polymers-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Review

47 pages, 7517 KiB  
Review
Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and Its Application as the Drug Carriers
by Valentino Bervia Lunardi, Felycia Edi Soetaredjo, Jindrayani Nyoo Putro, Shella Permatasari Santoso, Maria Yuliana, Jaka Sunarso, Yi-Hsu Ju and Suryadi Ismadji
Polymers 2021, 13(13), 2052; https://doi.org/10.3390/polym13132052 - 23 Jun 2021
Cited by 44 | Viewed by 5125
Abstract
The ‘Back-to-nature’ concept has currently been adopted intensively in various industries, especially the pharmaceutical industry. In the past few decades, the overuse of synthetic chemicals has caused severe damage to the environment and ecosystem. One class of natural materials developed to substitute artificial [...] Read more.
The ‘Back-to-nature’ concept has currently been adopted intensively in various industries, especially the pharmaceutical industry. In the past few decades, the overuse of synthetic chemicals has caused severe damage to the environment and ecosystem. One class of natural materials developed to substitute artificial chemicals in the pharmaceutical industries is the natural polymers, including cellulose and its derivatives. The development of nanocelluloses as nanocarriers in drug delivery systems has reached an advanced stage. Cellulose nanofiber (CNF), nanocrystal cellulose (NCC), and bacterial nanocellulose (BC) are the most common nanocellulose used as nanocarriers in drug delivery systems. Modification and functionalization using various processes and chemicals have been carried out to increase the adsorption and drug delivery performance of nanocellulose. Nanocellulose may be attached to the drug by physical interaction or chemical functionalization for covalent drug binding. Current development of nanocarrier formulations such as surfactant nanocellulose, ultra-lightweight porous materials, hydrogel, polyelectrolytes, and inorganic hybridizations has advanced to enable the construction of stimuli-responsive and specific recognition characteristics. Thus, an opportunity has emerged to develop a new generation of nanocellulose-based carriers that can modulate the drug conveyance for diverse drug characteristics. This review provides insights into selecting appropriate nanocellulose-based hybrid materials and the available modification routes to achieve satisfactory carrier performance and briefly discusses the essential criteria to achieve high-quality nanocellulose. Full article
(This article belongs to the Special Issue Cellulose (Nano)Composites)
Show Figures

Graphical abstract

49 pages, 7182 KiB  
Review
Thiophene-Based Trimers and Their Bioapplications: An Overview
by Lorenzo Vallan, Emin Istif, I. Jénnifer Gómez, Nuria Alegret and Daniele Mantione
Polymers 2021, 13(12), 1977; https://doi.org/10.3390/polym13121977 - 16 Jun 2021
Cited by 15 | Viewed by 4932
Abstract
Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that [...] Read more.
Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art. Full article
(This article belongs to the Special Issue Applied Conductive Polymer Materials)
Show Figures

Graphical abstract

23 pages, 6016 KiB  
Review
Biopolymers for Biological Control of Plant Pathogens: Advances in Microencapsulation of Beneficial Microorganisms
by Roohallah Saberi-Riseh, Mojde Moradi-Pour, Reza Mohammadinejad and Vijay Kumar Thakur
Polymers 2021, 13(12), 1938; https://doi.org/10.3390/polym13121938 - 10 Jun 2021
Cited by 60 | Viewed by 6917
Abstract
The use of biofertilizers, including biocontrol agents such as Pseudomonas and Bacillus in agriculture can increase soil characteristics and plant acquisition of nutrients and enhancement the efficiency of manure and mineral fertilizer. Despite the problems that liquid and solid formulations have in maintaining [...] Read more.
The use of biofertilizers, including biocontrol agents such as Pseudomonas and Bacillus in agriculture can increase soil characteristics and plant acquisition of nutrients and enhancement the efficiency of manure and mineral fertilizer. Despite the problems that liquid and solid formulations have in maintaining the viability of microbial agents, encapsulation can improve their application with extended shelf-life, and controlled release from formulations. Research into novel formulation methods especially encapsulation techniques has increased in recent years due to the mounting demand for microbial biological control. The application of polymeric materials in agriculture has developed recently as a replacement for traditional materials and considered an improvement in technological processes in the growing of crops. This study aims to overview of types of biopolymers and methods used for encapsulation of living biological control agents, especially microbial organisms. Full article
(This article belongs to the Special Issue Sustainable Polymers and Composites from Biorenewable Resources)
Show Figures

Figure 1

26 pages, 2180 KiB  
Review
Closing the Loop with Keratin-Rich Fibrous Materials
by Simona Perța-Crișan, Claudiu Ștefan Ursachi, Simona Gavrilaș, Florin Oancea and Florentina-Daniela Munteanu
Polymers 2021, 13(11), 1896; https://doi.org/10.3390/polym13111896 - 7 Jun 2021
Cited by 24 | Viewed by 7657
Abstract
One of the agro-industry’s side streams that is widely met is the-keratin rich fibrous material that is becoming a waste product without valorization. Its management as a waste is costly, as the incineration of this type of waste constitutes high environmental concern. Considering [...] Read more.
One of the agro-industry’s side streams that is widely met is the-keratin rich fibrous material that is becoming a waste product without valorization. Its management as a waste is costly, as the incineration of this type of waste constitutes high environmental concern. Considering these facts, the keratin-rich waste can be considered as a treasure for the producers interested in the valorization of such slowly-biodegradable by-products. As keratin is a protein that needs harsh conditions for its degradation, and that in most of the cases its constitutive amino acids are destroyed, we review new extraction methods that are eco-friendly and cost-effective. The chemical and enzymatic extractions of keratin are compared and the optimization of the extraction conditions at the lab scale is considered. In this study, there are also considered the potential applications of the extracted keratin as well as the reuse of the by-products obtained during the extraction processes. Full article
(This article belongs to the Special Issue Renaissance of Fibers and Fibrous Materials)
Show Figures

Graphical abstract

19 pages, 1135 KiB  
Review
Embracing Additive Manufacturing Technology through Fused Filament Fabrication for Antimicrobial with Enhanced Formulated Materials
by Waleed Ahmed, Sidra Siraj and Ali H. Al-Marzouqi
Polymers 2021, 13(9), 1523; https://doi.org/10.3390/polym13091523 - 9 May 2021
Cited by 30 | Viewed by 3675
Abstract
Antimicrobial materials produced by 3D Printing technology are very beneficial, especially for biomedical applications. Antimicrobial surfaces specifically with enhanced antibacterial property have been prepared using several quaternary salt-based agents, such as quaternary ammonium salts and metallic nanoparticles (NPs), such as copper and zinc, [...] Read more.
Antimicrobial materials produced by 3D Printing technology are very beneficial, especially for biomedical applications. Antimicrobial surfaces specifically with enhanced antibacterial property have been prepared using several quaternary salt-based agents, such as quaternary ammonium salts and metallic nanoparticles (NPs), such as copper and zinc, which are incorporated into a polymeric matrix mainly through copolymerization grafting and ionic exchange. This review compared different materials for their effectiveness in providing antimicrobial properties on surfaces. This study will help researchers choose the most suitable method of developing antimicrobial surfaces with the highest efficiency, which can be applied to develop products compatible with 3D Printing Technology. Full article
(This article belongs to the Special Issue Additive Manufacturing of Bio and Synthetic Polymers)
Show Figures

