Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CS-NPs
2.3. Dynamic Light Scattering
2.4. Electrophoretic Light Scattering
2.5. Analytical Ultracentrifugation
2.6. Atomic Force Microscopy
2.7. Fluorescence Spectroscopy
2.8. Fourier Transform Infrared Spectroscopy
2.9. UV–Vis Spectroscopy
3. Results
3.1. Chemical Structure of the CS-NPs
3.2. Physicochemical Properties of the CS-NPs
3.3. Molecular Characteristics of the CS-NPs
3.4. Morphology of the CS-NPs
3.5. Internal Hydrophobicity of the CS-NPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan Nanoparticle Based Delivery Systems for Sustainable Agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Engineered Chitosan Based Nanomaterials: Bioactivities, Mechanisms and Perspectives in Plant Protection and Growth. Int. J. Biol. Macromol. 2018, 113, 494–506. [Google Scholar] [CrossRef]
- Chouhan, D.; Mandal, P. Applications of Chitosan and Chitosan Based Metallic Nanoparticles in Agrosciences-A Review. Int. J. Biol. Macromol. 2021, 166, 1554–1569. [Google Scholar] [CrossRef]
- Karamchandani, B.M.; Dalvi, S.G.; Bagayatkar, M.; Banat, I.M.; Satpute, S.K. Prospective Applications of Chitosan and Chitosan-Based Nanoparticles Formulations in Sustainable Agricultural Practices. Biocatal. Agric. Biotechnol. 2024, 58, 103210. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Vatankhah, M.; Hassanisaadi, M.; Varma, R.S. A Review of Chitosan Nanoparticles: Nature’s Gift for Transforming Agriculture through Smart and Effective Delivery Mechanisms. Int. J. Biol. Macromol. 2024, 260, 129522. [Google Scholar] [CrossRef]
- Bandara, S.; Du, H.; Carson, L.; Bradford, D.; Kommalapati, R. Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. Nanomaterials 2020, 10, 1903. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Pathak, R.; Punetha, V.D.; Punetha, M. Chitosan Nanocomposites as a Nano-Bio Tool in Phytopathogen Control. Carbohydr. Polym. 2024, 331, 121858. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, M.; Paramasivan, M. Chitosan Derivatives Act as a Bio-Stimulants in Plants: A Review. Int. J. Biol. Macromol. 2024, 271, 132720. [Google Scholar] [CrossRef] [PubMed]
- Lingait, D.; Rahagude, R.; Gaharwar, S.S.; Das, R.S.; Verma, M.G.; Srivastava, N.; Kumar, A.; Mandavgane, S. A Review on Versatile Applications of Biomaterial/Polycationic Chitosan: An Insight into the Structure-Property Relationship. Int. J. Biol. Macromol. 2024, 257, 128676. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.; González Auza, L.; Koberidze, D.; Rasche, S.; Fischer, R.; Bortesi, L. Conversion of Chitin to Defined Chitosan Oligomers: Current Status and Future Prospects. Mar. Drugs 2019, 17, 452. [Google Scholar] [CrossRef]
- Rahman, M.A.; Halfar, J. First Evidence of Chitin in Calcified Coralline Algae: New Insights into the Calcification Process of Clathromorphum Compactum. Sci. Rep. 2014, 4, 6162. [Google Scholar] [CrossRef]
- Mikušová, V.; Mikuš, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2021, 22, 9652. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental Chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef]
- Nasaj, M.; Chehelgerdi, M.; Asghari, B.; Ahmadieh-Yazdi, A.; Asgari, M.; Kabiri-Samani, S.; Sharifi, E.; Arabestani, M. Factors Influencing the Antimicrobial Mechanism of Chitosan Action and Its Derivatives: A Review. Int. J. Biol. Macromol. 2024, 277, 134321. [Google Scholar] [CrossRef]
