-
Reciprocal Effects of the Ingested Environmental Pollutants, Arsenic and Boscalid, and Polystyrene Micro-nanoplastics on Their Intestinal Absorption in an In Vitro Triculture Small Intestinal Epithelium Model
-
Metal Organic Framework (MOFs) for Adsorption and Degradation of Microplastics
-
Evaluating the Environmental Factors on Microplastic Generation: An Accelerated Weathering Study
Journal Description
Microplastics
Microplastics
is an international, peer-reviewed, open access journal on the science and technology of primary and secondary microplastics published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, EBSCO, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 27.5 days after submission; acceptance to publication is undertaken in 4.7 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review and reviewer names are published annually in the journal.
Latest Articles
Cross-Sectional Distribution of Microplastics in the Rhine River, Germany—A Mass-Based Approach
Microplastics 2025, 4(2), 27; https://doi.org/10.3390/microplastics4020027 - 11 May 2025
Abstract
►
Show Figures
The focus in microplastic research has shifted from marine ecosystems towards freshwater ecosystems. Still, most studies are based on small sample numbers, both spatially and temporally. Little is known about the spatiotemporal variability of microplastics (MPs) in large river systems such as the
[...] Read more.
The focus in microplastic research has shifted from marine ecosystems towards freshwater ecosystems. Still, most studies are based on small sample numbers, both spatially and temporally. Little is known about the spatiotemporal variability of microplastics (MPs) in large river systems such as the Rhine River, Germany. Within our study, we performed four cross-sectional sampling campaigns at two sites in the Rhine River, at Koblenz and Emmerich, involving depth-distributed sampling over a particle size range from 10 µm to 25 mm. For plastic particle analysis, we used both optical and thermoanalytical approaches to determine mass-based polymer concentrations. Our results show that MP variability within the water column is complex, but mostly follows the particles density: the ratio between superficial MPs concentration and mean concentration of the verticals was >1 for lighter polymers with a density below 1.04 g/cm3 and <1 for polymers with a density above 1.04 g/cm3 among all size classes with only a few exceptions, even though the Rouse theory would indicate a more homogeneous distribution for small particle sizes. Large sampling volumes are essential, particularly for larger MP particles, as the coefficient of variation rises with particle size. At our study sites, no significant lateral variation was apparent, while during a flood event, MP concentrations were significantly higher than during low and mean water stages. This study is the first to (i) gain insights into cross-sectional MPs distribution in the Rhine River and (ii) account for particle mass concentrations, and thus lays the foundation for potential future MPs flux monitoring.
Full article
Open AccessArticle
Fate of Microplastics in Deep Gravel Riverbeds: Evidence for Direct Transfer from River Water to Groundwater
by
Marco Pittroff, Matthias Munz, Bernhard Valenti, Constantin Loui and Hermann-Josef Lensing
Microplastics 2025, 4(2), 26; https://doi.org/10.3390/microplastics4020026 - 8 May 2025
Abstract
►▼
Show Figures
Riverbed sediments act as potential retention reservoirs or transport corridors for microplastic particles (MPs) from river water to groundwater. Vertical concentration profiles of MPs, together with river water and groundwater analysis, provide insight into their fate and transport behavior in freshwater systems. However,
[...] Read more.
Riverbed sediments act as potential retention reservoirs or transport corridors for microplastic particles (MPs) from river water to groundwater. Vertical concentration profiles of MPs, together with river water and groundwater analysis, provide insight into their fate and transport behavior in freshwater systems. However, such data remain scarce. This study provides a depth-specific analysis of MPs ≥ 100 µm (abundance, type, and size) in gravelly riverbed sediments down to 200 cm, along with river water and groundwater analysis. Three sediment freeze cores were collected from the Alpine Rhine, a channelized mountain stream with high flow velocities and permanent losing stream conditions. The average MP abundance in the riverbed was 3.1 ± 2.3 MP/kg (100–929 µm); in the river, 92 ± 5 MP/m3 (112–822 µm); and in the groundwater, 111 ± 6 MP/m3 (112–676 µm). The dominant polymer types in the riverbed were polypropylene (PP), polyvinyl chloride (PVC), and polyethylene terephthalate (PET) (>70%), while polyamide (PA) dominated in the river water (56%) and the groundwater (76%). The comparable MP concentration, particle sizes, and polymer types between river water and groundwater, as well as the vertical MP concentration profiles, indicate that even large MPs up to 676 µm are transported from river water to groundwater without significant retention in the gravel sediment.
Full article