Graphical abstract

44 pages, 5087 KiB  
Review
Dynamics & Spectroscopy with Neutrons—Recent Developments & Emerging Opportunities
by Kacper Drużbicki, Mattia Gaboardi and Felix Fernandez-Alonso
Polymers 2021, 13(9), 1440; https://doi.org/10.3390/polym13091440 - 29 Apr 2021
Cited by 8 | Viewed by 5545
Abstract
This work provides an up-to-date overview of recent developments in neutron spectroscopic techniques and associated computational tools to interrogate the structural properties and dynamical behavior of complex and disordered materials, with a focus on those of a soft and polymeric nature. These have [...] Read more.
This work provides an up-to-date overview of recent developments in neutron spectroscopic techniques and associated computational tools to interrogate the structural properties and dynamical behavior of complex and disordered materials, with a focus on those of a soft and polymeric nature. These have and continue to pave the way for new scientific opportunities simply thought unthinkable not so long ago, and have particularly benefited from advances in high-resolution, broadband techniques spanning energy transfers from the meV to the eV. Topical areas include the identification and robust assignment of low-energy modes underpinning functionality in soft solids and supramolecular frameworks, or the quantification in the laboratory of hitherto unexplored nuclear quantum effects dictating thermodynamic properties. In addition to novel classes of materials, we also discuss recent discoveries around water and its phase diagram, which continue to surprise us. All throughout, emphasis is placed on linking these ongoing and exciting experimental and computational developments to specific scientific questions in the context of the discovery of new materials for sustainable technologies. Full article
(This article belongs to the Special Issue Polymers and Soft Matter: From Synthesis to Structure & Dynamics)
Show Figures

Figure 1

31 pages, 5569 KiB  
Review
Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness
by Louise Van Gheluwe, Igor Chourpa, Coline Gaigne and Emilie Munnier
Polymers 2021, 13(8), 1285; https://doi.org/10.3390/polym13081285 - 15 Apr 2021
Cited by 61 | Viewed by 9418
Abstract
Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet [...] Read more.
Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed. Full article
(This article belongs to the Special Issue Smart-Polymer-Based Systems for Drug Delivery)
Show Figures

Figure 1

13 pages, 11050 KiB  
Review
Advances in Liquid Crystalline Epoxy Resins for High Thermal Conductivity
by Younggi Hong and Munju Goh
Polymers 2021, 13(8), 1302; https://doi.org/10.3390/polym13081302 - 15 Apr 2021
Cited by 31 | Viewed by 6336
Abstract
Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has a three-dimensional random network, it possesses thermal properties similar to those of a typical heat insulator. Recently, there has been substantial interest in controlling the network structure [...] Read more.
Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has a three-dimensional random network, it possesses thermal properties similar to those of a typical heat insulator. Recently, there has been substantial interest in controlling the network structure of EP to create new functionalities. Indeed, the modified EP, represented as liquid crystalline epoxy (LCE), is considered promising for producing novel functionalities, which cannot be obtained from conventional EPs, by replacing the random network structure with an oriented one. In this paper, we review the current progress in the field of LCEs and their application to highly thermally conductive composite materials. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials)
Show Figures

Graphical abstract

42 pages, 7541 KiB  
Review
Exploring the Potential Application of Matrimid® and ZIFs-Based Membranes for Hydrogen Recovery: A Review
by Pablo Fernández-Castro, Alfredo Ortiz and Daniel Gorri
Polymers 2021, 13(8), 1292; https://doi.org/10.3390/polym13081292 - 15 Apr 2021
Cited by 13 | Viewed by 3283
Abstract
Hydrogen recovery is at the center of the energy transition guidelines promoted by governments, owing to its applicability as an energy resource, but calls for energetically nonintensive recovery methods. The employment of polymeric membranes in selective gas separations has arisen as a potential [...] Read more.
Hydrogen recovery is at the center of the energy transition guidelines promoted by governments, owing to its applicability as an energy resource, but calls for energetically nonintensive recovery methods. The employment of polymeric membranes in selective gas separations has arisen as a potential alternative, as its established commercial availability demonstrates. However, enhanced features need to be developed to achieve adequate mechanical properties and the membrane performance that allows the obtention of hydrogen with the required industrial purity. Matrimid®, as a polyimide, is an attractive material providing relatively good performance to selectively recover hydrogen. As a consequence, this review aims to study and summarize the main results, mechanisms involved and advances in the use of Matrimid® as a selective material for hydrogen separation to date, delving into membrane fabrication procedures that increase the effectiveness of hydrogen recovery, i.e., the addition of fillers (within which ZIFs have acquired extraordinary importance), chemical crosslinking or polymeric blending, among others. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 1698 KiB  
Review
Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers—Progress and Limitations
by William E. King and Gary L. Bowlin
Polymers 2021, 13(7), 1097; https://doi.org/10.3390/polym13071097 - 30 Mar 2021
Cited by 31 | Viewed by 5497
Abstract
Near-field electrospinning (NFES) and melt electrowriting (MEW) are the process of extruding a fiber due to the force exerted by an electric field and collecting the fiber before bending instabilities occur. When paired with precise relative motion between the polymer source and the [...] Read more.
Near-field electrospinning (NFES) and melt electrowriting (MEW) are the process of extruding a fiber due to the force exerted by an electric field and collecting the fiber before bending instabilities occur. When paired with precise relative motion between the polymer source and the collector, a fiber can be directly written as dictated by preprogrammed geometry. As a result, this precise fiber control results in another dimension of scaffold tailorability for biomedical applications. In this review, biomedically relevant polymers that to date have manufactured fibers by NFES/MEW are explored and the present limitations in direct fiber writing of standardization in published setup details, fiber write throughput, and increased ease in the creation of complex scaffold geometries are discussed. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

26 pages, 4253 KiB  
Review
A Review of Wet Compounding of Cellulose Nanocomposites
by Craig Clemons and Ronald Sabo
Polymers 2021, 13(6), 911; https://doi.org/10.3390/polym13060911 - 16 Mar 2021
Cited by 14 | Viewed by 4077
Abstract
Cellulose nanomaterials (CNs) are an emerging class of materials with numerous potential applications, including as additives or reinforcements for thermoplastics. Unfortunately, the preparation of CNs typically results in dilute, aqueous suspensions, and the lack of efficient water removal methods has hindered commercialization. However, [...] Read more.
Cellulose nanomaterials (CNs) are an emerging class of materials with numerous potential applications, including as additives or reinforcements for thermoplastics. Unfortunately, the preparation of CNs typically results in dilute, aqueous suspensions, and the lack of efficient water removal methods has hindered commercialization. However, water may also present opportunities for improving overall efficiencies if its potential is better understood and if it is better managed through the various stages of CN and composite production. Wet compounding represents one such possible opportunity by leveraging water’s ability to aid in CN dispersion, act as a transport medium for metering and feeding of CNs, plasticize some polymers, or potentially facilitate the preparation of CNs during compounding. However, there are also considerable challenges and much investigation remains. Here, we review various wet compounding approaches used in the preparation of cellulose nanocomposites as well as the related concepts of wet feeding and wet extrusion fibrillation of cellulose. We also discuss potential opportunities, remaining challenges, and research and development needs with the ultimate goal of developing a more integrated approach to cellulose nanocomposite preparation and a more sophisticated understanding of water’s role in the compounding process. Full article
(This article belongs to the Special Issue Nanocellulose: Polymer Nanocomposites and all-Cellulose Materials)
Show Figures

Graphical abstract

22 pages, 3126 KiB  
Review
What Fate for Plastics in Artworks? An Overview of Their Identification and Degradative Behaviour
by Massimo Lazzari and Daniela Reggio
Polymers 2021, 13(6), 883; https://doi.org/10.3390/polym13060883 - 13 Mar 2021
Cited by 12 | Viewed by 4286
Abstract
This review is conceived as a guide for material science researchers and conservators aiming to face the problem of deterioration of contemporary artworks entirely or partially made of plastics. It initially illustrates the analytical approaches for identifying polymeric material components in 3D art [...] Read more.
This review is conceived as a guide for material science researchers and conservators aiming to face the problem of deterioration of contemporary artworks entirely or partially made of plastics. It initially illustrates the analytical approaches for identifying polymeric material components in 3D art objects, such as sculptures and installations, and provides a perspective of their limits and advantages. Subsequently, the methodologies used for studying the deterioration of contemporary art plastics are reviewed, emphasising the main effects of the different types of degradation (i.e., migration of additives, oxidation and hydrolysis) and suggesting the appropriate techniques for their detection. Finally, the application of artificial ageing tests is critically assessed. All the concepts are elaborated through case studies and examples. Full article
Show Figures