- Mawazi, S.M.; Kumar, M.; Ahmad, N.; Ge, Y.; Mahmood, S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers 2024, 16, 1351. [Google Scholar] [CrossRef]
- Nandhini, R.; Rajeswari, E.; Harish, S.; Sivakumar, V.; Gangai Selvi, R.; Jaya Sundrasharmila, D. Role of Chitosan Nanoparticles in Sustainable Plant Disease Management. J. Nanoparticle Res. 2025, 27, 13. [Google Scholar] [CrossRef]
- Hoang, N.H.; Le Thanh, T.; Sangpueak, R.; Treekoon, J.; Saengchan, C.; Thepbandit, W.; Papathoti, N.K.; Kamkaew, A.; Buensanteai, N. Chitosan Nanoparticles-Based Ionic Gelation Method: A Promising Candidate for Plant Disease Management. Polymers 2022, 14, 662. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gao, C. Preparation and Properties of Ionically Cross-linked Chitosan Nanoparticles. Polym. Adv. Technol. 2009, 20, 613–619. [Google Scholar] [CrossRef]
- Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A. Chitosan Nanoparticles: Preparation, Size Evolution and Stability. Int. J. Pharm. 2013, 455, 219–228. [Google Scholar] [CrossRef]
- Kleine-Brueggeney, H.; Zorzi, G.K.; Fecker, T.; El Gueddari, N.E.; Moerschbacher, B.M.; Goycoolea, F.M. A Rational Approach towards the Design of Chitosan-Based Nanoparticles Obtained by Ionotropic Gelation. Colloids Surf. B 2015, 135, 99–108. [Google Scholar] [CrossRef]
- Lozano Chamizo, L.; Luengo Morato, Y.; Ovejero Paredes, K.; Contreras Caceres, R.; Filice, M.; Marciello, M. Ionotropic Gelation-Based Synthesis of Chitosan-Metal Hybrid Nanoparticles Showing Combined Antimicrobial and Tissue Regenerative Activities. Polymers 2021, 13, 3910. [Google Scholar] [CrossRef]
- Amin, M.K.; Boateng, J.S. Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery. Mar. Drugs 2022, 20, 156. [Google Scholar] [CrossRef] [PubMed]
- Alehosseini, E.; Shahiri Tabarestani, H.; Kharazmi, M.S.; Jafari, S.M. Physicochemical, Thermal, and Morphological Properties of Chitosan Nanoparticles Produced by Ionic Gelation. Foods 2022, 11, 3841. [Google Scholar] [CrossRef] [PubMed]
- Aelenei, N.; Popa, M.I.; Novac, O.; Lisa, G.; Balaita, L. Tannic Acid Incorporation in Chitosan-Based Microparticles and in Vitro Controlled Release. J. Mater. Sci. Mater. Med. 2009, 20, 1095–1102. [Google Scholar] [CrossRef]
- Li, N.; Yang, X.; Liu, W.; Xi, G.; Wang, M.; Liang, B.; Ma, Z.; Feng, Y.; Chen, H.; Shi, C. Tannic Acid Cross-linked Polysaccharide-Based Multifunctional Hemostatic Microparticles for the Regulation of Rapid Wound Healing. Macromol. Biosci. 2018, 18, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.A.; Walker, R.C.; Levit, S.L.; Tang, C. Single-Step Self-Assembly and Physical Crosslinking of PEGylated Chitosan Nanoparticles by Tannic Acid. Polymers 2019, 11, 749. [Google Scholar] [CrossRef]
- Lee, S.J.; Gwak, M.A.; Chathuranga, K.; Lee, J.S.; Koo, J.; Park, W.H. Multifunctional Chitosan/Tannic Acid Composite Films with Improved Anti-UV, Antioxidant, and Antimicrobial Properties for Active Food Packaging. Food Hydrocoll. 2023, 136, 108249. [Google Scholar] [CrossRef]
- Zhan, F.; Sheng, F.; Yan, X.; Zhu, Y.; Jin, W.; Li, J.; Li, B. Enhancement of Antioxidant and Antibacterial Properties for Tannin Acid/Chitosan/Tripolyphosphate Nanoparticles Filled Electrospinning Films: Surface Modification of Sliver Nanoparticles. Int. J. Biol. Macromol. 2017, 104, 813–820. [Google Scholar] [CrossRef]