Figure 1
Open AccessArticle
Remote Alpine Lakes and Microplastic Accumulation: Insights from Sediment Analysis of Lake Cadagno
by
Serena M. Abel, Colin Courtney-Mustaphi, Maja Damber and Patricia Burkhardt-Holm
Microplastics 2025, 4(2), 25; https://doi.org/10.3390/microplastics4020025 - 7 May 2025
Abstract
Microplastic (MP) occurrence is a growing concern in environmental research, with significant attention focused on its presence in various ecosystems worldwide. While much research has centered on large lakes and water bodies, remote alpine lakes remain relatively unexplored in terms of microplastic occurrence.
[...] Read more.
Microplastic (MP) occurrence is a growing concern in environmental research, with significant attention focused on its presence in various ecosystems worldwide. While much research has centered on large lakes and water bodies, remote alpine lakes remain relatively unexplored in terms of microplastic occurrence. Studying microplastic occurrence in remote alpine lakes is important to understand the global spread of pollution, assess its impact on pristine ecosystems, and inform conservation efforts in these vulnerable environments. This study investigates microplastic presence in the sediment of Lake Cadagno, a remote alpine lake situated in the Piora Valley of southern central Switzerland. The lake has no effluents, and its meromictic nature means that the water on the bottom is not mixed with the water above, which can potentially lead to an enhanced accumulation of microplastics in the sediments that perpetuate in the lake system. Through sediment core sampling and analysis, we aim to identify the sources and deposition trends of microplastics in this pristine alpine environment. Our findings reveal the presence of microplastic within Lake Cadagno: in total, 186 MP particles were extracted from 756 cm3 of processed sediment (0.24 MP/cm3) with an average of 19.5 MP/sample (SD ± 11.8 MP/sample). Our results suggest that microplastics are predominantly attributable to localized sources associated with nearby human activities. The absence of synthetic fibers and the limited polymer types detected suggest a minimal contribution from atmospheric deposition, reinforcing the significance of local anthropogenic influences. Spatial clustering of microplastic particles near potential sources underscores the impact of surrounding land use activities on microplastic distribution. Overall, this study highlights the importance of addressing microplastic contamination even in remote and relatively unmodified ecosystems like Lake Cadagno, to elucidate the need for strict adherence to waste management and correct disposal actions to reduce the impacts of microplastic contamination.
Full article
(This article belongs to the Topic Plastic Contamination (Plastamination): An Environmental and Public Health-Related Concern)
►▼
Show Figures

Figure 1
Open AccessReview
Microplastics in Our Waters: Insights from a Configurative Systematic Review of Water Bodies and Drinking Water Sources
by
Awnon Bhowmik and Goutam Saha
Microplastics 2025, 4(2), 24; https://doi.org/10.3390/microplastics4020024 - 7 May 2025
Abstract
►▼
Show Figures
Microplastics (MPs), defined as plastic particles smaller than 5 mm, are an emerging global environmental and health concern due to their pervasive presence in aquatic ecosystems. This systematic review synthesizes data on the distribution, shapes, materials, and sizes of MPs in various water
[...] Read more.
Microplastics (MPs), defined as plastic particles smaller than 5 mm, are an emerging global environmental and health concern due to their pervasive presence in aquatic ecosystems. This systematic review synthesizes data on the distribution, shapes, materials, and sizes of MPs in various water sources, including lakes, rivers, seas, tap water, and bottled water, between 2014 and 2024. Results reveal that river water constitutes the largest share of studies on MP pollution (30%), followed by lake water (24%), sea water (19%), bottled water (17%), and tap water (11%), reflecting their critical roles in MP transport and accumulation. Seasonal analysis indicates that MP concentrations peak in the wet season (38%), followed by the dry (32%) and transitional (30%) seasons. Spatially, China leads MP research globally (19%), followed by the USA (7.8%) and India (5.9%). MPs are predominantly composed of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET), with fibers and fragments being the most common shapes. Sub-millimeter MPs (<1 mm) dominate globally, with significant variations driven by anthropogenic activities, industrial discharge, and environmental factors such as rainfall and temperature. The study highlights critical gaps in understanding the long-term ecological and health impacts of MPs, emphasizing the need for standardized methodologies, improved waste management, and innovative mitigation strategies. This review underscores the urgency of addressing microplastic pollution through global collaboration and stricter regulatory measures.
Full article

Graphical abstract
Open AccessReview
Impact of Microplastics on Human Health: Risks, Diseases, and Affected Body Systems
by
Ghulam Abbas, Usama Ahmed and Muhammad Arsalan Ahmad
Microplastics 2025, 4(2), 23; https://doi.org/10.3390/microplastics4020023 - 7 May 2025
Abstract
►▼
Show Figures
This review article aims to highlight the potential harm caused by microplastics (MPs) in different organs and systems and underscore the need for further investigation into their action mechanisms. MPs, such as polystyrene, polypropylene, and polyethylene, significantly impact human health, causing inflammation in
[...] Read more.
This review article aims to highlight the potential harm caused by microplastics (MPs) in different organs and systems and underscore the need for further investigation into their action mechanisms. MPs, such as polystyrene, polypropylene, and polyethylene, significantly impact human health, causing inflammation in the respiratory and gastrointestinal systems, compromising immune function, and increasing the risk of cardiovascular diseases and neurotoxicity. These effects are largely attributed to the role of MPs in disrupting hormonal regulation, which can lead to reproductive disorders and an elevated risk of cancer. These microscopic particles (less than 5 mm in size) are now ubiquitous in air, water, and food. However, much of the existing research on MPs focuses on their mechanisms of action and their association with health and disease, with limited emphasis on their direct impact on humans or long-term consequences. To effectively address plastic toxicity, it is crucial to understand the policy implications of MPs and their relevance to disease development. Recent research has highlighted the need for more stringent regulatory oversight of these materials to better understand and mitigate their impact on human health.
Full article