Graphical abstract

18 pages, 64135 KiB  
Review
Recent Advances in Natural Functional Biopolymers and Their Applications of Electronic Skins and Flexible Strain Sensors
by Ziying Wang, Zongtao Ma, Jingyao Sun, Yuhua Yan, Miaomiao Bu, Yanming Huo, Yun-Fei Li and Ning Hu
Polymers 2021, 13(5), 813; https://doi.org/10.3390/polym13050813 - 6 Mar 2021
Cited by 48 | Viewed by 7036
Abstract
In order to replace nonrenewable resources and decrease electronic waste disposal, there is a rapidly rising demand for the utilization of reproducible and degradable biopolymers in flexible electronics. Natural biopolymers have many remarkable characteristics, including light weight, excellent mechanical properties, biocompatibility, non-toxicity, low [...] Read more.
In order to replace nonrenewable resources and decrease electronic waste disposal, there is a rapidly rising demand for the utilization of reproducible and degradable biopolymers in flexible electronics. Natural biopolymers have many remarkable characteristics, including light weight, excellent mechanical properties, biocompatibility, non-toxicity, low cost, etc. Thanks to these superior merits, natural functional biopolymers can be designed and optimized for the development of high-performance flexible electronic devices. Herein, we provide an insightful overview of the unique structures, properties and applications of biopolymers for electronic skins (e-skins) and flexible strain sensors. The relationships between properties and sensing performances of biopolymers-based sensors are also investigated. The functional design strategies and fabrication technologies for biopolymers-based flexible sensors are proposed. Furthermore, the research progresses of biopolymers-based sensors with various functions are described in detail. Finally, we provide some useful viewpoints and future prospects of developing biopolymers-based flexible sensors. Full article
(This article belongs to the Special Issue Functional Polymer Composites)
Show Figures

Graphical abstract

15 pages, 2746 KiB  
Review
A Review: Research Progress in Modification of Poly (Lactic Acid) by Lignin and Cellulose
by Sixiang Zhai, Qingying Liu, Yuelong Zhao, Hui Sun, Biao Yang and Yunxuan Weng
Polymers 2021, 13(5), 776; https://doi.org/10.3390/polym13050776 - 3 Mar 2021
Cited by 25 | Viewed by 4712
Abstract
With the depletion of petroleum energy, the possibility of prices of petroleum-based materials increasing, and increased environmental awareness, biodegradable materials as a kind of green alternative have attracted more and more research attention. In this context, poly (lactic acid) has shown a unique [...] Read more.
With the depletion of petroleum energy, the possibility of prices of petroleum-based materials increasing, and increased environmental awareness, biodegradable materials as a kind of green alternative have attracted more and more research attention. In this context, poly (lactic acid) has shown a unique combination of properties such as nontoxicity, biodegradability, biocompatibility, and good workability. However, examples of its known drawbacks include poor tensile strength, low elongation at break, poor thermal properties, and low crystallization rate. Lignocellulosic materials such as lignin and cellulose have excellent biodegradability and mechanical properties. Compounding such biomass components with poly (lactic acid) is expected to prepare green composite materials with improved properties of poly (lactic acid). This paper is aimed at summarizing the research progress of modification of poly (lactic acid) with lignin and cellulose made in in recent years, with emphasis on effects of lignin and cellulose on mechanical properties, thermal stability and crystallinity on poly (lactic acid) composite materials. Development of poly (lactic acid) composite materials in this respect is forecasted. Full article
(This article belongs to the Special Issue Design and Modification of Bio-Based Polymers, Blends and Composites)
Show Figures

Graphical abstract

18 pages, 3268 KiB  
Review
Review of Technologies and Materials Used in High-Voltage Film Capacitors
by Olatoundji Georges Gnonhoue, Amanda Velazquez-Salazar, Éric David and Ioana Preda
Polymers 2021, 13(5), 766; https://doi.org/10.3390/polym13050766 - 28 Feb 2021
Cited by 43 | Viewed by 9907
Abstract
High-voltage capacitors are key components for circuit breakers and monitoring and protection devices, and are important elements used to improve the efficiency and reliability of the grid. Different technologies are used in high-voltage capacitor manufacturing process, and at all stages of this process [...] Read more.
High-voltage capacitors are key components for circuit breakers and monitoring and protection devices, and are important elements used to improve the efficiency and reliability of the grid. Different technologies are used in high-voltage capacitor manufacturing process, and at all stages of this process polymeric films must be used, along with an encapsulating material, which can be either liquid, solid or gaseous. These materials play major roles in the lifespan and reliability of components. In this paper, we present a review of the different technologies used to manufacture high-voltage capacitors, as well as the different materials used in fabricating high-voltage film capacitors, with a view to establishing a bibliographic database that will allow a comparison of the different technologies Full article
(This article belongs to the Special Issue Dielectric Polymers)
Show Figures

Figure 1

31 pages, 3339 KiB  
Review
Polymeric Nanoparticles for Antimicrobial Therapies: An up-to-date Overview
by Vera Alexandra Spirescu, Cristina Chircov, Alexandru Mihai Grumezescu and Ecaterina Andronescu
Polymers 2021, 13(5), 724; https://doi.org/10.3390/polym13050724 - 27 Feb 2021
Cited by 101 | Viewed by 5912
Abstract
Despite the many advancements in the pharmaceutical and medical fields and the development of numerous antimicrobial drugs aimed to suppress and destroy pathogenic microorganisms, infectious diseases still represent a major health threat affecting millions of lives daily. In addition to the limitations of [...] Read more.
Despite the many advancements in the pharmaceutical and medical fields and the development of numerous antimicrobial drugs aimed to suppress and destroy pathogenic microorganisms, infectious diseases still represent a major health threat affecting millions of lives daily. In addition to the limitations of antimicrobial drugs associated with low transportation rate, water solubility, oral bioavailability and stability, inefficient drug targeting, considerable toxicity, and limited patient compliance, the major cause for their inefficiency is the antimicrobial resistance of microorganisms. In this context, the risk of a pre-antibiotic era is a real possibility. For this reason, the research focus has shifted toward the discovery and development of novel and alternative antimicrobial agents that could overcome the challenges associated with conventional drugs. Nanotechnology is a possible alternative, as there is significant evidence of the broad-spectrum antimicrobial activity of nanomaterials and nanoparticles in particular. Moreover, owing to their considerable advantages regarding their efficient cargo dissolving, entrapment, encapsulation, or surface attachment, the possibility of forming antimicrobial groups for specific targeting and destruction, biocompatibility and biodegradability, low toxicity, and synergistic therapy, polymeric nanoparticles have received considerable attention as potential antimicrobial drug delivery agents. In this context, the aim of this paper is to provide an up-to-date overview of the most recent studies investigating polymeric nanoparticles designed for antimicrobial therapies, describing both their targeting strategies and their effects. Full article
(This article belongs to the Special Issue Biopolymers for Biomedical Applications II)
Show Figures

Figure 1

28 pages, 7637 KiB  
Review
Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite
by Christopher G. Robertson and Ned J. Hardman
Polymers 2021, 13(4), 538; https://doi.org/10.3390/polym13040538 - 12 Feb 2021
Cited by 139 | Viewed by 18827
Abstract
Adding carbon black (CB) particles to elastomeric polymers is essential to the successful industrial use of rubber in many applications, and the mechanical reinforcing effect of CB in rubber has been studied for nearly 100 years. Despite these many decades of investigations, the [...] Read more.
Adding carbon black (CB) particles to elastomeric polymers is essential to the successful industrial use of rubber in many applications, and the mechanical reinforcing effect of CB in rubber has been studied for nearly 100 years. Despite these many decades of investigations, the origin of stiffness enhancement of elastomers from incorporating nanometer-scale CB particles is still debated. It is not universally accepted whether the interactions between polymer chains and CB surfaces are purely physical adsorption or whether some polymer–particle chemical bonds are also introduced in the process of mixing and curing the CB-filled rubber compounds. We review key experimental observations of rubber reinforced with CB, including the finding that heat treatment of CB can greatly reduce the filler reinforcement effect in rubber. The details of the particle morphology and surface chemistry are described to give insights into the nature of the CB–elastomer interfaces. This is followed by a discussion of rubber processing effects, the influence of CB on crosslinking, and various chemical modification approaches that have been employed to improve polymer–filler interactions and reinforcement. Finally, we contrast various models that have been proposed for rationalizing the CB reinforcement of elastomers. Full article
(This article belongs to the Special Issue Rubber Materials: Processes, Structures and Applications)
Show Figures