- Leonida, M.D.; Benzecry, A.; Lozanovska, B.; Mahmoud, Z.; Reid, A.; Belbekhouche, S. Impact of Tannic Acid on Nisin Encapsulation in Chitosan Particles. Int. J. Biol. Macromol. 2023, 233, 123489. [Google Scholar] [CrossRef]
- Rashidipour, M.; Abbaszadeh, S.; Birjandi, M.; Pajouhi, N.; Ahmadi Somaghian, S.; Goudarzi, G.; Shahryarhesami, S.; Moradi Sarabi, M.; Babaeenezhad, E. Antimicrobial Activity and Cytotoxic and Epigenetic Effects of Tannic Acid-Loaded Chitosan Nanoparticles. Sci. Rep. 2024, 14, 30405. [Google Scholar] [CrossRef]
- Cadinoiu, A.N.; Rata, D.M.; Daraba, O.M.; Atanase, L.I.; Horhogea, C.E.; Chailan, J.F.; Popa, M.; Carauleanu, A. Metronidazole-Loaded Chitosan Nanoparticles with Antimicrobial Activity Against Clostridium Perfringens. Pharmaceutics 2025, 17, 294. [Google Scholar] [CrossRef]
- Shagholani, H.; Ghoreishi, S.M. Investigation of Tannic Acid Cross-Linked onto Magnetite Nanoparticles for Applying in Drug Delivery Systems. J. Drug Deliv. Sci. Technol. 2017, 39, 88–94. [Google Scholar] [CrossRef]
- Marzini Irranca, S.; García Schejtman, S.D.; Rosso, A.P.; Coronado, E.A.; Martinelli, M. Hybrid Nanogels by Direct Mixing of Chitosan, Tannic Acid and Magnetite Nanoparticles: Processes Involved in Their Formation and Potential Catalytic Properties. Soft Matter 2023, 19, 8378–8385. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yin, S.; Zhao, L.; Yang, W.; You, Y. Adsorption Properties of Methylene Blue and Cu(II) on Magnetically Oxidized Tannic Acid Cross-Linked Carboxymethyl Chitosan Gels. Int. J. Biol. Macromol. 2024, 278, 134709. [Google Scholar] [CrossRef]
- Yang, J.; Li, M.; Wang, Y.; Wu, H.; Zhen, T.; Xiong, L.; Sun, Q. Double Cross-Linked Chitosan Composite Films Developed with Oxidized Tannic Acid and Ferric Ions Exhibit High Strength and Excellent Water Resistance. Biomacromolecules 2019, 20, 801–812. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Zhang, X.; Fan, L.; Wang, F.; Zhou, J.; Zhang, H. Preparation and Characterization of Zein-Tannic Acid Nanoparticles/Chitosan Composite Films and Application in the Preservation of Sugar Oranges. Food Chem. 2024, 437, 137673. [Google Scholar] [CrossRef] [PubMed]
- Pecora, R. Dynamic Light Scattering; Springer: Berlin/Heidelberg, Germany, 1985; ISBN 978-1-4612-9459-7. [Google Scholar]
- Chu, B. Laser Light Scattering; Elsevier: Amsterdam, The Netherlands, 1991; ISBN 9780121745516. [Google Scholar]
- Hunter, R.J. Zeta Potential in Colloid Science; Elsevier: Amsterdam, The Netherlands, 1981; ISBN 9780123619617. [Google Scholar]
- Aziz, Z.; Behlke, J.; Bernardi, G.; Bourdillon, L.; Butler, P.J.G.; Carels, N.; Clay, O.; Colfen, H.; Correia, J.J.; Daugherty, M.A.; et al. Analytical Ultracentrifugation; The Royal Society of Chemistry: London, UK, 2005; ISBN 978-0-85404-547-1. [Google Scholar]
- Edwards, G.B.; Muthurajan, U.M.; Bowerman, S.; Luger, K. Analytical Ultracentrifugation (AUC): An Overview of the Application of Fluorescence and Absorbance AUC to the Study of Biological Macromolecules. Curr. Protoc. Mol. Biol. 2020, 133, e131. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grøndahl, L. Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules 2007, 8, 2533–2541. [Google Scholar] [CrossRef]
