Journal Description
Microplastics
Microplastics
is an international, peer-reviewed, open access journal on the science and technology of primary and secondary microplastics published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), EBSCO, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 20.8 days after submission; acceptance to publication is undertaken in 4.7 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review and reviewer names are published annually in the journal.
Latest Articles
Longitudinal Dispersion and Hyporheic Exchange of Neutrally Buoyant Microplastics in the Presence of Waves and Currents
Microplastics 2024, 3(3), 503-517; https://doi.org/10.3390/microplastics3030032 - 10 Sep 2024
Abstract
►
Show Figures
An experimental study was conducted to identify the behaviour of neutrally buoyant microplastics (specific density, 0.94) in different hydrodynamic conditions while focusing on combined wave–current conditions and the mixing across the hyporheic zone. For in-water-column microplastics, it was observed that the streamwise dispersion
[...] Read more.
An experimental study was conducted to identify the behaviour of neutrally buoyant microplastics (specific density, 0.94) in different hydrodynamic conditions while focusing on combined wave–current conditions and the mixing across the hyporheic zone. For in-water-column microplastics, it was observed that the streamwise dispersion of neutrally buoyant microplastics is comparable to solute dye in both slow open-channel flow conditions and combined wave–current conditions. However, for in-bed microplastics, when compared to soluble tracers, the longer timespans associated with the hyporheic exchange process allowed the density effects to enhance the vertical exchange when compared to solutes.
Full article
Open AccessArticle
Long-Term Monitoring of Microplastics in a German Municipal Wastewater Treatment Plant
by
Michael Toni Sturm, Erika Myers, Anika Korzin, Dennis Schober and Katrin Schuhen
Microplastics 2024, 3(3), 492-502; https://doi.org/10.3390/microplastics3030031 - 19 Aug 2024
Abstract
►▼
Show Figures
Wastewater treatment plants (WWTPs) have been identified as important point sources for microplastics (MPs) in the environment; monitoring MP emissions in the WWTP effluent is therefore essential for contamination control. The aim of this study is to acquire a large number of samples
[...] Read more.
Wastewater treatment plants (WWTPs) have been identified as important point sources for microplastics (MPs) in the environment; monitoring MP emissions in the WWTP effluent is therefore essential for contamination control. The aim of this study is to acquire a large number of samples (320) over a period of two years and three months to determine the temporal variations in microplastic contamination in the outlet of the municipal WWTP Landau-Mörlheim. The effluent of the third cleaning stage is sampled with a 10 µm filter cartridge, processed in the laboratory using a hydrogen peroxide treatment, and MPs are then detected by fluorescence staining. The results show high temporal variations in the microplastic concentrations in the effluent of the WWTP. This indicates that high numbers of samples are necessary to obtain a representative assessment of the microplastic emissions; single samples are not representative. The average microplastic concentration in the effluent was 27.8 ± 29.8 MP/L, ranging from 0.6 MP/L to 194.0 MP/L. This leads to a yearly emission of 1.5 × 1011 MP for the WWTP Landau-Mörlheim, corresponding to an emission of 2.8 × 106 MP/inhabitant and year. Statistically significant seasonal variations could not be observed, although there is a trend towards lower MP concentrations in summer. Further, no correlations with other wastewater or weather parameters could be found.
Full article
Figure 1
Open AccessArticle
Microplastic Contamination in Field-Side Composting in Geneva, Switzerland (CH)
by
Fanny C. D. Berset and Serge Stoll
Microplastics 2024, 3(3), 477-491; https://doi.org/10.3390/microplastics3030030 - 14 Aug 2024
Abstract
►▼
Show Figures
Plastic pollution has become a growing concern for environmental and human health in recent years. Currently, research suggests that soil compartments might be highly contaminated, with compost being one of the major sources for plastic contamination, especially at reduced sizes. In Geneva, microplastic
[...] Read more.
Plastic pollution has become a growing concern for environmental and human health in recent years. Currently, research suggests that soil compartments might be highly contaminated, with compost being one of the major sources for plastic contamination, especially at reduced sizes. In Geneva, microplastic contamination has already been evaluated in industrial compost but not yet in field-side compost. Therefore, this work focuses on the evaluation of concentrations and the characterization of microplastic particles (MPs) in field-side compost in Geneva. Four different field-side composts were sampled in Geneva and sieved with sizes ranging from >5 mm to 0.5 mm. The MPs were visually sorted when possible, and the smaller ones were treated by digestion and density separation processes. All of the MPs were analyzed with infrared spectroscopy. The results (sizes > 5 mm to 1.25 mm) reveal concentrations between 195 ± 64 and 1315 ± 375 plastic particles/kg of compost and the presence of conventional plastics in every compost. MPs were present in almost every size fraction for the four composts, and the origin of waste seemed to influence their concentrations. Indeed, composts free from organic household waste had lower concentrations than the ones accepting that kind of waste. Littering and waste still wrapped in plastic were also noticed for the composts with higher concentrations of MPs. The characterization results highlight the variety of plastic types among the composts, mostly represented by PE (polyethylene), PVA (polyvinyl alcohol), PP (polypropylene), and DAIP (polydiallyl iso-phthalate) in general but also specific contamination by PEMA (poly ethyl methacrylate) for only one of the composts. Further work is needed to evaluate the distribution of MPs according to their size or the types of waste used in composting, especially the potential degrading conditions of plastics, to mitigate their presence in composts.