Figure 1
Open AccessArticle
Developmental Transfer of Microplastic Particles from Larval to Adult Stages of the Drone Fly Eristalis tenax
by
Malik Abdulla, Jaimie C. Barnes, Oliver M. Poole, Karl R. Wotton and Eva Jimenez-Guri
Microplastics 2025, 4(2), 22; https://doi.org/10.3390/microplastics4020022 - 2 May 2025
Abstract
►▼
Show Figures
Plastic pollution has become a critical environmental issue, with vast amounts of plastic waste accumulating in aquatic and terrestrial ecosystems. Plastic pollution poses significant risks to biodiversity by introducing toxic chemicals and disrupting biological functions. The drone fly, Eristalis tenax, is perhaps
[...] Read more.
Plastic pollution has become a critical environmental issue, with vast amounts of plastic waste accumulating in aquatic and terrestrial ecosystems. Plastic pollution poses significant risks to biodiversity by introducing toxic chemicals and disrupting biological functions. The drone fly, Eristalis tenax, is perhaps the most globally widespread hoverfly. This success is aided by its development as a rat-tailed maggot in a wide array of aquatic environments where it feeds on decaying organic matter. As an adult, E. tenax is a vital pollinator, visiting a wide range of crops and wild plants, and has been shown to vector pollen over hundreds of kilometres during seasonal migrations. Exposure to microplastics during larval stages has the potential to alter the provision of these ecosystem services and to provide a route for the long-distance vectoring of microplastics. To investigate this, we rear E. tenax in water contaminated with different concentrations of microplastic particles. We show that these plastics are retained in the gut from larval through to pupal to adult developmental stages. This contamination resulted in reductions of 33% and 60% in pupal and adult weight when exposed to the highest concentrations of microplastic particles but resulted in no detectable effects on mortality or developmental length. Our results demonstrate the potential for the vectoring of microplastics by this highly mobile species. However, the associated reductions in body size likely have profound consequences for movement capability in terms of foraging and migration and should be further investigated for their impact on ecosystem service provision.
Full article

Figure 1
Open AccessArticle
Spatiotemporal Dynamics of Microplastics in Nakivubo Catchment: Implications for the Pollution of Lake Victoria
by
Simon Ocakacon, Philip Mayanja Nyenje, Herbert Mpagi Kalibbala, Robinah Nakawunde Kulabako, Christine Betty Nagawa, Timothy Omara, Christine Kyarimpa, Solomon Omwoma Lugasi and Patrick Ssebugere
Microplastics 2025, 4(2), 21; https://doi.org/10.3390/microplastics4020021 - 24 Apr 2025
Abstract
►▼
Show Figures
Microplastics (MPs) have been extensively studied in the marine environment, but reliable data on their sources and pathways in freshwater ecosystems, which are the main sources of such pollutants, are still limited. In this study, we investigated the spatiotemporal variations, characteristics, and sources
[...] Read more.
Microplastics (MPs) have been extensively studied in the marine environment, but reliable data on their sources and pathways in freshwater ecosystems, which are the main sources of such pollutants, are still limited. In this study, we investigated the spatiotemporal variations, characteristics, and sources of MPs in Nakivubo catchment, which drains waste and stormwater from Kampala city (Uganda) and empties it into Lake Victoria through the Nakivubo channel. Surface water samples (n = 117) were collected from thirteen sites in the Nakivubo catchment (S1 to S13) during the dry and wet seasons in 2022. The MPs were recovered by wet peroxide oxidation protocol, followed by salinity-based density separation, stereomicroscopy, and micro-attenuated total reflectance Fourier-transform infrared spectroscopy. All the samples had MPs, with mean concentrations ranging from 1568.6 ± 1473.8 particles/m3 during the dry season to 2140.4 ± 3670.1 particles/m3 in the wet season. Nakivubo catchment discharges an estimated 293.957 million particles/day into Lake Victoria. A Two-Way ANOVA revealed significant interactive effects of seasons and sampling sites on MPs abundance (p < 0.05). Spatially, the highest mean concentrations of MPs (5466.67 ± 6441.70 particles/m3) were in samples from site S3, which is characterized by poor solid waste and wastewater management practices. Filaments (79.7%) and fragments (17.9%) made of polyethylene (75.4%) and polyethylene/polypropylene co-polymer (16.0%) were the most common MPs. These are likely from single-use polyethylene and polypropylene packaging bags, water bottles, and filaments shed from textiles during washing. These results highlight the ubiquity of MPs in urban drainage systems feeding into Lake Victoria. To mitigate this pollution, urban authorities need to implement strict waste management policies to prevent plastic debris from entering drainage networks.
Full article