Graphical abstract

24 pages, 4041 KiB  
Review
Greener, Faster, Stronger: The Benefits of Deep Eutectic Solvents in Polymer and Materials Science
by Yeasmin Nahar and Stuart C. Thickett
Polymers 2021, 13(3), 447; https://doi.org/10.3390/polym13030447 - 30 Jan 2021
Cited by 93 | Viewed by 11320
Abstract
Deep eutectic solvents (DESs) represent an emergent class of green designer solvents that find numerous applications in different aspects of chemical synthesis. A particularly appealing aspect of DES systems is their simplicity of preparation, combined with inexpensive, readily available starting materials to yield [...] Read more.
Deep eutectic solvents (DESs) represent an emergent class of green designer solvents that find numerous applications in different aspects of chemical synthesis. A particularly appealing aspect of DES systems is their simplicity of preparation, combined with inexpensive, readily available starting materials to yield solvents with appealing properties (negligible volatility, non-flammability and high solvation capacity). In the context of polymer science, DES systems not only offer an appealing route towards replacing hazardous volatile organic solvents (VOCs), but can serve multiple roles including those of solvent, monomer and templating agent—so called “polymerizable eutectics.” In this review, we look at DES systems and polymerizable eutectics and their application in polymer materials synthesis, including various mechanisms of polymer formation, hydrogel design, porous monoliths, and molecularly imprinted polymers. We provide a comparative study of these systems alongside traditional synthetic approaches, highlighting not only the benefit of replacing VOCs from the perspective of environmental sustainability, but also the materials advantage with respect to mechanical and thermal properties of the polymers formed. Full article
(This article belongs to the Special Issue Sustainable Monomers, Catalysts, Polymers and Polymer-Based Materials)
Show Figures

Graphical abstract

13 pages, 4449 KiB  
Review
Responsive Nanostructured Polymer Particles
by Kang Hee Ku
Polymers 2021, 13(2), 273; https://doi.org/10.3390/polym13020273 - 15 Jan 2021
Cited by 7 | Viewed by 4292
Abstract
Responsive polymer particles with switchable properties are of great importance for designing smart materials in various applications. Recently, the self-assembly of block copolymers (BCPs) and polymer blends within evaporative emulsions has led to advances in the shape-controlled synthesis of polymer particles. Despite extensive [...] Read more.
Responsive polymer particles with switchable properties are of great importance for designing smart materials in various applications. Recently, the self-assembly of block copolymers (BCPs) and polymer blends within evaporative emulsions has led to advances in the shape-controlled synthesis of polymer particles. Despite extensive recent progress on BCP particles, the responsive shape tuning of BCP particles and their applications have received little attention. This review provides a brief overview of recent approaches to developing non-spherical polymer particles from soft evaporative emulsions based on the physical principles affecting both particle shape and inner structure. Special attention is paid to the stimuli-responsive, shape-changing nanostructured polymer particles, i.e., design of polymers and surfactant pairs, detailed experimental results, and their applications, including the state-of-the-art progress in this field. Finally, the perspectives on current challenges and future directions in this research field are presented, including the development of surfactants with higher reversibility to multiple stimuli and polymers with unique structural functionality, and diversification of polymer architectures. Full article
(This article belongs to the Special Issue Self-Assembled Functional Macromolecular Materials)
Show Figures

Graphical abstract

30 pages, 5422 KiB  
Review
Insight into the Structure and Dynamics of Polymers by Neutron Scattering Combined with Atomistic Molecular Dynamics Simulations
by Arantxa Arbe, Fernando Alvarez and Juan Colmenero
Polymers 2020, 12(12), 3067; https://doi.org/10.3390/polym12123067 - 21 Dec 2020
Cited by 18 | Viewed by 3833
Abstract
Combining neutron scattering and fully atomistic molecular dynamics simulations allows unraveling structural and dynamical features of polymer melts at different length scales, mainly in the intermolecular and monomeric range. Here we present the methodology developed by us and the results of its application [...] Read more.
Combining neutron scattering and fully atomistic molecular dynamics simulations allows unraveling structural and dynamical features of polymer melts at different length scales, mainly in the intermolecular and monomeric range. Here we present the methodology developed by us and the results of its application during the last years in a variety of polymers. This methodology is based on two pillars: (i) both techniques cover approximately the same length and time scales and (ii) the classical van Hove formalism allows easily calculating the magnitudes measured by neutron scattering from the simulated atomic trajectories. By direct comparison with experimental results, the simulated cell is validated. Thereafter, the information of the simulations can be exploited, calculating magnitudes that are experimentally inaccessible or extending the parameters range beyond the experimental capabilities. We show how detailed microscopic insight on structural features and dynamical processes of various kinds has been gained in polymeric systems with different degrees of complexity, and how intriguing questions as the collective behavior at intermediate length scales have been faced. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Spain (2020,2021))
Show Figures

Graphical abstract

23 pages, 4723 KiB  
Review
Advancements in the Blood–Brain Barrier Penetrating Nanoplatforms for Brain Related Disease Diagnostics and Therapeutic Applications
by Suresh Thangudu, Fong-Yu Cheng and Chia-Hao Su
Polymers 2020, 12(12), 3055; https://doi.org/10.3390/polym12123055 - 20 Dec 2020
Cited by 43 | Viewed by 7991
Abstract
Noninvasive treatments to treat the brain-related disorders have been paying more significant attention and it is an emerging topic. However, overcoming the blood brain barrier (BBB) is a key obstacle to most of the therapeutic drugs to enter into the brain tissue, which [...] Read more.
Noninvasive treatments to treat the brain-related disorders have been paying more significant attention and it is an emerging topic. However, overcoming the blood brain barrier (BBB) is a key obstacle to most of the therapeutic drugs to enter into the brain tissue, which significantly results in lower accumulation of therapeutic drugs in the brain. Thus, administering the large quantity/doses of drugs raises more concerns of adverse side effects. Nanoparticle (NP)-mediated drug delivery systems are seen as potential means of enhancing drug transport across the BBB and to targeted brain tissue. These systems offer more accumulation of therapeutic drugs at the tumor site and prolong circulation time in the blood. In this review, we summarize the current knowledge and advancements on various nanoplatforms (NF) and discusses the use of nanoparticles for successful cross of BBB to treat the brain-related disorders such as brain tumors, Alzheimer’s disease, Parkinson’s disease, and stroke. Full article
(This article belongs to the Special Issue Intelligent Polymeric Delivery System for Biomedical Applications)
Show Figures

Figure 1

18 pages, 2685 KiB  
Review
Photo-Crosslinked Silk Fibroin for 3D Printing
by Xuan Mu, Jugal Kishore Sahoo, Peggy Cebe and David L. Kaplan
Polymers 2020, 12(12), 2936; https://doi.org/10.3390/polym12122936 - 9 Dec 2020
Cited by 64 | Viewed by 9810
Abstract
Silk fibroin in material formats provides robust mechanical properties, and thus is a promising protein for 3D printing inks for a range of applications, including tissue engineering, bioelectronics, and bio-optics. Among the various crosslinking mechanisms, photo-crosslinking is particularly useful for 3D printing with [...] Read more.
Silk fibroin in material formats provides robust mechanical properties, and thus is a promising protein for 3D printing inks for a range of applications, including tissue engineering, bioelectronics, and bio-optics. Among the various crosslinking mechanisms, photo-crosslinking is particularly useful for 3D printing with silk fibroin inks due to the rapid kinetics, tunable crosslinking dynamics, light-assisted shape control, and the option to use visible light as a biocompatible processing condition. Multiple photo-crosslinking approaches have been applied to native or chemically modified silk fibroin, including photo-oxidation and free radical methacrylate polymerization. The molecular characteristics of silk fibroin, i.e., conformational polymorphism, provide a unique method for crosslinking and microfabrication via light. The molecular design features of silk fibroin inks and the exploitation of photo-crosslinking mechanisms suggest the exciting potential for meeting many biomedical needs in the future. Full article
Show Figures