Full article
Figure 1
Open AccessArticle
Numerical and Experimental Approach to Evaluate Microplastic Transport in Saturated Porous Media
by
Hande Okutan, Çağdaş Sağır, Bedri Kurtuluş, Hasan Burak Özmen, Emrah Pekkan, Moumtaz Razack and Philippe Le Coustumer
Microplastics 2024, 3(3), 463-476; https://doi.org/10.3390/microplastics3030029 - 12 Aug 2024
Abstract
Under varying flow rate conditions, the transport and retention of polydisperse microplastics (MPls), with an average particle size of 16 ± 6 µm, were investigated in saturated porous media. First-order reversible and irreversible kinetic sorption models were used to describe the sorption kinetics.
[...] Read more.
Under varying flow rate conditions, the transport and retention of polydisperse microplastics (MPls), with an average particle size of 16 ± 6 µm, were investigated in saturated porous media. First-order reversible and irreversible kinetic sorption models were used to describe the sorption kinetics. Sensitivity analyses provided insight into the effects of each sorption parameter. Both numerical modeling and experimental measurements were utilized to evaluate the retention rates of sand filters. The influence of flow rate on sorption was reflected in variations in the distribution coefficient (Kd), the mass transfer coefficient (β), and the irreversible sorption rate (K1). Lower flow rates were associated with higher Kd and β values, indicating increased sorption and reduced mass transfer rates. An increase in Kd resulted in a more gradual sorption process, with a decrease in peak concentration, whereas changes in β had a comparatively smaller impact on sorption rate and peak concentration. Lower K1 values were linked to higher peak concentrations and decreased retention efficiency. Numerical modeling revealed retention rates of 28 ± 1% at a flow rate of 31 mL min−1 and 17 ± 1% at 65 mL min−1. The introduction of MPls into saturated sand environments modifies the transport dynamics within the medium. Consequently, these alterations affect the hydrological characteristics of porous media, impacting groundwater quality and agricultural output. The mean absolute error (MAE) of 6% between the modeled and observed retention rates indicated a high level of accuracy. This study underscores the importance of examining retention efficiency and the accuracy of numerical models in understanding MPl transport in porous media.
Full article
(This article belongs to the Collection Current Opinion in Microplastics)
►▼
Show Figures
Figure 1
Open AccessArticle
Separation of Microplastics from Blood Samples Using Traveling Surface Acoustic Waves
by
Pedro Mesquita, Yang Lin, Liyuan Gong and Daniel Schwartz
Microplastics 2024, 3(3), 449-462; https://doi.org/10.3390/microplastics3030028 - 2 Aug 2024
Abstract
►▼
Show Figures
Microplastics have emerged as ubiquitous contaminants, attracting increasing global attention. Recent evidence confirms the presence of microplastics in human blood, suggesting their potential to interact with cells and induce adverse physiological reactions in various organs as blood circulates. To quantify the distribution of
[...] Read more.
Microplastics have emerged as ubiquitous contaminants, attracting increasing global attention. Recent evidence confirms the presence of microplastics in human blood, suggesting their potential to interact with cells and induce adverse physiological reactions in various organs as blood circulates. To quantify the distribution of microplastics and assess their potential effects on human health, the effective separation of microplastics from blood is crucial. However, current methods for separating microplastics from blood are limited in effectiveness and simplicity. This study proposes a microfluidic device that utilizes traveling surface acoustic waves to separate microplastics from blood. While traveling surface acoustic waves have been employed to separate various particles, a systematic study on the separation of microplastics from blood samples has not been previously reported. Specifically, the theoretical values of the acoustic radiation factor for various types of microplastics and blood cells were investigated. The significant differences in resonant frequencies indicated the feasibility of separating microplastics of different sizes and types from blood cells. Experimental validation was performed using a polydimethylsiloxane microfluidic device on a piezoelectric lithium niobate substrate. The device successfully separated 5- and 10-micrometer polystyrene microplastics from blood samples. The effects of power and flow rate on separation efficiency were also systematically investigated. This study provides a novel approach for the effective separation of microplastics from blood, contributing to the assessment of their distribution and potential health impacts.