Figure 1
Open AccessArticle
Exploring Microplastics’ Presence in Free-Living Marine Nematodes from Natural Ecosystems Using µ-Raman Spectroscopy
by
Gabriella Pantó, Oliver Jacob, Ann Vanreusel, Natalia P. Ivleva and Carl Van Colen
Microplastics 2025, 4(2), 20; https://doi.org/10.3390/microplastics4020020 - 16 Apr 2025
Abstract
►▼
Show Figures
Detecting microplastics (MPs) in marine organisms is vital for understanding the ecological impact of MP pollution. Free-living marine nematodes, key players in benthic ecosystems, are often employed as bioindicators because of their sensitivity to environmental changes and thus hold promise as bioindicators for
[...] Read more.
Detecting microplastics (MPs) in marine organisms is vital for understanding the ecological impact of MP pollution. Free-living marine nematodes, key players in benthic ecosystems, are often employed as bioindicators because of their sensitivity to environmental changes and thus hold promise as bioindicators for MP pollution too. This study investigated the detection of MPs in nematodes using µ-Raman spectroscopy combined with a tailored digestion protocol, targeting MPs in size ranges between 1 and 15 µm. While this is the first documented attempt to detect MPs in field-collected nematodes, significant challenges were identified. Contamination, particularly from airborne MPs and plastic-based laboratory materials, posed a major obstacle. We found higher numbers of <5 µm particles of polypropylene (PP), polyethylene terephthalate (PET), polylactic acid (PLA), polymethyl methacrylate (PMMA), and polystyrene (PS) in a natural community of nematodes compared to blank controls, suggesting the potential ingestion of small-sized MPs by nematodes in the real world. However, small MPs exhibited greater contamination challenges, underscoring the need for improved contamination control measures, such as open-air filters and plastic-free workflows. Despite these challenges, this study highlights the potential of µ-Raman spectroscopy as a valuable tool for detecting small-sized MPs in field-collected marine invertebrates, provided contamination risks are minimized. The likelihood of nematodes encountering MPs in marine sediments is high, but whether this translates to significant ingestion remains uncertain pending on the analysis of more field samples and the application of efficient measures of contamination reduction.
Full article

Graphical abstract
Open AccessArticle
Fate of Microplastic Pollution Along the Water and Sludge Lines in Municipal Wastewater Treatment Plants
by
Thibaut Saur, Florian Paillet, Samuel Robert, Jean-Claude Alibar, Jean-François Loret and Bruno Barillon
Microplastics 2025, 4(2), 19; https://doi.org/10.3390/microplastics4020019 - 14 Apr 2025
Abstract
►▼
Show Figures
Microplastics have emerged as a global environmental concern due to their widespread presence and potential effects on ecosystems. Wastewater treatment plants (WWTPs) play a critical role in mitigating the release of microplastics into the environment. This study aimed to evaluate the abundance and
[...] Read more.
Microplastics have emerged as a global environmental concern due to their widespread presence and potential effects on ecosystems. Wastewater treatment plants (WWTPs) play a critical role in mitigating the release of microplastics into the environment. This study aimed to evaluate the abundance and distribution of microplastics in three municipal WWTPs exhibiting different sludge and water treatment technologies. Samples were collected at various stages of the treatment process, including influent, primary and biological sludge, treated water, thickened sludge and dehydrated sludge. Quantification analyses were performed and then coupled with operational data to assess pollution flow rates and the microplastic balance. An important removal rate (>97%) of microplastics along the water line was observed in all three WWTPs. The lower performance of 0.75 mm screening was observed regarding microplastic capture compared to conventional primary settling on the water line. No significant differences in the pollution flow rates between primary and biological sludge were detected. Whatever the thickening and dehydration technologies that were tested, the specific quantities of microplastics along the sludge treatment lines were steady, implying the comparable behaviour of microparticular pollution to total suspended solids. These results underscored the important role of the different concentration stages of sludge treatment lines in sequestrating microplastics within the sludge fraction.
Full article

Graphical abstract
Open AccessReview
Recent Insights into Microplastic Pollution and Its Effects on Soil Carbon: A Five-Year Ecosystem Review
by
Anastasia Vainberg, Evgeny Abakumov and Timur Nizamutdinov
Microplastics 2025, 4(2), 18; https://doi.org/10.3390/microplastics4020018 - 14 Apr 2025
Abstract
►▼
Show Figures
The widespread presence of microplastics (MPs) is of growing concern for both the scientific community and the public. Contemporary research increasingly focuses on ecosystem transformation and global climate change. We conducted a literature review, consisting of 46 studies, to investigate the consequences of
[...] Read more.
The widespread presence of microplastics (MPs) is of growing concern for both the scientific community and the public. Contemporary research increasingly focuses on ecosystem transformation and global climate change. We conducted a literature review, consisting of 46 studies, to investigate the consequences of MPs’ influence on the carbon cycle in different soil types across various ecosystems. MPs can affect the cycling of carbon compounds and other biogenic elements by impacting the soil microbiome, enzyme activity, plant growth, litter decomposition, and more. The majority of authors report increased CO2 and/or CH4 emissions in soils containing MPs. However, some studies demonstrate the opposite or a neutral result, and the outcomes can differ even within a single study depending on the soil type and/or the type, form, and size of the MPs used. Further clarification and development of our understanding regarding the impact of MPs on the carbon cycle across different ecosystems remain crucial, taking into account the inclusion of as wide a variety of MPs as possible in future research.
Full article