Graphical abstract

36 pages, 7444 KiB  
Review
Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications
by Sheila Maiz-Fernández, Leyre Pérez-Álvarez, Leire Ruiz-Rubio, Jose Luis Vilas-Vilela and Senentxu Lanceros-Mendez
Polymers 2020, 12(10), 2261; https://doi.org/10.3390/polym12102261 - 1 Oct 2020
Cited by 38 | Viewed by 6039
Abstract
In situ hydrogels have attracted increasing interest in recent years due to the need to develop effective and practical implantable platforms. Traditional hydrogels require surgical interventions to be implanted and are far from providing personalized medicine applications. However, in situ hydrogels offer a [...] Read more.
In situ hydrogels have attracted increasing interest in recent years due to the need to develop effective and practical implantable platforms. Traditional hydrogels require surgical interventions to be implanted and are far from providing personalized medicine applications. However, in situ hydrogels offer a wide variety of advantages, such as a non-invasive nature due to their localized action or the ability to perfectly adapt to the place to be replaced regardless the size, shape or irregularities. In recent years, research has particularly focused on in situ hydrogels based on natural polysaccharides due to their promising properties such as biocompatibility, biodegradability and their ability to self-repair. This last property inspired in nature gives them the possibility of maintaining their integrity even after damage, owing to specific physical interactions or dynamic covalent bonds that provide reversible linkages. In this review, the different self-healing mechanisms, as well as the latest research on in situ self-healing hydrogels, is presented, together with the potential applications of these materials in tissue regeneration. Full article
(This article belongs to the Special Issue In-Situ Forming and Self-Healing Hydrogels)
Show Figures

Figure 1

36 pages, 4245 KiB  
Review
Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering
by Hafez Jafari, Alberto Lista, Manuela Mafosso Siekapen, Pejman Ghaffari-Bohlouli, Lei Nie, Houman Alimoradi and Amin Shavandi
Polymers 2020, 12(10), 2230; https://doi.org/10.3390/polym12102230 - 28 Sep 2020
Cited by 228 | Viewed by 36029
Abstract
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the [...] Read more.
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized. Full article
(This article belongs to the Special Issue Biopolymers for Tissue Engineering)
Show Figures

Figure 1

44 pages, 9288 KiB  
Review
Recent Advances in the Synthesis and Application of Polymer Compartments for Catalysis
by Tai-Lam Nghiem, Deniz Coban, Stefanie Tjaberings and André H. Gröschel
Polymers 2020, 12(10), 2190; https://doi.org/10.3390/polym12102190 - 24 Sep 2020
Cited by 30 | Viewed by 8448
Abstract
Catalysis is one of the most important processes in nature, science, and technology, that enables the energy efficient synthesis of essential organic compounds, pharmaceutically active substances, and molecular energy sources. In nature, catalytic reactions typically occur in aqueous environments involving multiple catalytic sites. [...] Read more.
Catalysis is one of the most important processes in nature, science, and technology, that enables the energy efficient synthesis of essential organic compounds, pharmaceutically active substances, and molecular energy sources. In nature, catalytic reactions typically occur in aqueous environments involving multiple catalytic sites. To prevent the deactivation of catalysts in water or avoid unwanted cross-reactions, catalysts are often site-isolated in nanopockets or separately stored in compartments. These concepts have inspired the design of a range of synthetic nanoreactors that allow otherwise unfeasible catalytic reactions in aqueous environments. Since the field of nanoreactors is evolving rapidly, we here summarize—from a personal perspective—prominent and recent examples for polymer nanoreactors with emphasis on their synthesis and their ability to catalyze reactions in dispersion. Examples comprise the incorporation of catalytic sites into hydrophobic nanodomains of single chain polymer nanoparticles, molecular polymer nanoparticles, and block copolymer micelles and vesicles. We focus on catalytic reactions mediated by transition metal and organocatalysts, and the separate storage of multiple catalysts for one-pot cascade reactions. Efforts devoted to the field of nanoreactors are relevant for catalytic chemistry and nanotechnology, as well as the synthesis of pharmaceutical and natural compounds. Optimized nanoreactors will aid in the development of more potent catalytic systems for green and fast reaction sequences contributing to sustainable chemistry by reducing waste of solvents, reagents, and energy. Full article
(This article belongs to the Collection The Next Generation in Polymer Research)
Show Figures

Graphical abstract

25 pages, 2124 KiB  
Review
The Potential for Bio-Sustainable Organobromine-Containing Flame Retardant Formulations for Textile Applications—A Review
by A Richard Horrocks
Polymers 2020, 12(9), 2160; https://doi.org/10.3390/polym12092160 - 22 Sep 2020
Cited by 34 | Viewed by 4944
Abstract
This review considers the challenge of developing sustainable organobromine flame retardants (BrFRs) and alternative synergists to the predominantly used antimony III oxide. Current BrFR efficiencies are reviewed for textile coatings and back-coatings with a focus on furnishing and similar fabrics covering underlying flammable [...] Read more.
This review considers the challenge of developing sustainable organobromine flame retardants (BrFRs) and alternative synergists to the predominantly used antimony III oxide. Current BrFR efficiencies are reviewed for textile coatings and back-coatings with a focus on furnishing and similar fabrics covering underlying flammable fillings, such as flexible polyurethane foam. The difficulty of replacing them with non-halogen-containing systems is also reviewed with major disadvantages including their extreme specificity with regard to a given textile type and poor durability.The possibility of replacing currently used BrFRs for textiles structures that mimic naturally occurring organobromine-containing species is discussed, noting that of the nearly 2000 such species identified in both marine and terrestrial environments, a significant number are functionalised polybrominated diphenyl ethers, which form part of a series of little understood biosynthetic biodegradation cycles.The continued use of antimony III oxide as synergist and possible replacement by alternatives, such as the commercially available zinc stannates and the recently identified zinc tungstate, are discussed. Both are effective as synergists and smoke suppressants, but unlike Sb203, they have efficiencies dependent on BrFR chemistry and polymer matrix or textile structure. Furthermore, their effectiveness in textile coatings has yet to be more fully assessed.In conclusion, it is proposed that the future of sustainable BrFRs should be based on naturally occurring polybrominated structures developed in conjunction with non-toxic, smoke-suppressing synergists such as the zinc stannates or zinc tungstate, which have been carefully tailored for given polymeric and textile substrates. Full article
(This article belongs to the Special Issue Advances in Flame Retardant Polymeric Materials)
Show Figures

Graphical abstract

21 pages, 883 KiB  
Review
A Review on Citric Acid as Green Modifying Agent and Binder for Wood
by Seng Hua Lee, Paridah Md Tahir, Wei Chen Lum, Li Peng Tan, Paiman Bawon, Byung-Dae Park, Syeed SaifulAzry Osman Al Edrus and Ummi Hani Abdullah
Polymers 2020, 12(8), 1692; https://doi.org/10.3390/polym12081692 - 29 Jul 2020
Cited by 64 | Viewed by 9934
Abstract
Citric acid (CA) can be found naturally in fruits and vegetables, particularly citrus fruit. CA is widely used in many fields but its usage as a green modifying agent and binder for wood is barely addressed. Esterification is one of the most common [...] Read more.
Citric acid (CA) can be found naturally in fruits and vegetables, particularly citrus fruit. CA is widely used in many fields but its usage as a green modifying agent and binder for wood is barely addressed. Esterification is one of the most common chemical reactions applied in wood modification. CA contains three carboxyl groups, making it possible to attain at least two esterification reactions that are required for crosslinking when reacting with the hydroxyl groups of the cell wall polymers. In addition, the reaction could form ester linkages to bring adhesivity and good bonding characteristics, and therefore CA could be used as wood binder too. This paper presents a review concerning the usage of CA as a wood modifying agent and binder. For wood modification, the reaction mechanism between wood and CA and the pros and cons of using CA are discussed. CA and its combination with various reactants and their respective optimum parameters are also compiled in this paper. As for the major wood bonding component, the bonding mechanism and types of wood composites bonded with CA are presented. The best working conditions for the CA in the fabrication of wood-based panels are discussed. In addition, the environmental impacts and future outlook of CA-treated wood and bonded composite are also considered. Full article
(This article belongs to the Special Issue Recent Developments in Eco-Friendly Wood-Based Composites)
Show Figures