Full article
Figure 1
Open AccessReview
The Need for Properly Designed Synthesized Micro- and Nanoplastics with Core–Shell Structure
by
Anastasiia Galakhova, Thomas C. Meisel and Gisbert Riess
Microplastics 2024, 3(3), 433-448; https://doi.org/10.3390/microplastics3030027 - 27 Jul 2024
Abstract
►▼
Show Figures
While there are a number of available reference and testing materials for micro- and nanoplastic (MNP) studies in toxicology, they are not well-characterized and do not cover all major polymer types that may potentially pollute the environment. This review article will address the
[...] Read more.
While there are a number of available reference and testing materials for micro- and nanoplastic (MNP) studies in toxicology, they are not well-characterized and do not cover all major polymer types that may potentially pollute the environment. This review article will address the question of why we need properly designed synthesized micro- and nanoplastics with a core–shell structure (with organic–inorganic units) and provide researchers with a scientific basis for the design of synthesized MNP particles. It will include a list of commercially available MNPs, an overview of the theoretical background to polymer particle synthesis, and an analysis of the advantages and disadvantages of MNP preparation methods, namely, fragmentation and synthesis, along with examples of synthesized MNP particles. The current study will demonstrate that polystyrene is one of the most prevalent MNP particle types among reference materials from certification bodies and among testing particles synthesized by chemical scientists. Nevertheless, the global industrial production of polystyrene represents approximately 5% of the total, and it is not a dominant plastic type in the textile or packaging industries. In contrast to mechanically fragmented MNP particles, the synthesis approach offers the potential to control the physico-chemical properties, enabling the more selective detection and quantification, as well as a greater comparability of the results amongst toxicological studies.
Full article
Graphical abstract
Open AccessArticle
First Evidence of the Possible Influence of Avoiding Daily Liquid Intake from Plastic and Glass Beverage Bottles on Blood Pressure in Healthy Volunteers
by
Liesa Geppner, Sophie Grammatidis, Harald Wilfing and Maja Henjakovic
Microplastics 2024, 3(3), 419-432; https://doi.org/10.3390/microplastics3030026 - 26 Jul 2024
Abstract
The global microplastic pollution issue, as a result of the indispensable usage of microplastics in building materials, packaged food, medical products and consumer goods, poses significant health problems for the population. These small particles can penetrate intact cell barriers in the intestines and
[...] Read more.
The global microplastic pollution issue, as a result of the indispensable usage of microplastics in building materials, packaged food, medical products and consumer goods, poses significant health problems for the population. These small particles can penetrate intact cell barriers in the intestines and alveoli, thereby entering the bloodstream. The aim of this pilot study was to investigate the effects of reduced plastic consumption on blood pressure. Eight adult and healthy participants abstained from consuming commercially produced bottled beverages and restricted their primary fluid intake to tap water. Blood pressure was measured on both sides before, after 14 days and after 28 to 30 days of this partial plastic diet. Women exhibit a significant change in systolic blood pressure on the right arm after 2 and 4 weeks, while the left arm demonstrates no significant changes in blood pressure. On the contrary, in men, systolic blood pressure values on both arms show no significant alterations, attributable to the high variability across the three participants. Moreover, no significant differences in systolic blood pressure were observed when analysing the entire cohort. Significant findings are evident only at the two-week mark for diastolic blood pressure for all participants in both arms. When considering diastolic blood pressure separately for women and men, men again show no significant changes in blood pressure on either arm. However, women exhibit a significant decrease in diastolic blood pressure on the left arm after 2 weeks and a statistically significant decline in diastolic blood pressure on the right arm after both 2 and 4 weeks. The results of the study suggest, for the first time, that a reduction in plastic use could potentially lower blood pressure, probably due to the reduced volume of plastic particles in the bloodstream. To confirm this hypothesis, a larger sample of male and female participants must be examined, ideally with the monitoring of plastic concentration in the blood.
Full article
(This article belongs to the Special Issue Microplastics and Human Health: Impact, Challenges and Interaction Mechanisms)
►▼
Show Figures
Figure 1
Open AccessArticle
Microplastics Ingestion by Copepods in Two Contrasting Seasons: A Case Study from the Terminos Lagoon, Southern Gulf of Mexico
by
Ana Montoya-Melgoza, Erik Coria-Monter, María Adela Monreal-Gómez, Elizabeth Durán-Campos, David Alberto Salas-de-León, John S. Armstrong-Altrin, Benjamín Quiroz-Martínez and Sergio Cházaro-Olvera
Microplastics 2024, 3(3), 405-418; https://doi.org/10.3390/microplastics3030025 - 12 Jul 2024
Abstract
►▼
Show Figures
This study evaluated the ingestion of microplastics (MP) by copepods in Terminos Lagoon (TL), a RAMSAR-listed site in the southern Gulf of Mexico. The evaluation was carried out in two contrasting seasons of 2022, as follows: the dry (April) and the rainy (October).
[...] Read more.
