a | 11,955.55 ± 881.16 a | 59.20 ± 0.52 c | 6270.63 ± 463.42 c | 68.11 ± 0.40 b | 7390.47 ± 109.21 b |
Mineral | POL | POC | POA | AI 3, AR 4, and SAI 5 |
---|---|---|---|---|
Zn 1 | 9.39 ± 0.67 a | 7.56 ± 0.17 b | 5.98 ± 0.10 c | 6.2–10 mg/day 3 |
P 1 | 678.00 ± 5.45 a | 633.84 ± 0.33 b | 564.20 ± 0.39 c | 550 mg/day 2 |
Mn 1 | 0.81 ± 0.03 a | 0.84 ± 0.11 a | 0.70 ± 0.00 a | 3 mg/day 2 |
Fe 1 | 8.63 ± 1.05 a | 5.73 ± 0.07 b | 4.23 ± 0.10 b | 6–7 mg/day 3 |
Mg 1 | 138.24 ± 2.78 a | 113.82 ± 0.38 b | 102.38 ± 0.47 c | 300–350 mg/day 2 |
Ca 1 | 10.72 ± 0.02 a | 0.93 ± 0.02 b | 1.04 ± 0.07 c | 750–950 mg/day 3 |
Cu 1 | 1.13 ± 0.03 a | 0.93 ± 0.01 b | 1.13 ± 0.01 a | 1.3–1.6 mg/day 2 |
Na 1 | 23.95 ± 0.36 a | 17.92 ± 2.81 b | 22.71 ± 0.04 a | 2 g/day 4 |
K 1 | 2787.25 ± 42.99 b | 2820.09 ± 12.06 b | 3073.90 ± 32.35 a | 3500 mg/day 2 |
Se 1 | 0.10 ± 0.03 a | 0.05 ± 0.00 b | 0.04 ± 0.01 b | 70 µg/day 2 |
Al 1 | 0.05 ± 0.00 b | 0.50 ± 0.05 a | 0.67 ± 0.13 a | - |
Co 1 | 0.06 ± 0.01 a | 0.04 ± 0.00 b | 0.03 ± 0.00 c | - |
Cd 2 | 16.88 ± 0.78 b | 19.73 ± 0.00 a | 11.12 ± 0.00 c | - |
Pb 2 | 19.30 ± 1.43 a | 6.02 ± 0.38 b | 5.58 ± 0.39 c | - |
Total 1, + | 3658.38 ± 36.92 b | 3602.27 ± 11.40 b | 3777.01 ± 30.79 a | - |
Chemical Parameter | POL | POC | POA |
---|---|---|---|
Caproic acid (C6:0) | N.D. | 1.25 ± 0.10 b | 2.12 ± 0.28 a |
Myristic acid (C14:0) | 2.66 ± 0.10 b | 3.36 ± 0.26 a | 2.57 ± 0.21 b |
Pentadecanoic acid (C15:0) | 54.83 ± 2.19 a | 28.46 ± 1.92 c | 33.19 ± 2.73 b |
Palmitic acid (C16:0) | 253.39 ± 9.57 a | 221.59 ± 16.24 b | 200.46 ± 16.90 b |
Palmitoleic acid (C16:1 c9) | 8.47 ± 0.28 a | 8.03 ± 1.19 a | 7.48 ± 1.53 a |
Heptadecanoic acid (C17:0) | 6.26 ± 0.17 a | 5.25 ± 0.16 b | 5.04 ± 0.57 b |
Stearic acid (C18:0) | 44.67 ± 1.62 a | 17.26 ± 1.23 c | 24.44 ± 1.48 b |
Elaidic acid (C18:1 t9) | 1.16 ± 0.12 a | 1.00 ± 0.04 a,b | 0.89 ± 0.17 b |
Oleic acid (C18:1 c9) | 305.40 ± 10.12 a | 215.87 ± 16.96 b | 218.19 ± 16.48 b |
cis-vaccenic acid (C18:1 c11) | 20.82 ± 0.52 a | 8.26 ± 1.41 b | 10.09 ± 0.97 b |
c18:1 c4/t6 | 2.09 ± 0.09 b | 3.75 ± 0.30 a | 4.19 ± 0.43 a |
Linoleic acid (LA) (C18:2 c9c12) | 1126.46 ± 35.37 a | 1140.47 ± 85.85 a | 819.95 ± 71.74 b |
Arachidic acid (C20:0) | 19.18 ± 1.94 a | 18.85 ± 2.84 a | 14.96 ± 1.88 a |
γ-linolenic acid (C18:3 c6c9c13) | 1.56 ± 0.16 a | 1.73 ± 0.24 a | 0.94 ± 0.08 b |
Paullinic acid (C20:1 c13) | 2.70 ± 0.27 a | N.D. | 1.10 ± 0.10 b |
α-Linolenic Acid (ALA) (C18:3 c9c12c15) | 2.18 ± 0.22 a | 2.19 ± 0.27 a | 1.53 ± 0.09 b |
C18:2 t9t11 | 1.36 ± 0.09 a | N.D. | 1.50 ± 0.15 a |
Heneicosanoic acid (C21) | 1.95 ± 0.36 a | 1.94 ± 0.30 a | 1.16 ± 0.13 b |
Behenic acid (C22:0) | 15.83 ± 2.10 a | 3.73 ± 0.50 b | 1.20 ± 0.19 c |