Figure 1
Open AccessArticle
Microplastic Migration from Food Packaging on Cheese
by
Klytaimnistra Katsara, Zacharias Viskadourakis, George Kenanakis and Vassilis M. Papadakis
Microplastics 2025, 4(2), 17; https://doi.org/10.3390/microplastics4020017 - 7 Apr 2025
Abstract
►▼
Show Figures
Cretan Graviera cheese is one of Greece’s most prized cheeses and holds a Protected Designation of Origin (PDO) status. For years, food packaging migration has been a key concern in food and health sciences, with plastics like low-density polyethylene (LDPE) and polypropylene (PP)
[...] Read more.
Cretan Graviera cheese is one of Greece’s most prized cheeses and holds a Protected Designation of Origin (PDO) status. For years, food packaging migration has been a key concern in food and health sciences, with plastics like low-density polyethylene (LDPE) and polypropylene (PP) widely used for cheese preservation and convenient handling during transport and storage. This study focused on Cretan Graviera cheese, examining two different levels of maturity: 4 and 8 months. The cheese samples were analyzed using two complementary vibrational spectroscopic techniques, FTIR-ATR and Raman spectroscopy, to assess the migration of LDPE and PP from plastic packaging to the cheese’s surface. The experimental period was set at 21 days, corresponding to the degradation time of the selected cheese, which becomes apparent after three weeks under refrigerated conditions at 7 °C. The results indicate that, with Raman and FTIR-ATR spectroscopy, LDPE and PP migration can occur from the plastic packaging to the surface of Graviera samples with different maturities. Microbial growth was observed sooner in the 4-month-old samples and 8-month-old samples. The migration of food packaging materials was confirmed using both Raman and FTIR spectroscopy, highlighting that Cretan Graviera cheese should be stored in appropriate packaging under refrigerated conditions at 7 °C.
Full article

Figure 1
Open AccessReview
Nanoplastics and Microplastics in Agricultural Systems: Effects on Plants and Implications for Human Consumption
by
Tarcisio Wolff Leal, Gabriel Tochetto, Sayonara Vanessa de Medeiros Lima, Patricia Viera de Oliveira, Henrico Junior Schossler, Carlos Rafael Silva de Oliveira and Afonso Henrique da Silva Júnior
Microplastics 2025, 4(2), 16; https://doi.org/10.3390/microplastics4020016 - 7 Apr 2025
Abstract
Nanoplastics and microplastics in agricultural systems have raised significant concerns due to their effects on plant health and potential risks to human consumption. This review examined these pollutants’ origins, behavior, and impacts in agricultural environments, emphasizing their primary contamination pathways, such as irrigation,
[...] Read more.
Nanoplastics and microplastics in agricultural systems have raised significant concerns due to their effects on plant health and potential risks to human consumption. This review examined these pollutants’ origins, behavior, and impacts in agricultural environments, emphasizing their primary contamination pathways, such as irrigation, plastic mulching, and sewage sludge application. It explored the transport, accumulation, and interactions of these particles in the soil, including their ability to adsorb other contaminants like pesticides and heavy metals. The effects on plant physiology and potential toxicity were highlighted, along with the implications for food quality and safety. Chronic exposure to these pollutants through the food chain posed notable health concerns for humans, emphasizing the urgency of addressing this issue. Research gaps, such as the toxicokinetics of nanoplastics and microplastics in plants and humans, were identified, underscoring the need for further investigation. The review also presented mitigation strategies, including improved waste management and the development of sustainable agricultural practices.
Full article
(This article belongs to the Collection Current Opinion in Microplastics)
►▼
Show Figures

Figure 1
Open AccessArticle
Microplastic Filtration by a Coastal Mangrove Wetland as a Novel Ecosystem Service
by
Melinda Paduani, Michael Ross and Piero Gardinali
Microplastics 2025, 4(2), 15; https://doi.org/10.3390/microplastics4020015 - 6 Apr 2025
Abstract
►▼
Show Figures
Biscayne Bay in southeastern Florida, USA, has experienced dramatic ecological declines due to pollution. The Biscayne Bay and Southeastern Everglades Ecosystem Restoration will deliver water from a canal adjacent to coastal mangroves, intercepting pollutants before they are deposited into the estuary. Given their
[...] Read more.
Biscayne Bay in southeastern Florida, USA, has experienced dramatic ecological declines due to pollution. The Biscayne Bay and Southeastern Everglades Ecosystem Restoration will deliver water from a canal adjacent to coastal mangroves, intercepting pollutants before they are deposited into the estuary. Given their demonstrated capacity to filter nutrients and other contaminants from the water column, we hypothesized that mangrove wetlands also filter microplastics (“MPs”). Water and sediment samples were taken from 3 “zones”: the L-31E canal, a potential MP source; interior, dwarf mangroves; and coastal, tidal fringe mangroves. These three environments were replicated in coastal basins with and without canal culverts. MPs were expected to vary seasonally and be more abundant and larger in the dwarf zone and in low-bulk density sediments as particles settled into peat soils. In sediment, MPs were more abundant in the dry season (average 0.073 ± 0.102 (SD) MPs/g dw) before getting flushed by overland runoff resulting in greater concentrations in water during the wet season (average 0.179 ± 0.358 (SD) MPs/L). MPs were most abundant and larger in the low bulk density sediments of the dwarf zone, likely due to sheltering from fragmentation. Culvert presence had no effect, but MPs may increase as waterflows increase to planned volumes. Understanding MP dynamics enables managers to predict water quality impacts and leverage the potential ecosystem service of MP filtration by mangrove wetlands.
Full article