This study evaluated the ingestion of microplastics (MP) by copepods in Terminos Lagoon (TL), a RAMSAR-listed site in the southern Gulf of Mexico. The evaluation was carried out in two contrasting seasons of 2022, as follows: the dry (April) and the rainy (October). Copepods were collected using a conical plankton net (mesh size of 200 μm). In the laboratory, a pool of all pelagic adult copepod taxa was picked, and the MP inside the organisms were extracted, classified, and photographed using traditional optical and scanning electron microscopy. A total of 268 MP particles were extracted from the interior of copepods; among them, 149 and 119 corresponded to the dry and rainy seasons, respectively. The ingestion rate in the dry season was 0.14, while in the rainy season, it was 0.11. In addition, fibers, plastic fragments, and microspheres with different colors (blue, red, black, green, transparent, and multicolored), sizes, forms (angular, round, triangular, and twisted), and textures were also detected. Fibers were the most abundant MP found in a proportion of more than 85%. In addition, in some sampling sites, microspheres were observed with high relative abundance values (80%). In some sites, fragments reach 20% of the total abundance. Significant differences were observed between the two seasons. The sites closest to the urban area adjacent to TL observed high diversity and abundance of MP. The higher abundance of MP in the dry season is due to lower river discharge, on the other hand. Thus, MP particles accumulate and become available for consumption by copepods. This is the first study that has revealed that the MP was ingested by the copepods in TL. Furthermore, this study provides a baseline information for future research on the abundance of MP in the Gulf of Mexico region.
Full article
Figure 1
Open AccessArticle
Study on the Fate of the Carbopol® Polymer in the Use of Hand Sanitizer Gels: An Experimental Model to Monitor Its Physical State from Product Manufacturing up to the Final Hand Rinse
by
Marcello Marchetti, Alessandro Perini, Michela Zanella, Federico Benetti and Daniela Donelli
Microplastics 2024, 3(3), 390-404; https://doi.org/10.3390/microplastics3030024 - 10 Jul 2024
Abstract
►▼
Show Figures
Carbopol® is a typical jelly agent belonging to the family of cross-linked polyacrylic acid copolymers. It is largely used in antibacterial gels due to its self-wetting properties. In its pristine physical form, Carbopol® falls under the definition of microplastics, though significant
[...] Read more.
Carbopol® is a typical jelly agent belonging to the family of cross-linked polyacrylic acid copolymers. It is largely used in antibacterial gels due to its self-wetting properties. In its pristine physical form, Carbopol® falls under the definition of microplastics, though significant changes could occur once added to hydroalcoholic solvents of the liquid formulations. To date, no life-cycle data regarding the physical state are available for this substance or for other similar polymers of the same chemical class. The aim of the present study was the investigation of the fate of Carbopol®-derived microplastics used in the formulation of typical hand sanitizer gels available in the Italian market, such as Amuchina® X-Germ, along the product life cycle. An experimental model was designed to detect the presence of Carbopol® microparticles from product manufacturing to the final use. FTIR and µ-FTIR were used to detect and characterize solid particles after the optimization of the sample preparation of different experimental matrices. While Carbopol® as such can be classified as a microplastic, in the commercial product, Carbopol® particles were not detected. Ten volunteers used the product according to the instructions reported on the label, and finally they rinsed their hands. Carbopol®-based particles were not detected in the water rinse, indicating that, after usage, the original form of the Carbopol microparticles was not retrieved. The study proposes, for the first time, a simple and comprehensive experimental approach to identify and characterize microplastics in finished products and along the life cycle by simulating their real-life usage. This approach could be also useful to evaluate the release of chemical components into the environment through the use of dermal products.
Full article
Figure 1
Open AccessReview
Progress in Research on Microplastic Prevalence in Tropical Coastal Environments: A Case Study of the Johor and Singapore Straits
by
Emily Curren, Audrey Ern Lee, Denise Ching Yi Yu and Sandric Chee Yew Leong
Microplastics 2024, 3(3), 373-389; https://doi.org/10.3390/microplastics3030023 - 8 Jul 2024
Abstract
Microplastics are contaminants in marine ecosystems, posing great threats to biota and human health. In this work, we provide an overview of the progress made in understanding microplastic prevalence in tropical coastal environments, focusing on the Johor and the Singapore Straits as a
[...] Read more.
Microplastics are contaminants in marine ecosystems, posing great threats to biota and human health. In this work, we provide an overview of the progress made in understanding microplastic prevalence in tropical coastal environments, focusing on the Johor and the Singapore Straits as a case study. We examine the sources, distribution, transport, and ecological impact of microplastic pollution in this region through a systematic review. All papers relating to marine microplastics in Singapore’s sand and benthic sediments, seawater, and marine biota were used for analysis, from 2004 to 2023. In addition, we discuss the influence of envi-ronmental factors such as coastal morphology and anthropogenic activities on patterns of microplastic accumulation. We emphasize that microplastic pollution is more prevalent along the eutrophic Johor Strait compared to the Singapore Strait due to hydrological conditions. Rainfall is also a key factor that influences mi-croplastic abundance during the monsoon seasons. Furthermore, the bacterial and plankton assemblages of organisms on microplastic surfaces are diverse, with eutrophic waters enhancing the diversity of organisms on microplastic surfaces. Novel harmful cyanobacteria and bloom species of phytoplankton were also found on microplastic surfaces. By synthesizing existing research findings and highlighting regional characteristics, this paper contributes to ongoing efforts to mitigate microplastic pollution in tropical regions.