Dihomo-γ-linolenic acid (DGLA) (C20:3 c8c11c14) | 1.13 ± 0.05 b | 2.54 ± 0.50 a | 2.41 ± 0.24 a |
C20:3 c11c14c17 | 2.41 ± 0.16 b | 4.41 ± 0.14 a | 4.68 ± 0.68 a |
α-eleostearic acid (C18:3 c9t11t13) | 10.39 ± 0.63 b | 21.64 ± 2.20 a | 21.91 ± 2.00 a |
Eicosapentaenoic Acid (EPA) (C20:5 c5c8c11c14c17) | 10.98 ± 1.16 b | 20.14 ± 2.26 a | 20.80 ± 2.22 a |
Catalpic acid (C18:3 t9t11t13) | 1.55 ± 0.21 b | 2.14 ± 0.20 a | 2.22 ± 0.37 a |
Tricosanoic acid (C23) | 1.53 ± 0.18 b | 2.12 ± 0.24 a | 2.21 ± 0.07 a |
C22:2 c13c16 | 1.09 ± 0.14 a | N.D. | N.D. |
Lignoceric acid (C24:0) | 11.94 ± 1.16 a | 2.75 ± 0.49 b | 3.27 ± 0.32 b |
Nervonic acid (C24:1 c15) | N.D. | N.D. | N.D. |
Docosahexaenoic acid (DHA) (C22:6 c4c7c10c13c16c19) | 5.31 ± 0.75 a | 3.38 ± 0.50 b | 2.84 ± 0.24 b |
Total SFAs + | 410.28 ± 12.54 a | 304.62 ± 22.38 b | 289.48 ± 23.92 b |
Total MUFAs + | 340.65 ± 10.93 a | 236.91 ± 19.82 b | 241.94 ± 19.44 b |
Total PUFAs + | 1160.19 ± 35.72 a | 1195.88 ± 90.06 a | 876.61 ± 77.71 b |
Total FAs + | 1917.28 ± 60.25 a | 1742.12 ± 133.78 a | 1411.37 ± 120.45 b |
UFAs/SFAs | 3.66 ± 0.01 c | 4.70 ± 0.04 a | 3.86 ± 0.03 b |
MUFAs/SFAs | 0.83 ± 0.01 a | 0.78 ± 0.01 b | 0.84 ± 0.00 a |
PUFAs/SFAs | 2.83 ± 0.01 c | 3.93 ± 0.03 a | 3.03 ± 0.03 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo-Rodrigues, H.; Amorim, M.; de Freitas, V.; Relvas, J.B.; Tavaria, F.K.; Pintado, M. Comparative Analysis of Polysaccharide and Nutritional Composition of Biological and Industrial-Scale Cultivated Pleurotus ostreatus Mushrooms for Functional Food and Nutraceutical Applications. Polysaccharides 2025, 6, 62. https://doi.org/10.3390/polysaccharides6030062
Araújo-Rodrigues H, Amorim M, de Freitas V, Relvas JB, Tavaria FK, Pintado M. Comparative Analysis of Polysaccharide and Nutritional Composition of Biological and Industrial-Scale Cultivated Pleurotus ostreatus Mushrooms for Functional Food and Nutraceutical Applications. Polysaccharides. 2025; 6(3):62. https://doi.org/10.3390/polysaccharides6030062
Chicago/Turabian StyleAraújo-Rodrigues, Helena, Manuela Amorim, Victor de Freitas, João B. Relvas, Freni K. Tavaria, and Manuela Pintado. 2025. "Comparative Analysis of Polysaccharide and Nutritional Composition of Biological and Industrial-Scale Cultivated Pleurotus ostreatus Mushrooms for Functional Food and Nutraceutical Applications" Polysaccharides 6, no. 3: 62. https://doi.org/10.3390/polysaccharides6030062
APA StyleAraújo-Rodrigues, H., Amorim, M., de Freitas, V., Relvas, J. B., Tavaria, F. K., & Pintado, M. (2025). Comparative Analysis of Polysaccharide and Nutritional Composition of Biological and Industrial-Scale Cultivated Pleurotus ostreatus Mushrooms for Functional Food and Nutraceutical Applications. Polysaccharides, 6(3), 62. https://doi.org/10.3390/polysaccharides6030062