- Ricci, A.; Olejar, K.J.; Parpinello, G.P.; Kilmartin, P.A.; Versari, A. Application of Fourier Transform Infrared (FTIR) Spectroscopy in the Characterization of Tannins. Appl. Spectrosc. Rev. 2015, 50, 407–442. [Google Scholar] [CrossRef]
- Bensalah, N.; Chair, K.; Bedoui, A. Efficient Degradation of Tannic Acid in Water by UV/H2O2 Process. Sustain. Environ. Res. 2018, 28, 1–11. [Google Scholar] [CrossRef]
- Zhou, Y.; Tawiah, B.; Noor, N.; Zhang, Z.; Sun, J.; Yuen, R.K.K.; Fei, B. A Facile and Sustainable Approach for Simultaneously Flame Retarded, UV Protective and Reinforced Poly(Lactic Acid) Composites Using Fully Bio-Based Complexing Couples. Compos. Part B Eng. 2021, 215, 108833. [Google Scholar] [CrossRef]
- Anthonsen, M.; Varum, K.; Hermansson, A.; Smidsrod, O.; Brant, D. Aggregates in Acidic Solutions of Chitosans Detected by Static Laser Light Scattering. Carbohydr. Polym. 1994, 25, 13–23. [Google Scholar] [CrossRef]
- Amiji, M.M. Pyrene Fluorescence Study of Chitosan Self-Association in Aqueous Solution. Carbohydr. Polym. 1995, 26, 211–213. [Google Scholar] [CrossRef]
- Hu, Y.; Du, Y.; Yang, J.; Tang, Y.; Li, J.; Wang, X. Self-Aggregation and Antibacterial Activity of N-Acylated Chitosan. Polymer 2007, 48, 3098–3106. [Google Scholar] [CrossRef]
- Blagodatskikh, I.V.; Bezrodnykh, E.A.; Abramchuk, S.S.; Muranov, A.V.; Sinitsyna, O.V.; Khokhlov, A.R.; Tikhonov, V.E. Short Chain Chitosan Solutions: Self-Assembly and Aggregates Disruption Effects. J. Polym. Res. 2013, 20, 73. [Google Scholar] [CrossRef]
- Ho, K.W.; Ooi, C.W.; Mwangi, W.W.; Leong, W.F.; Tey, B.T.; Chan, E.-S. Comparison of Self-Aggregated Chitosan Particles Prepared with and without Ultrasonication Pretreatment as Pickering Emulsifier. Food Hydrocoll. 2016, 52, 827–837. [Google Scholar] [CrossRef]
- Harding, S.E.; Varum, K.M.; Stokke, B.T.B.T.; Smidsrod, O.; Vårum, K.M.; Stokke, B.T.B.T.; Smidsrød, O. Molecular Weight Determination of Polysaccharides. Adv. Carbohydr. Anal. 1991, 1, 63–144. [Google Scholar]
- Harding, S.E. Analysis of Polysaccharides by Ultracentrifugation. Size, Conformation and Interactions in Solution. In Polysaccharides I; Springer: Berlin/Heidelberg, Germany, 2005; Volume 186, pp. 211–254. [Google Scholar]
- Morris, G.A.; Castile, J.; Smith, A.; Adams, G.G.; Harding, S.E. Macromolecular Conformation of Chitosan in Dilute Solution: A New Global Hydrodynamic Approach. Carbohydr. Polym. 2009, 76, 616–621. [Google Scholar] [CrossRef]
- Masarudin, M.J.; Cutts, S.M.; Evison, B.J.; Phillips, D.R.; Pigram, P.J. Factors Determining the Stability, Size Distribution, and Cellular Accumulation of Small, Monodisperse Chitosan Nanoparticles as Candidate Vectors for Anticancer Drug Delivery: Application to the Passive Encapsulation of [14C]-Doxorubicin. Nanotechnol. Sci. Appl. 2015, 8, 67. [Google Scholar] [CrossRef]
- Kiilll, C.P.; Barud, H.d.S.; Santagneli, S.H.; Ribeiro, S.J.L.; Silva, A.M.; Tercjak, A.; Gutierrez, J.; Pironi, A.M.; Gremião, M.P.D. Synthesis and Factorial Design Applied to a Novel Chitosan/Sodium Polyphosphate Nanoparticles via Ionotropic Gelation as an RGD Delivery System. Carbohydr. Polym. 2017, 157, 1695–1702. [Google Scholar] [CrossRef]