Full article
(This article belongs to the Special Issue Microplastics in Aquatic Enviroments)
►▼
Show Figures
Figure 1
Open AccessArticle
A Study on the Distribution of Microplastics in the South Coast of Korea and Gwangyang Bay
by
Byeong-Kyu Min, Chon-Rae Cho, Hwi-Su Cheon, Ho-Young Soh and Hyeon-Seo Cho
Microplastics 2024, 3(3), 355-372; https://doi.org/10.3390/microplastics3030022 - 26 Jun 2024
Abstract
Microplastic distribution surveys centered on Korea’s Gwangyang Bay and southern coastal waters. Gwangyang Bay seawater averaged 3.17 ± 1.23 particles/L, and sediments averaged 462.4 ± 143.9 particles/kg. The southern coastal seawater averaged 0.10 ± 0.09 particles/L, and the sediments averaged 50.6 ± 29.7
[...] Read more.
Microplastic distribution surveys centered on Korea’s Gwangyang Bay and southern coastal waters. Gwangyang Bay seawater averaged 3.17 ± 1.23 particles/L, and sediments averaged 462.4 ± 143.9 particles/kg. The southern coastal seawater averaged 0.10 ± 0.09 particles/L, and the sediments averaged 50.6 ± 29.7 particles/kg. Microplastics flowing from land, through physical modeling of ocean currents in Gwangyang Bay and southern coastal waters, pass through the Yeosu Strait and flow into the southern coastal waters. At the same time, it is judged that the southern coastal waters showed somewhat lower abundance than the Gwangyang Bay waters because they move toward the Korean Strait due to the Jeju warm current water and Tsushima current water, strongly generated in summer. In addition, the seawater microplastic abundance showed a higher abundance than that on the site adjacent to the land in the southern coastal waters, which is the study area. On the other hand, the results for sediment microplastic abundance were opposite to the surface seawater microplastic results. Therefore, it is judged that entering one source of pollution does not affect the distribution of microplastics in Gwangyang Bay and southern coastal waters, but rather this occurs in different forms.
Full article
(This article belongs to the Special Issue Microplastics in Aquatic Enviroments)
►▼
Show Figures
Figure 1
Open AccessArticle
Microplastic Analysis in Soil Using Ultra-High-Resolution UV–Vis–NIR Spectroscopy and Chemometric Modeling
by
Lori Shelton Pieniazek, Michael L. McKinney, Jake A. Carr and Lei Shen
Microplastics 2024, 3(2), 339-354; https://doi.org/10.3390/microplastics3020021 - 14 Jun 2024
Abstract
►▼
Show Figures
The study of microplastics (MPs) in soils is impeded by similarities between plastic and non-plastic particles and the misidentification of MP by current analytical methods such as visual microscopic examination. Soil MPs pose serious ecological and public health risks because of their abundance,
[...] Read more.
The study of microplastics (MPs) in soils is impeded by similarities between plastic and non-plastic particles and the misidentification of MP by current analytical methods such as visual microscopic examination. Soil MPs pose serious ecological and public health risks because of their abundance, persistence, and ubiquity. Thus, reliable identification methods are badly needed for scientific study. One possible solution is UV–Vis–NIR spectroscopy, which has the ability to rapidly identify and quantify concentrations of soil microplastics. In this study, a full-range, field portable spectrometer (350–2500 nm) with ultra-high spectral resolution (1.5 nm, 3.0 nm, and 3.8 nm) identified three types of common plastics: low-density polyethylene (LDPE), polyvinyl chloride (PVC), and polypropylene (PP). Three sets of artificially MP-treated vermiculite soil samples were prepared for model prediction testing and validation: 150 samples for model calibration and 50 samples for model validation. A partial least square regression model using the spectral signatures for quantification of soil and MP mixtures was built with all three plastic polymers. Prediction R2 values of all three polymers showed promising results: polypropylene R2 = 0.943, polyvinyl chloride R2 = 0.983, and polyethylene R2 = 0.957. Our study supports previous work showing that combining ultra-high-resolution UV–Vis–NIR spectrometry with quantitative modeling can improve the accuracy and speed of MP identification and quantification in soil.