Graphical abstract

17 pages, 3339 KiB  
Review
Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications
by Valentina Siracusa and Ignazio Blanco
Polymers 2020, 12(8), 1641; https://doi.org/10.3390/polym12081641 - 23 Jul 2020
Cited by 278 | Viewed by 42452
Abstract
In recent year, there has been increasing concern about the growing amount of plastic waste coming from daily life. Different kinds of synthetic plastics are currently used for an extensive range of needs, but in order to reduce the impact of petroleum-based plastics [...] Read more.
In recent year, there has been increasing concern about the growing amount of plastic waste coming from daily life. Different kinds of synthetic plastics are currently used for an extensive range of needs, but in order to reduce the impact of petroleum-based plastics and material waste, considerable attention has been focused on “green” plastics. In this paper, we present a broad review on the advances in the research and development of bio-based polymers analogous to petroleum-derived ones. The main interest for the development of bio-based materials is the strong public concern about waste, pollution and carbon footprint. The sustainability of those polymers, for general and specific applications, is driven by the great progress in the processing technologies that refine biomass feedstocks in order to obtain bio-based monomers that are used as building blocks. At the same time, thanks to the industrial progress, it is possible to obtain more versatile and specific chemical structures in order to synthetize polymers with ad-hoc tailored properties and functionalities, with engineering applications that include packaging but also durable and electronic goods. In particular, three types of polymers were described in this review: Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and Bio-poly(ethylene terephthalate) (Bio-PET). The recent advances in their development in terms of processing technologies, product development and applications, as well as their advantages and disadvantages, are reported. Full article
(This article belongs to the Special Issue Biopolymer Modifications and Characterization)
Show Figures

Graphical abstract

18 pages, 5197 KiB  
Review
Application of Synchrotron Radiation X-ray Scattering and Spectroscopy to Soft Matter
by Atsushi Takahara, Yuji Higaki, Tomoyasu Hirai and Ryohei Ishige
Polymers 2020, 12(7), 1624; https://doi.org/10.3390/polym12071624 - 21 Jul 2020
Cited by 16 | Viewed by 6384
Abstract
Light produced by synchrotron radiation (SR) is much brighter than that produced by conventional laboratory X-ray sources. The photon energy of SR X-ray ranges from soft and tender X-rays to hard X-rays. Moreover, X-rays become element sensitive with decreasing photon energy. By using [...] Read more.
Light produced by synchrotron radiation (SR) is much brighter than that produced by conventional laboratory X-ray sources. The photon energy of SR X-ray ranges from soft and tender X-rays to hard X-rays. Moreover, X-rays become element sensitive with decreasing photon energy. By using a wide energy range and high-quality light of SR, different scattering and spectroscopic methods were applied to various soft matters. We present five of our recent studies performed using specific light properties of a synchrotron facility, which are as follows: (1) In situ USAXS study to understand the deformation behavior of colloidal crystals during uniaxial stretching; (2) structure characterization of semiconducting polymer thin films along the film thickness direction by grazing-incidence wide-angle X-ray scattering using tender X-rays; (3) X-ray absorption fine structure (XAFS) analysis of the formation mechanism of poly(3-hexylthiophene) (P3HT); (4) soft X-ray absorption and emission spectroscopic analysis of water structure in polyelectrolyte brushes; and (5) X-ray photon correlation spectroscopic analysis of the diffusion behavior of polystyrene-grafted nanoparticles dispersed in a polystyrene matrix. Full article
(This article belongs to the Collection The Next Generation in Polymer Research)
Show Figures

Figure 1

20 pages, 8186 KiB  
Review
Structural Polymorphism of Single pDNA Condensates Elicited by Cationic Block Polyelectrolytes
by Kensuke Osada
Polymers 2020, 12(7), 1603; https://doi.org/10.3390/polym12071603 - 19 Jul 2020
Cited by 8 | Viewed by 3805
Abstract
DNA folding is a core phenomenon in genome packaging within a nucleus. Such a phenomenon is induced by polyelectrolyte complexation between anionic DNA and cationic proteins of histones. In this regard, complexes formed between DNA and cationic polyelectrolytes have been investigated as models [...] Read more.
DNA folding is a core phenomenon in genome packaging within a nucleus. Such a phenomenon is induced by polyelectrolyte complexation between anionic DNA and cationic proteins of histones. In this regard, complexes formed between DNA and cationic polyelectrolytes have been investigated as models to gain insight into genome packaging. Upon complexation, DNA undergoes folding to reduce its occupied volume, which often results in multi-complex associated aggregates. However, when cationic copolymers comprising a polycation block and a neutral hydrophilic polymer block are used instead, DNA undergoes folding as a single molecule within a spontaneously formed polyplex micelle (PM), thereby allowing the observation of the higher-order structures that DNA forms. The DNA complex forms polymorphic structures, including globular, rod-shaped, and ring-shaped (toroidal) structures. This review focuses on the polymorphism of DNA, particularly, to elucidate when, how, and why DNA organizes into these structures with cationic copolymers. The interactions between DNA and the copolymers, and the specific nature of DNA in rigidity; i.e., rigid but foldable, play significant roles in the observed polymorphism. Moreover, PMs serve as potential gene vectors for systemic application. The significance of the controlled DNA folding for such an application is addressed briefly in the last part. Full article
(This article belongs to the Special Issue Bio-Based Polyelectrolytes: Development and Applications)
Show Figures

Graphical abstract

29 pages, 13876 KiB  
Review
Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping
by Jingyi Wang and Ting Lei
Polymers 2020, 12(7), 1548; https://doi.org/10.3390/polym12071548 - 13 Jul 2020
Cited by 36 | Viewed by 7065
Abstract
In the past two decades, single-walled carbon nanotubes (SWNTs) have been explored for electronic applications because of their high charge carrier mobility, low-temperature solution processability and mechanical flexibility. Semiconducting SWNTs (s-SWNTs) are also considered an alternative to traditional silicon-based semiconductors. However, large-scale, as-produced [...] Read more.
In the past two decades, single-walled carbon nanotubes (SWNTs) have been explored for electronic applications because of their high charge carrier mobility, low-temperature solution processability and mechanical flexibility. Semiconducting SWNTs (s-SWNTs) are also considered an alternative to traditional silicon-based semiconductors. However, large-scale, as-produced SWNTs have poor solubility, and they are mixtures of metallic SWNTs (m-SWNTs) and s-SWNTs, which limits their practical applications. Conjugated polymer wrapping is a promising method to disperse and separate s-SWNTs, due to its high selectivity, high separation yield and simplicity of operation. In this review, we summarize the recent progress of the conjugated polymer wrapping method, and discuss possible separation mechanisms for s-SWNTs. We also discuss various parameters that may affect the selectivity and sorting yield. Finally, some electronic applications of polymer-sorted s-SWNTs are introduced. The aim of this review is to provide polymer chemist a basic concept of polymer based SWNT separation, as well as some polymer design strategies, influential factors and potential applications. Full article
Show Figures

Figure 1

42 pages, 12062 KiB  
Review
FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments
by Sachini Wickramasinghe, Truong Do and Phuong Tran
Polymers 2020, 12(7), 1529; https://doi.org/10.3390/polym12071529 - 10 Jul 2020
Cited by 539 | Viewed by 35721
Abstract
Fused deposition modelling (FDM) is one of the fastest-growing additive manufacturing methods used in printing fibre-reinforced composites (FRC). The performances of the resulting printed parts are limited compared to those by other manufacturing methods due to their inherent defects. Hence, the effort to [...] Read more.
Fused deposition modelling (FDM) is one of the fastest-growing additive manufacturing methods used in printing fibre-reinforced composites (FRC). The performances of the resulting printed parts are limited compared to those by other manufacturing methods due to their inherent defects. Hence, the effort to develop treatment methods to overcome these drawbacks has accelerated during the past few years. The main focus of this study is to review the impact of those defects on the mechanical performance of FRC and therefore to discuss the available treatment methods to eliminate or minimize them in order to enhance the functional properties of the printed parts. As FRC is a combination of polymer matrix material and continuous or short reinforcing fibres, this review will thoroughly discuss both thermoplastic polymers and FRCs printed via FDM technology, including the effect of printing parameters such as layer thickness, infill pattern, raster angle and fibre orientation. The most common defects on printed parts, in particular, the void formation, surface roughness and poor bonding between fibre and matrix, are explored. An inclusive discussion on the effectiveness of chemical, laser, heat and ultrasound treatments to minimize these drawbacks is provided by this review. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