Graphical abstract
Open AccessArticle
Influence on the Result by Abrasion on Filter Casings, Tested in the Environment in Finnmark, Norway
by
Fabio Manna, Michel Mues, Clara Wiebensohn, Maja Dukat and Andreas Fath
Microplastics 2025, 4(1), 14; https://doi.org/10.3390/microplastics4010014 - 11 Mar 2025
Abstract
The purpose of this study is to determine the plastic wear of the cartridge filter casing 01WTKF (Wolftechnik Filtersysteme GmbH & Co. KG, Weil der Stadt, Germany) when exposed to sand, sediment, and ice at temperatures below 0 °C, both in laboratory and
[...] Read more.
The purpose of this study is to determine the plastic wear of the cartridge filter casing 01WTKF (Wolftechnik Filtersysteme GmbH & Co. KG, Weil der Stadt, Germany) when exposed to sand, sediment, and ice at temperatures below 0 °C, both in laboratory and field conditions. Furthermore, this study aims to discuss whether previous studies conducted with the model 01WTKF may suffer significant errors due to abrasion. The freshwater samples were collected in Finnmark, Norway. These samples were filtered using a cartridge filtration method and the 01WTKF filter casing, which features lids made of polypropylene (PP) and bottom parts made of styrene–acrylonitrile copolymer (SAN) or PP. The samples were analyzed for microplastic (MP) cross-contamination by comparing the results of the model 01WTKF to those of the stainless-steel-based model 01WTGD. Laboratory and environmental samples were examined using FT-IR spectroscopy. The results indicate that wear occurs for ice, sand, and sediment. Abrasion significantly increased the overall PP concentration in the environmental samples, introducing an error of 858 ± 516 N m−3 MPs to 2453 ± 92 N m−3 MPs. By contrast, no wear was detected for the SAN-based bottom part. For the PP-based lids, only 92 ± 83 N m−3 MPs were identified. Therefore, the use of PP-based bottom parts and lids is not recommended at temperatures below 0 °C. Additionally, studies utilizing the model 01WTKF should be reviewed and re-evaluated to ensure the accuracy of the obtained data.
Full article
(This article belongs to the Collection Current Opinion in Microplastics)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Evaluating the Environmental Factors on Microplastic Generation: An Accelerated Weathering Study
by
Sara Rostampour, Song Syun Jhang, Jung-Kai Hsu, Rachel Cook, Yuejin Li, Chunlei Fan and Li-Piin Sung
Microplastics 2025, 4(1), 13; https://doi.org/10.3390/microplastics4010013 - 5 Mar 2025
Abstract
►▼
Show Figures
Microplastics pose a significant environmental threat, and understanding their sources and generation mechanisms is crucial for mitigation efforts. This study investigates the effects of ultraviolet intensity, temperature, and relative humidity on the degradation of polyethylene terephthalate (PET) plastics and the subsequent formation of
[...] Read more.
Microplastics pose a significant environmental threat, and understanding their sources and generation mechanisms is crucial for mitigation efforts. This study investigates the effects of ultraviolet intensity, temperature, and relative humidity on the degradation of polyethylene terephthalate (PET) plastics and the subsequent formation of microplastic particles. PET samples were exposed to ultraviolet (UV) radiation under various environmental conditions using the SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) accelerated weathering device at the National Institute of Standards and Technology (NIST). Attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) and laser confocal scanning microscopy (LSCM)/atomic force microscopy (AFM) were employed to characterize the chemical and morphological changes on the weathered surfaces. This study’s findings reveal that temperature and relative humidity significantly influence the rate of photodegradation and the characteristics of the generated microplastics. Higher temperatures and increased humidity accelerated the degradation process, leading to a higher abundance of microplastic particles. However, larger particles were observed at higher temperatures due to aggregation. These results underscore the importance of considering environmental factors when assessing the fate and transport of microplastics in the environment. Developing strategies to reduce plastic pollution and mitigate the generation of microplastics is essential for protecting ecosystems and human health.
Full article

Graphical abstract
Open AccessArticle
Microplastic Deposits Prediction on Urban Sandy Beaches: Integrating Remote Sensing, GNSS Positioning, µ-Raman Spectroscopy, and Machine Learning Models
by
Anderson Targino da Silva Ferreira, Regina Célia de Oliveira, Eduardo Siegle, Maria Carolina Hernandez Ribeiro, Luciana Slomp Esteves, Maria Kuznetsova, Jessica Dipold, Anderson Zanardi de Freitas and Niklaus Ursus Wetter
Microplastics 2025, 4(1), 12; https://doi.org/10.3390/microplastics4010012 - 5 Mar 2025
Abstract
►▼
Show Figures
This study focuses on the deposition of microplastics (MPs) on urban beaches along the central São Paulo coastline, utilizing advanced methodologies such as remote sensing, GNSS altimetric surveys, µ-Raman spectroscopy, and machine learning (ML) models. MP concentrations ranged from 6 to 35 MPs/m
[...] Read more.
This study focuses on the deposition of microplastics (MPs) on urban beaches along the central São Paulo coastline, utilizing advanced methodologies such as remote sensing, GNSS altimetric surveys, µ-Raman spectroscopy, and machine learning (ML) models. MP concentrations ranged from 6 to 35 MPs/m2, with the highest densities observed near the Port of Santos, attributed to industrial and port activities. The predominant MP types identified were foams (48.7%), fragments (27.7%), and pellets (23.2%), while fibers were rare (0.4%). Beach slope and orientation were found to facilitate the concentration of MP deposition, particularly for foams and pellets. The study’s ML models showed high predictive accuracy, with Random Forest and Gradient Boosting performing exceptionally well for specific MP categories (pellet, fragment, fiber, foam, and film). Polymer characterization revealed the prevalence of polyethylene, polypropylene, and polystyrene, reflecting sources such as disposable packaging and industrial raw materials. The findings emphasize the need for improved waste management and targeted urban beach cleanups, which currently fail to address smaller MPs effectively. This research highlights the critical role of combining in situ data with predictive models to understand MP dynamics in coastal environments. It provides actionable insights for mitigation strategies and contributes to global efforts aligned with the Sustainable Development Goals, particularly SDG 14, aimed at conserving marine ecosystems and reducing pollution.
Full article