Full article
Figure 1
Open AccessArticle
Earthworm (Eisenia andrei)-Mediated Degradation of Commercial Compostable Bags and Potential Toxic Effects
by
Luís André Mendes, Ricardo Beiras and Jorge Domínguez
Microplastics 2024, 3(2), 322-338; https://doi.org/10.3390/microplastics3020020 - 8 Jun 2024
Abstract
The availability of compostable plastic bags has increased greatly in the past few years, as it is perceived that this type of bags will be degraded after disposal. However, there are some knowledge gaps regarding the potential effects on the soil ecosystems. We
[...] Read more.
The availability of compostable plastic bags has increased greatly in the past few years, as it is perceived that this type of bags will be degraded after disposal. However, there are some knowledge gaps regarding the potential effects on the soil ecosystems. We assessed the rate of degradation of samples of four different types of commercial compostable bags in vermicomposting systems with the earthworm species Eisenia andrei. We also evaluated the biological response of E. andrei (survival and reproduction) to microplastics (MPs) from fragments of the plastic bags (<2000 µm) and assessed seedling emergence in common garden cress (Lepidium sativum L.) exposed to micronized plastic (<250 µm) and the respective leachate, following OECD and ISO guidelines, respectively. The rate of degradation differed significantly depending on the type of plastic rather than the substrate in the vermicomposting system. This finding suggests that the degradation process is more dependent on the microbial community colonizing the different plastic types than on earthworm activity. Regarding the biological response of the soil system, L. sativum seedling emergence was not significantly affected; however, earthworm reproduction was affected, suggesting that although compostable, some of the formulations may potentially be toxic to soil fauna.
Full article
(This article belongs to the Collection Current Opinion in Microplastics)
►▼
Show Figures
Figure 1
Open AccessReview
Measures to Reduce the Discharge of tire Wear into the Environment
by
Johannes Wolfgang Neupert, Daniel Venghaus and Matthias Barjenbruch
Microplastics 2024, 3(2), 305-321; https://doi.org/10.3390/microplastics3020019 - 4 Jun 2024
Abstract
►▼
Show Figures
The environmental impact of tire wear emissions has become increasingly apparent, and efforts to reduce their impact on the environment are on the rise. To minimise the generation of tire wear, it is essential to consider the influencing factors. However, as it cannot
[...] Read more.
The environmental impact of tire wear emissions has become increasingly apparent, and efforts to reduce their impact on the environment are on the rise. To minimise the generation of tire wear, it is essential to consider the influencing factors. However, as it cannot be entirely prevented, measures to reduce immissions are also necessary. This paper summarises possible measures derived from the literature, stakeholder workshops, and the authors’ own conclusions, taking into account the different perspectives: tire, vehicle, road, sustainable mobility and emissions treatment. The presentation of the entry paths of tire wear into the environment and the hotspots of generation can be used to prioritise reduction measures. Measures should be implemented at a political level, technical solutions applied, and awareness raised among the general public. It is evident that reducing tire wear is a complex task that requires a transdisciplinary approach.
Full article
Figure 1
Open AccessArticle
Hubs for Interactive Literature (HILs) as a Complimentary Visual Tool for Reviews
by
Katie Stallings, Kimberly J. Zaccaria, Megan Riccardi, Gregory M. Zarus and Gaston Casillas
Microplastics 2024, 3(2), 293-304; https://doi.org/10.3390/microplastics3020018 - 29 May 2024
Abstract
►▼
Show Figures
In the last few years, microplastics research has exploded, with the field exploring new procedures and techniques that focus on a variety of scientific and policy issues. As there are not standardized definitions for many terms in the field, including the term microplastic
[...] Read more.
In the last few years, microplastics research has exploded, with the field exploring new procedures and techniques that focus on a variety of scientific and policy issues. As there are not standardized definitions for many terms in the field, including the term microplastic itself, researchers utilize the same labels to describe different aspects of microplastic pollution. Here we provide a visual tool, called a Hub for Interactive Literature (HIL), to assist researchers in identifying and targeting specific literature. Currently, there are four Hubs for Interactive Learning (HILs) corresponding to previously published reviews, including a scoping review of microplastics literature as well as three reviews examining the human exposure and health effects of microplastics, the unique liver carcinogenicity of polyvinyl chloride (PVC) microplastics, and micro and nanoplastics found in the air. The HILs incorporate all of the literature used to produce the corresponding reviews. A couple of advantages that HILs provide in their capacity as a supportive instrument are the filtering options and easily accessed original references. This tool can be leveraged by researchers to rapidly review microplastics research and isolate specific subtopics of interest to develop new conclusions and quickly identify data gaps. We give an in-depth look at the HIL corresponding to a scoping review of microplastics literature to exhibit the novel functionality and advantages of this exciting tool. We demonstrate a novel world map of the literature to show that microplastics are a global scientific and public health issue. The map offers the additional functionality of filtering the references by country. We also provide a brief description of the current HILs to show the flexibility and personalization available when using this method.