- Huang, P.; Huang, C.; Ma, X.; Gao, C.; Sun, F.; Yang, N.; Nishinari, K. Effect of PH on the Mechanical, Interfacial, and Emulsification Properties of Chitosan Microgels. Food Hydrocoll. 2021, 121, 106972. [Google Scholar] [CrossRef]
- Des Bouillons-Gamboa, R.E.; Montes de Oca, G.; Baudrit, J.R.V.; Ríos Duarte, L.C.; Lopretti, M.; Rentería Urquiza, M.; Zúñiga-Umaña, J.M.; Barreiro, F.; Vázquez, P. Synthesis of Chitosan Nanoparticles (CSNP): Effect of CH-CH-TPP Ratio on Size and Stability of NPs. Front. Chem. 2024, 12, 1469271. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Du, Y.; Wang, X.; Feng, T. Self-aggregation of Water-soluble Chitosan and Solubilization of Thymol as an Antimicrobial Agent. J. Biomed. Mater. Res. Part A 2009, 90A, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.R.; Lima, A.; Codognoto, L.; Villaverde, A.B.; Tavares Pacheco, M.T.; Moisés de Oliveira, H.P. Detection of Polymolecular Associations in Hydrophobized Chitosan Derivatives Using Fluorescent Probes. J. Fluoresc. 2008, 18, 973–977. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X.; Redshaw, C.; Tang, B.Z. Aggregation Behaviour of Pyrene-Based Luminescent Materials, from Molecular Design and Optical Properties to Application. Chem. Soc. Rev. 2023, 52, 6715–6753. [Google Scholar] [CrossRef] [PubMed]
- Stîngă, G.; Băran, A.; Iovescu, A.; Aricov, L.; Anghel, D.-F. Monitoring the Confinement of Methylene Blue in Pyrene Labeled Poly(Acrylic Acid). J. Mol. Liq. 2019, 273, 125–133. [Google Scholar] [CrossRef]
- Sackett, D.L.; Wolff, J. Nile Red as a Polarity-Sensitive Fluorescent Probe of Hydrophobic Protein Surfaces. Anal. Biochem. 1987, 167, 228–234. [Google Scholar] [CrossRef]
- Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic Fluorescent Dyes as Tools for Protein Characterization. Pharm. Res. 2008, 25, 1487–1499. [Google Scholar] [CrossRef]
- Cui, W.; Lu, X.; Cui, K.; Wu, J.; Wei, Y.; Lu, Q. Photosensitive Nanoparticles of Chitosan Complex for Controlled Release of Dye Molecules. Nanotechnology 2011, 22, 65702. [Google Scholar] [CrossRef]
- Cui, W.; Lu, X.; Cui, K.; Wu, J.; Wei, Y.; Lu, Q. Fluorescent Nanoparticles of Chitosan Complex for Real-Time Monitoring Drug Release. Langmuir 2011, 27, 8384–8390. [Google Scholar] [CrossRef]
- Ercelen, S.; Zhang, X.; Duportail, G.; Grandfils, C.; Desbrières, J.; Karaeva, S.; Tikhonov, V.; Mély, Y.; Babak, V. Physicochemical Properties of Low Molecular Weight Alkylated Chitosans: A New Class of Potential Nonviral Vectors for Gene Delivery. Colloids Surf. B 2006, 51, 140–148. [Google Scholar] [CrossRef]
- Dutta, A.K.; Kamada, K.; Ohta, K. Spectroscopic Studies of Nile Red in Organic Solvents and Polymers. J. Photochem. Photobiol. A Chem. 1996, 93, 57–64. [Google Scholar] [CrossRef]
- Akbulut, M.; Ginart, P.; Gindy, M.E.; Theriault, C.; Chin, K.H.; Soboyejo, W.; Prud’homme, R.K. Generic Method of Preparing Multifunctional Fluorescent Nanoparticles Using Flash NanoPrecipitation. Adv. Funct. Mater. 2009, 19, 718–725. [Google Scholar] [CrossRef]
- Cser, A.; Nagy, K.; Biczók, L. Fluorescence Lifetime of Nile Red as a Probe for the Hydrogen Bonding Strength with Its Microenvironment. Chem. Phys. Lett. 2002, 360, 473–478. [Google Scholar] [CrossRef]