18 pages, 3146 KiB  
Review
Present Status in Polymeric Mouthguards. A Future Area for Additive Manufacturing?
by Ana M. Sousa, Ana C. Pinho, Ana Messias and Ana P. Piedade
Polymers 2020, 12(7), 1490; https://doi.org/10.3390/polym12071490 - 3 Jul 2020
Cited by 26 | Viewed by 9546
Abstract
Athletes from contact sports are more prone to orofacial injuries because of the exposure to possible shocks and collisions derived from physical proximity. The use of protector polymeric mouthguards proved to be useful in the prevention of the described injuries. There are different [...] Read more.
Athletes from contact sports are more prone to orofacial injuries because of the exposure to possible shocks and collisions derived from physical proximity. The use of protector polymeric mouthguards proved to be useful in the prevention of the described injuries. There are different types of mouthguards with varying ranges of protection and prices, but they are all made from polymers and share the same propose: to absorb and dissipate the impact energy resulting from the shocks. As they are used inside the mouth, they should not impair breathing and speaking nor compromise the comfort of the athlete. However, the ideal mouthguard is yet to be created. The choice of the most appropriate polymeric material and the standard required properties have not yet been reported. Regardless of the numerous studies in this field, normalized control parameters for both material characterization and mouthguard fabrication are absent. This paper aims to present a review of the current types of available mouthguards and their properties/characteristics. Moreover, a detailed description of the most common polymers for the fabrication of mouthguards, together with the manufacturing techniques, are discussed. Full article
(This article belongs to the Special Issue Polymer Connect: Polymer Science and Composite Materials)
Show Figures

Figure 1

45 pages, 3261 KiB  
Review
Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis
by Sabya Sachi Das, Priyanshu Bharadwaj, Muhammad Bilal, Mahmood Barani, Abbas Rahdar, Pablo Taboada, Simona Bungau and George Z. Kyzas
Polymers 2020, 12(6), 1397; https://doi.org/10.3390/polym12061397 - 22 Jun 2020
Cited by 320 | Viewed by 16202
Abstract
In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers [...] Read more.
In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers. Full article
(This article belongs to the Special Issue Polymeric Materials for Drug Delivery Application)
Show Figures

Figure 1

22 pages, 4131 KiB  
Review
Solar Cells for Indoor Applications: Progress and Development
by Swarup Biswas and Hyeok Kim
Polymers 2020, 12(6), 1338; https://doi.org/10.3390/polym12061338 - 12 Jun 2020
Cited by 80 | Viewed by 8571
Abstract
The Internet of things (IoT) has been rapidly growing in the past few years. IoT connects numerous devices, such as wireless sensors, actuators, and wearable devices, to optimize and monitor daily activities. Most of these devices require power in the microwatt range and [...] Read more.
The Internet of things (IoT) has been rapidly growing in the past few years. IoT connects numerous devices, such as wireless sensors, actuators, and wearable devices, to optimize and monitor daily activities. Most of these devices require power in the microwatt range and operate indoors. To this end, a self-sustainable power source, such as a photovoltaic (PV) cell, which can harvest low-intensity indoor light, is appropriate. Recently, the development of highly efficient PV cells for indoor applications has attracted tremendous attention. Therefore, different types of PV materials, such as inorganic, dye-sensitized, organic, and perovskite materials, have been employed for harvesting low-intensity indoor light energy. Although considerable efforts have been made by researchers to develop low-cost, stable, and efficient PV cells for indoor applications, Extensive investigation is necessary to resolve some critical issues concerning PV cells, such as environmental stability, lifetime, large-area fabrication, mechanical flexibility, and production cost. To address these issues, a systematic review of these aspects will be highly useful to the research community. This study discusses the current status of the development of indoor PV cells based on previous reports. First, we have provided relevant background information. Then, we have described the different indoor light sources, and subsequently critically reviewed previous reports regarding indoor solar cells based on different active materials such as inorganic, dye-sensitized, organic, and perovskite. Finally, we have placed an attempt to provide insight into factors needed to further improve the feasibility of PV technology for indoor applications. Full article
(This article belongs to the Special Issue Photovoltaic Semiconductor Materials)
Show Figures

Graphical abstract

14 pages, 1439 KiB  
Review
The Modelling of Extrusion Processes for Polymers—A Review
by Marko Hyvärinen, Rowshni Jabeen and Timo Kärki
Polymers 2020, 12(6), 1306; https://doi.org/10.3390/polym12061306 - 8 Jun 2020
Cited by 76 | Viewed by 19021
Abstract
Extrusion processes are widely used in industries that aim to produce advanced solutions for increasingly sophisticated demands in the plastic, food, and pharmaceutical sectors. Though the process has been in use since the 1930s, limited information is available on the analytical computation of [...] Read more.
Extrusion processes are widely used in industries that aim to produce advanced solutions for increasingly sophisticated demands in the plastic, food, and pharmaceutical sectors. Though the process has been in use since the 1930s, limited information is available on the analytical computation of extrusion. Generally, production has been carried out based on empirical experience and trial-and-error approaches. The development of industrial operations is, however, best addressed by modelling the processes involved, and the flow of polymer melts and fibers in extruders has been subjected to some previous studies. Also included an overview of design of a die as well as challenges in sheet/film production. This article systematically and critically reviews the literature related to the process design, machine design, process parameters, flow models, and flow analysis of extrusion with a focus on modelling the extrusion of composite materials. Full article
Show Figures

Graphical abstract

24 pages, 3183 KiB  
Review
Chitosan-Based Drug Delivery System: Applications in Fish Biotechnology
by Yuanbing Wu, Ania Rashidpour, María Pilar Almajano and Isidoro Metón
Polymers 2020, 12(5), 1177; https://doi.org/10.3390/polym12051177 - 21 May 2020
Cited by 70 | Viewed by 8217
Abstract
Chitosan is increasingly used for safe nucleic acid delivery in gene therapy studies, due to well-known properties such as bioadhesion, low toxicity, biodegradability and biocompatibility. Furthermore, chitosan derivatization can be easily performed to improve the solubility and stability of chitosan–nucleic acid polyplexes, and [...] Read more.
Chitosan is increasingly used for safe nucleic acid delivery in gene therapy studies, due to well-known properties such as bioadhesion, low toxicity, biodegradability and biocompatibility. Furthermore, chitosan derivatization can be easily performed to improve the solubility and stability of chitosan–nucleic acid polyplexes, and enhance efficient target cell drug delivery, cell uptake, intracellular endosomal escape, unpacking and nuclear import of expression plasmids. As in other fields, chitosan is a promising drug delivery vector with great potential for the fish farming industry. This review highlights state-of-the-art assays using chitosan-based methodologies for delivering nucleic acids into cells, and focuses attention on recent advances in chitosan-mediated gene delivery for fish biotechnology applications. The efficiency of chitosan for gene therapy studies in fish biotechnology is discussed in fields such as fish vaccination against bacterial and viral infection, control of gonadal development and gene overexpression and silencing for overcoming metabolic limitations, such as dependence on protein-rich diets and the low glucose tolerance of farmed fish. Finally, challenges and perspectives on the future developments of chitosan-based gene delivery in fish are also discussed. Full article
(This article belongs to the Special Issue Functional Chitosan-Based Composites)
Show Figures