Full article
Figure 1
Open AccessArticle
Reduction in the Input of Microplastics into the Aquatic Environment via Wastewater Treatment Plants in Germany
by
Philipp Lau, Julia Stein, Luisa Reinhold, Matthias Barjenbruch, Tim Fuhrmann, Ingo Urban, Katrin Bauerfeld and Andrea Holte
Microplastics 2024, 3(2), 276-292; https://doi.org/10.3390/microplastics3020017 - 20 May 2024
Cited by 1
Abstract
Microplastic (MP) has emerged as a significant environmental challenge due to increased plastic production and its widespread presence in the environment. This study aimed to assess MP concentrations throughout the treatment process at nine wastewater treatment plants (WWTPs) in Germany, from influent to
[...] Read more.
Microplastic (MP) has emerged as a significant environmental challenge due to increased plastic production and its widespread presence in the environment. This study aimed to assess MP concentrations throughout the treatment process at nine wastewater treatment plants (WWTPs) in Germany, from influent to effluent. A customized sampling technique was employed, followed by field and laboratory preparation and the quantification of polymers (PE, PP, PS, PMMA, and PET) using TED-GCMS. MP concentrations decreased progressively in the WWTPs, with influent concentrations ranging from 2.5 to 13.6 mg/L. Effluent concentrations in the conventional WWTPs ranged from 0.001 to 0.051 mg/L, while advanced treatment via filtration yielded concentrations below the limit of quantification at 0.005 mg/L. All tested of the WWTPs demonstrated an over 99% removal efficiency for microplastics. Despite effective retention by the WWTPs, a critical evaluation of the results is necessary. There is a need to optimize existing technologies and enhance the standardization of sampling, processing, and measurement methods, as well as intensify efforts towards creating preventive measures to reduce plastic emissions.
Full article
(This article belongs to the Special Issue Microplastics in Aquatic Enviroments)
►▼
Show Figures
Figure 1
Open AccessArticle
Microscopic Image Dataset with Segmentation and Detection Labels for Microplastic Analysis in Sewage: Enhancing Research and Environmental Monitoring
by
Gwanghee Lee, Jaeheon Jung, Sangjun Moon, Jihyun Jung and Kyoungson Jhang
Microplastics 2024, 3(2), 264-275; https://doi.org/10.3390/microplastics3020016 - 17 May 2024
Abstract
We introduce a novel microscopic image dataset augmented with segmentation and detection labels specifically designed for microplastic analysis in sewage environments. Recognizing the increasing concern over microplastics—particles of synthetic polymers smaller than 5 mm—and their detrimental effects on marine ecosystems and human health,
[...] Read more.
We introduce a novel microscopic image dataset augmented with segmentation and detection labels specifically designed for microplastic analysis in sewage environments. Recognizing the increasing concern over microplastics—particles of synthetic polymers smaller than 5 mm—and their detrimental effects on marine ecosystems and human health, our research focuses on enhancing detection and analytical methodologies through advanced computer vision and deep learning techniques. The dataset comprises high-resolution microscopic images of microplastics collected from sewage, meticulously labeled for both segmentation and detection tasks, aiming to facilitate accurate and efficient identification and quantification of microplastic pollution. In addition to dataset development, we present example deep learning models optimized for segmentation and detection of microplastics within complex sewage samples. The models demonstrate significant potential in automating the analysis of microplastic contamination, offering a scalable solution to environmental monitoring challenges. Furthermore, we ensure the accessibility and reproducibility 12 of our research by making the dataset and model codes publicly available, accompanied by detailed 13 documentation on GitHub and LabelBox.
Full article
(This article belongs to the Special Issue Microplastics and Human Health: Impact, Challenges and Interaction Mechanisms)
►▼
Show Figures
Figure 1
Open AccessArticle
Microplastic Volatile Organic Compounds Found within Chrysaora chesapeakei in the Patuxent River, Maryland
by
Carol A. Smith, Santosh Mandal, Chunlei Fan and Saroj Pramanik
Microplastics 2024, 3(2), 250-263; https://doi.org/10.3390/microplastics3020015 - 7 May 2024
Abstract
Microplastics are tangible particles of less than 0.2 inches in diameter that are ubiquitously distributed in the biosphere and accumulate in water bodies. During the east-coast hot summers (23–29 °C) of 2021 and 2022, June through September, we captured copious amounts of the
[...] Read more.
Microplastics are tangible particles of less than 0.2 inches in diameter that are ubiquitously distributed in the biosphere and accumulate in water bodies. During the east-coast hot summers (23–29 °C) of 2021 and 2022, June through September, we captured copious amounts of the jellyfish Chrysaora chesapeakei, a predominant species found in the Patuxent River of the Chesapeake Bay in Maryland on the United States East Coast. We determined that their gelatinous bodies trapped many microplastics through fluorescent microscopy studies using Rhodamine B staining and Raman Spectroscopy. The chemical nature of the microplastics was detected using gas chromatography–mass spectroscopy headspace (SPME-GC-MS) and solvent extraction (GC-MS) methods through a professional commercial materials evaluation laboratory. Numerous plastic-affiliated volatile organic compounds (VOCs) from diverse chemical origins and their functional groups (alkanes, alkenes, acids, aldehydes, ketones, ethers, esters, and alcohols) along with other non-microplastic volatile organic compounds were observed. Our findings corroborate data in the available scientific literature, distinguishing our finding’s suitability.