Figure 1
Open AccessReview
Metal–Organic Frameworks (MOFs) for Adsorption and Degradation of Microplastics
by
Thayna Campeol Marinho, Almudena Gomez-Aviles and Pilar Herrasti
Microplastics 2025, 4(1), 11; https://doi.org/10.3390/microplastics4010011 - 1 Mar 2025
Abstract
►▼
Show Figures
Microplastics (MPs) are currently a serious environmental problem, primarily due to their persistence in the environment, low concentration, and difficulty in detection and disposal. MPs have also been detected in humans and have been shown to be harmful. Although there are methodologies for
[...] Read more.
Microplastics (MPs) are currently a serious environmental problem, primarily due to their persistence in the environment, low concentration, and difficulty in detection and disposal. MPs have also been detected in humans and have been shown to be harmful. Although there are methodologies for their recovery or elimination in most water treatment plants, a significant portion still bypasses these elimination systems. It is this percentage that we must try to eliminate. In addition to finding new methodologies for the treatment of MPs, it is important to find new materials adapted to this process. In this context, metal–organic frameworks (MOFs) are high-versatility compounds that can be synthesized using different techniques to obtain materials with different properties, such as porosity, morphology, conductivity, etc. These materials can adsorb MPs in different ways, such as electrostatic interaction, bond formation, etc., or they can be obtained by containing metals that catalyze reactions for the formation of highly reactive species that can oxidize the MPs. This review examines how MOF materials have gained attention for the adsorption-based recovery and removal of MPs and discusses the problems associated with these materials and possible solutions.
Full article

Figure 1
Open AccessArticle
Investigating the Epigenetic Effects of Polystyrene Nanoplastic Exposure in Bluegill (Lepomis macrochirus) Epithelial Cells Using Methylation-Sensitive AFLPs
by
Sheridan M. Wilkinson, Justine M. Whitaker and Alexis M. Janosik
Microplastics 2025, 4(1), 10; https://doi.org/10.3390/microplastics4010010 - 27 Feb 2025
Abstract
Microplastics, remnants of macroplastics that have broken down to fragments smaller than 5 mm, and nanoplastics, broken down even further to sizes < 1 μm, are pervasive in aquatic ecosystems. These plastic particles are consumed by microscopic organisms, leading to bioaccumulation up trophic
[...] Read more.
Microplastics, remnants of macroplastics that have broken down to fragments smaller than 5 mm, and nanoplastics, broken down even further to sizes < 1 μm, are pervasive in aquatic ecosystems. These plastic particles are consumed by microscopic organisms, leading to bioaccumulation up trophic levels. The accumulation of plastic in the organismal gut can result in various repercussions, including cellular contamination and genomic modifications such as DNA methylation. While methylation has been studied in teleost fishes, the impact of nanoplastic exposure on this process in any species remains largely unexplored. This study delves into this largely uncharted territory, investigating the accumulation of methylation due to nanoplastic exposure within the genome of cultured bluegill BF-2 cells (Lepomis macrochirus) using methylation-sensitive AFLPs. The methylation state was analyzed through capillary gel analysis and electropherograms. Differential methylation occurred between several control and experimental groups due to nanoplastic exposure; however, these differences were not dose- or time-dependent. These results could suggest that higher dosages and exposure times to nanoplastics do not result in increased methylation levels in congruence with the dosage and exposure time; rather, only the presence of nanoplastics is enough to cause DNA methylation changes.
Full article
(This article belongs to the Topic Microplastics Pollution)
►▼
Show Figures