- Matulis, D.; Lovrien, R. 1-Anilino-8-Naphthalene Sulfonate Anion-Protein Binding Depends Primarily on Ion Pair Formation. Biophys. J. 1998, 74, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Peon, J.; Zewail, A.H. Ultrafast Surface Hydration Dynamics and Expression of Protein Functionality: α-Chymotrypsin. Proc. Natl. Acad. Sci. USA 2002, 99, 15297–15302. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, M.; Sathe, S.K. Interactions with 8-Anilinonaphthalene-1-sulfonic Acid (ANS) and Surface Hydrophobicity of Black Gram (Vigna Mungo) Phaseolin. J. Food Sci. 2018, 83, 1847–1855. [Google Scholar] [CrossRef]
- Ota, C.; Tanaka, S.; Takano, K. Revisiting the Rate-Limiting Step of the ANS–Protein Binding at the Protein Surface and Inside the Hydrophobic Cavity. Molecules 2021, 26, 420. [Google Scholar] [CrossRef]
- Abuin, E.B.; Lissi, E.A.; Aspée, A.; Gonzalez, F.D.; Varas, J.M. Fluorescence of 8-Anilinonaphthalene-1-Sulfonate and Properties of Sodium Dodecyl Sulfate Micelles in Water–Urea Mixtures. J. Colloid Interface Sci. 1997, 186, 332–338. [Google Scholar] [CrossRef]
- Martin, G.L.; Ross, J.A.; Minteer, S.D.; Jameson, D.M.; Cooney, M.J. Fluorescence Characterization of Chemical Microenvironments in Hydrophobically Modified Chitosan. Carbohydr. Polym. 2009, 77, 695–702. [Google Scholar] [CrossRef]
Sample Code | X: CS Concentration CCS (% w/v) | Y: TA Concentration CTA (% w/w) |
---|---|---|
X%CS+Y%TA | 0.1 | 5 |
0.5 | 10 | |
1 | 15 |
Peak Position (cm−1) | Assignment | Comments/Changes | Refs. | |
---|---|---|---|---|
Vibration | Functional Group | |||
CS | ||||
1610 | C=O str. | Secondary amide carbonyl | Amide I | [23,24] |
1510 | N–H bend. & C–N str. | Protonated primary amide | Amide II | [23,24,43] |
1413 | –CH2 bend. | [23,24,43] | ||
1378 | –CH3 sym. def. | N-acetyl | [23,24,31] | |
1312 | C–N str. & N–H bend. | Amide III | [24,31] | |
1152 | C–O–C asym. str. & C–N str. | Cyclic ether | [24,31,43] | |
1075 | C–O–C str. | [24,31] | ||
1033 | C–O str. | [23,24,36] | ||
TA | ||||
1705 | C=O str. | Ester carbonyl | Shift to 1718 | [31,34] |
1608 | C–O str. & C=C str. | Benzene ring | Int. increase | [27,34] |
1522 | C–C def. | Phenol | [31,34] | |
1443 | C=C–C str. | Benzene ring | Int. increase | [27,31,34] |
1304 | O–H bend. | Phenol hydroxyl | Shift to 1315 | [34,35] |
1170 | C–O str. | Ester | Shift to 1197 | [27,34] |
1080 | C–O str. | Polyol | Int. increase | [34] |
1010 | C–O–C str. | Ether | [35] | |
872 | C–H op bend. | Benzene ring | [44] | |
753 | C=C str. | Benzene ring | Shift to 759 | [27,31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karayianni, M.; Haladjova, E.; Rangelov, S.; Pispas, S. Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use. Polysaccharides 2025, 6, 67. https://doi.org/10.3390/polysaccharides6030067
Karayianni M, Haladjova E, Rangelov S, Pispas S. Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use. Polysaccharides. 2025; 6(3):67. https://doi.org/10.3390/polysaccharides6030067
Chicago/Turabian StyleKarayianni, Maria, Emi Haladjova, Stanislav Rangelov, and Stergios Pispas. 2025. "Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use" Polysaccharides 6, no. 3: 67. https://doi.org/10.3390/polysaccharides6030067
APA StyleKarayianni, M., Haladjova, E., Rangelov, S., & Pispas, S. (2025). Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use. Polysaccharides, 6(3), 67. https://doi.org/10.3390/polysaccharides6030067