Full article
(This article belongs to the Special Issue Microplastics in Aquatic Enviroments)
►▼
Show Figures
Figure 1
Open AccessArticle
Short-Term Microplastics Exposure to the Common Mysid Shrimp, Americamysis bahia: Effects on Mortality and DNA Methylation
by
Jack H. Prior, Justine M. Whitaker and Alexis M. Janosik
Microplastics 2024, 3(2), 234-249; https://doi.org/10.3390/microplastics3020014 - 8 Apr 2024
Abstract
►▼
Show Figures
Primary consumers of microplastics are often zooplankton species such as the mysid shrimp, Americamysis bahia. Ingesting and interacting with these plastics can cause stress and lead to death. In the presence of some environmental stressors, gene expression may be altered without changing
[...] Read more.
Primary consumers of microplastics are often zooplankton species such as the mysid shrimp, Americamysis bahia. Ingesting and interacting with these plastics can cause stress and lead to death. In the presence of some environmental stressors, gene expression may be altered without changing DNA sequences via the epigenetic methylation of the DNA. Mysid shrimp were exposed to 5-micrometer fluorescent polystyrene microbeads at different concentrations and different lengths of time. No significant effects were observed on mortality within 72 h, but mortality increased significantly thereafter. Microplastics were consumed by mysids and adhered to the mysid carapace and appendages. An ELISA-like (Enzyme-Linked Imuunosorbent Assay) colorimetric assay was employed to assess mysid DNA for differences in global percent methylation. No significant difference in the average percent methylated DNA nor difference in the number of methylation detections between treatments was found. This is one of few studies that has investigated DNA methylation effects due to microplastics-induced stress and the first study to detect DNA methylation in any member of the order Mysida.
Full article
Figure 1
Open AccessReview
Recent Progress in Intestinal Toxicity of Microplastics and Nanoplastics: Systematic Review of Preclinical Evidence
by
Madjid Djouina, Suzie Loison and Mathilde Body-Malapel
Microplastics 2024, 3(2), 217-233; https://doi.org/10.3390/microplastics3020013 - 8 Apr 2024
Cited by 1
Abstract
►▼
Show Figures
The tremendous plastic production and poor post-use management are current and future sources of environmental and human contamination due to their degradation products: microplastics and nanoplastics (MNPLs). Methodological developments have allowed MNPLs to be detected in an increasing variety of human foods, as
[...] Read more.
The tremendous plastic production and poor post-use management are current and future sources of environmental and human contamination due to their degradation products: microplastics and nanoplastics (MNPLs). Methodological developments have allowed MNPLs to be detected in an increasing variety of human foods, as well as in stool and colonic mucosa. It was suggested early that the direct contact between MNPLs and intestinal tissues could represent a potential risk for human health. In order to assess this, over the last 3 years, numerous studies have evaluated the impact of MNPL ingestion on intestinal homeostasis in rodents. This comprehensive review reports the preclinical studies published between January 2021 and January 2024, and analyzes their contributions as well as their shortcomings. It shows that evidence is accumulating of the intestinal toxicity of spherical MNPLs, which lead to pro-inflammatory, pro-oxidative, barrier-disruptive and dysbiotic effects. However, the available literature has addressed only a minor part of the potential health issues of MNPLs. Many parameters contributing to MNPL toxicity need to be better taken into account in future studies. Particular attention should be paid to improve the representativeness of MNPLs, as well as to better consider the susceptibility factors of MNPL toxicity, generated especially by an underlying pathology or pathological imprinting.
Full article
Graphical abstract
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agrochemicals, Environments, Water, Toxics, Soil Systems, Microplastics, Microorganisms, Sustainability
The Challenges and Future Trends in Anthropogenic and Natural Pollution Control Engineering
Topic Editors: Chenyang Zhang, Fujing Pan, Xiaoyu Gao, Weiqi Fu, Anxu Sheng, Zhiqiang Kong, Lei He, Sining Zhong, Jie ChenDeadline: 31 December 2024
Topic in
Agriculture, Animals, Fermentation, Microplastics, Veterinary Sciences
Livestock and Microplastics
Topic Editors: Sonia Tassone, Beniamino T. Cenci-GogaDeadline: 20 May 2025
Conferences
Special Issues
Special Issue in
Microplastics
Microplastics and Human Health: Impact, Challenges and Interaction Mechanisms
Guest Editor: Javier BayoDeadline: 20 December 2024
Topical Collections
Topical Collection in
Microplastics
Current Opinion in Microplastics
Collection Editor: Nicolas Kalogerakis