Figure 1
Open AccessArticle
Spatial–Temporal Characterization of Microplastics in the Surface Water of an Urban Ephemeral River
by
Andre Felton, Salem Farner, Logan Day, Sue Ellen Gibbs-Huerta, Briaunna Zamarripa and Jeffrey Hutchinson
Microplastics 2025, 4(1), 9; https://doi.org/10.3390/microplastics4010009 - 14 Feb 2025
Abstract
►▼
Show Figures
Rivers are recognized as major unilateral pathways of microplastic transport between terrestrial and marine ecosystems, yet our understanding of their dispersal patterns over space and through time as they migrate from source to sink is limited. In this study, surface water samples were
[...] Read more.
Rivers are recognized as major unilateral pathways of microplastic transport between terrestrial and marine ecosystems, yet our understanding of their dispersal patterns over space and through time as they migrate from source to sink is limited. In this study, surface water samples were collected monthly from 12 sites along an urban ephemeral river (Leon Creek) in San Antonio between June 2021 and May 2022 to characterize and evaluate the spatiotemporal distribution of microplastics. Microplastics were found in all sites throughout the monitoring timeframe. The mean abundance of microplastics varied from 3.21 to 26.8 items/L. Surface waters consistently contained microplastics during months of dysconnectivity, suggesting atmospheric deposition as a considerable contributive variable. Contrary to prior studies of perennial systems, ephemeral pools and reaches showed no correlation between MP concentration and season precipitation. Fibers were the most abundant (~87%) morphology followed by foams (7%). This study is the first to report microplastics in ephemeral streams, suggesting that different environmental variables may be responsible for microplastic dynamics in intermittent river and ephemeral stream systems and headwater tributaries of major rivers. As the global extent of IRES systems is projected to increase with continued climate change, understanding such systems’ influence on MP spatial distribution and fluvial transport regimes constitutes valuable information in assessing MP pathways and their fate as a part of the global “Plastisphere” geochemical cycle in the Anthropocene.
Full article

Figure 1
Open AccessArticle
Comparative Toxicity of Micro, Nano, and Leachate Fractions of Three Rubber Materials to Freshwater Species: Zebrafish and Daphnia
by
Miranda E. Jackson, Bryan J. Harper, Manuel Garcia-Jaramillo and Stacey L. Harper
Microplastics 2025, 4(1), 8; https://doi.org/10.3390/microplastics4010008 - 11 Feb 2025
Abstract
Rubber materials enter aquatic environments by stormwater runoff via sources such as playground mulch, athletic fields, and roadway surfaces. Tire rubbers are considered plastics as they comprise a substantial portion of synthetic polymers. Rubber particles are complex and variable depending on the type,
[...] Read more.
Rubber materials enter aquatic environments by stormwater runoff via sources such as playground mulch, athletic fields, and roadway surfaces. Tire rubbers are considered plastics as they comprise a substantial portion of synthetic polymers. Rubber particles are complex and variable depending on the type, source, and age of rubber. In this study, zebrafish embryos and daphnids were exposed to nano-scale or micro-scale particles, or leachate from recycled rubber (RR), crumb rubber (CR), and cryo-milled tire tread (CMTT). Zebrafish embryos were evaluated for lethal and sub-lethal effects over a 120 h exposure, while daphnids were tested over a 48 h period. Nano-scale RR, CR, and CMTT particles elicited a hatch delay in zebrafish embryos with similar EC50 values (1.3 × 109–1.4 × 109 particles/mL). Micro-scale particles did not elicit any significant effects in developing zebrafish. Nano-scale particles of all rubber materials significantly increased hatch delay compared to leachate, suggesting an adverse nanoparticle effect unexplained by chemical leaching alone, indicating tire particle-specific effects. Daphnia RR micro- and nanoparticle exposures resulted in mortality, with LC50 values of 9.8 × 105 microparticles/mL and 5.0 × 108 nanoparticles/mL, respectively. Leachate exposures did not elicit significant Daphnia mortality. Sublethal micro- and nano-TP exposures significantly decreased microalgae ingestion by Daphnia after 24 h. The effects of tire-derived exposures observed pose a risk to aquatic organism survival at environmentally relevant concentrations.
Full article
(This article belongs to the Topic Plastics, Water-Soluble Polymers and Rubberized Materials: Ecotoxicological Aspects in the Aquatic Environments)
►▼
Show Figures

Graphical abstract
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agrochemicals, Environments, Water, Toxics, Soil Systems, Microplastics, Microorganisms, Sustainability
The Challenges and Future Trends in Anthropogenic and Natural Pollution Control Engineering
Topic Editors: Chenyang Zhang, Fujing Pan, Xiaoyu Gao, Weiqi Fu, Anxu Sheng, Zhiqiang Kong, Lei He, Sining Zhong, Jie ChenDeadline: 1 August 2025
Topic in
JMSE, JoX, Microplastics, Toxics, Water
Plastics, Water-Soluble Polymers and Rubberized Materials: Ecotoxicological Aspects in the Aquatic Environments
Topic Editors: Stefano Magni, François GagnéDeadline: 31 August 2025
Topic in
IJERPH, Microplastics, Polymers, Toxics
Plastic Contamination (Plastamination): An Environmental and Public Health-Related Concern
Topic Editors: Rosaria Meccariello, Antonino Testa, Francesco Cappello, Antonietta SantoroDeadline: 30 June 2026

Conferences
Special Issues
Special Issue in
Microplastics
Microplastics and Human Health: Impact, Challenges and Interaction Mechanisms
Guest Editor: Javier BayoDeadline: 30 June 2025
Topical Collections
Topical Collection in
Microplastics
Current Opinion in Microplastics
Collection Editor: Nicolas Kalogerakis
Topical Collection in
Microplastics
Feature Paper in Microplastics
Collection Editor: Nicolas Kalogerakis