Figure 1

10 pages, 648 KiB  
Review
Lignin as a UV Light Blocker—A Review
by Hasan Sadeghifar and Arthur Ragauskas
Polymers 2020, 12(5), 1134; https://doi.org/10.3390/polym12051134 - 15 May 2020
Cited by 221 | Viewed by 13055
Abstract
Lignin is the by-product of pulp and paper industries and bio-refining operations. It is available as the leading natural phenolic biopolymer in the market. It has chromophore functional groups and can absorb a broad spectrum of UV light in range of 250–400 nm. [...] Read more.
Lignin is the by-product of pulp and paper industries and bio-refining operations. It is available as the leading natural phenolic biopolymer in the market. It has chromophore functional groups and can absorb a broad spectrum of UV light in range of 250–400 nm. Using lignin as a natural ingredient in sunscreen cream, transparent film, paints, varnishes and microorganism protection has been actively investigated. Both in non-modified and modified forms, lignin provides enhancing UV protection of commercial products with less than a 10% blend with other material. In mixtures with other synthetic UV blockers, lignin indicated synergic effects and increased final UV blocking potential in compare with using only synthetic UV blocker or lignin. However, using lignin as a UV blocker is also challenging due to its complex structure, polydispersity in molecular weight, brownish color and some impurities that require more research in order to make it an ideal bio-based UV blocker. Full article
(This article belongs to the Special Issue Progress in Lignin Value-Added Polymers)
Show Figures

Figure 1

22 pages, 2905 KiB  
Review
Production of Sustainable and Biodegradable Polymers from Agricultural Waste
by Chrysanthos Maraveas
Polymers 2020, 12(5), 1127; https://doi.org/10.3390/polym12051127 - 14 May 2020
Cited by 206 | Viewed by 26011
Abstract
Agro-wastes are derived from diverse sources including grape pomace, tomato pomace, pineapple, orange, and lemon peels, sugarcane bagasse, rice husks, wheat straw, and palm oil fibers, among other affordable and commonly available materials. The carbon-rich precursors are used in the production bio-based polymers [...] Read more.
Agro-wastes are derived from diverse sources including grape pomace, tomato pomace, pineapple, orange, and lemon peels, sugarcane bagasse, rice husks, wheat straw, and palm oil fibers, among other affordable and commonly available materials. The carbon-rich precursors are used in the production bio-based polymers through microbial, biopolymer blending, and chemical methods. The Food and Agriculture Organization (FAO) estimates that 20–30% of fruits and vegetables are discarded as waste during post-harvest handling. The development of bio-based polymers is essential, considering the scale of global environmental pollution that is directly linked to the production of synthetic plastics such as polypropylene (PP) and polyethylene (PET). Globally, 400 million tons of synthetic plastics are produced each year, and less than 9% are recycled. The optical, mechanical, and chemical properties such as ultraviolet (UV) absorbance, tensile strength, and water permeability are influenced by the synthetic route. The production of bio-based polymers from renewable sources and microbial synthesis are scalable, facile, and pose a minimal impact on the environment compared to chemical synthesis methods that rely on alkali and acid treatment or co-polymer blending. Despite the development of advanced synthetic methods and the application of biofilms in smart/intelligent food packaging, construction, exclusion nets, and medicine, commercial production is limited by cost, the economics of production, useful life, and biodegradation concerns, and the availability of adequate agro-wastes. New and cost-effective production techniques are critical to facilitate the commercial production of bio-based polymers and the replacement of synthetic polymers. Full article
(This article belongs to the Special Issue Biodegradable and Sustainable Polymers)
Show Figures

Figure 1

28 pages, 3967 KiB  
Review
A Review on Barrier Properties of Poly(Lactic Acid)/Clay Nanocomposites
by Shuvra Singha and Mikael S. Hedenqvist
Polymers 2020, 12(5), 1095; https://doi.org/10.3390/polym12051095 - 11 May 2020
Cited by 68 | Viewed by 7312
Abstract
Poly(lactic acid) (PLA) is considered to be among the best biopolymer substitutes for the existing petroleum-based polymers in the field of food packaging owing to its renewability, biodegradability, non-toxicity and mechanical properties. However, PLA displays only moderate barrier properties to gases, vapors and [...] Read more.
Poly(lactic acid) (PLA) is considered to be among the best biopolymer substitutes for the existing petroleum-based polymers in the field of food packaging owing to its renewability, biodegradability, non-toxicity and mechanical properties. However, PLA displays only moderate barrier properties to gases, vapors and organic compounds, which can limit its application as a packaging material. Hence, it becomes essential to understand the mass transport properties of PLA and address the transport challenges. Significant improvements in the barrier properties can be achieved by incorporating two-dimensional clay nanofillers, the planes of which create tortuosity to the diffusing molecules, thereby increasing the effective length of the diffusion path. This article reviews the literature on barrier properties of PLA/clay nanocomposites. The important PLA/clay nanocomposite preparation techniques, such as solution intercalation, melt processing and in situ polymerization, are outlined followed by an extensive account of barrier performance of nanocomposites drawn from the literature. Fundamentals of mass transport phenomena and the factors affecting mass transport are also presented. Furthermore, mathematical models that have been proposed/used to predict the permeability in polymer/clay nanocomposites are reviewed and the extent to which the models are validated in PLA/clay composites is discussed. Full article
(This article belongs to the Special Issue Performance and Application of Novel Biocomposites)
Show Figures

Figure 1

20 pages, 2506 KiB  
Review
Functional Micro- and Nanofibers Obtained by Nonwoven Post-Modification
by Tomasz Kowalczyk
Polymers 2020, 12(5), 1087; https://doi.org/10.3390/polym12051087 - 10 May 2020
Cited by 23 | Viewed by 3903
Abstract
Micro- and nanofibers are historically-known materials that are continuously reinvented due to their valuable properties. They display promise for applications in many fields, from tissue engineering to catalysis or sensors. In the first application, micro- and nanofibers are mainly produced from a limited [...] Read more.
Micro- and nanofibers are historically-known materials that are continuously reinvented due to their valuable properties. They display promise for applications in many fields, from tissue engineering to catalysis or sensors. In the first application, micro- and nanofibers are mainly produced from a limited library of biomaterials with properties that need alteration before use. Post-modification is a very effective method for attaining on-demand features and functions of nonwovens. This review summarizes and presents methods of functionalization of nonwovens produced by electrostatic means. The reviewed modifications are grouped into physical methods, chemical modification, and mixed methods. Full article
(This article belongs to the Special Issue Functional Electrospun Nanofibers)
Show Figures

Figure 1

23 pages, 2446 KiB  
Review
Activation Energies and Temperature Dependencies of the Rates of Crystallization and Melting of Polymers
by Sergey Vyazovkin
Polymers 2020, 12(5), 1070; https://doi.org/10.3390/polym12051070 - 7 May 2020
Cited by 66 | Viewed by 8409
Abstract
The objective of this review paper is to survey the phase transition kinetics with a focus on the temperature dependence of the rates of crystallization and melting, as well as on the activation energies of these processes obtained via the Arrhenius kinetic treatment, [...] Read more.
The objective of this review paper is to survey the phase transition kinetics with a focus on the temperature dependence of the rates of crystallization and melting, as well as on the activation energies of these processes obtained via the Arrhenius kinetic treatment, including the treatment by isoconversional methods. The literature is analyzed to track the development of the basic models and their underlying concepts. The review presents both theoretical and practical considerations regarding the kinetic analysis of crystallization and melting. Both processes are demonstrated to be kinetically complex, and this is revealed in the form of nonlinear Arrhenius plots and/or the variation of the activation energy with temperature. Principles which aid one to understand and interpret such results are discussed. An emphasis is also put on identifying proper computational methods and experimental data that can lead to meaningful kinetic interpretation. Full article
Show Figures

Figure 1

30 pages, 7109 KiB  
Review
Water-Soluble Photoinitiators in Biomedical Applications
by Wiktoria Tomal and Joanna Ortyl
Polymers 2020, 12(5), 1073; https://doi.org/10.3390/polym12051073 - 7 May 2020
Cited by 162 | Viewed by 25892
Abstract
Light-initiated polymerization processes are currently an important tool in various industrial fields. The advancement of technology has resulted in the use of photopolymerization in various biomedical applications, such as the production of 3D hydrogel structures, the encapsulation of cells, and in drug delivery [...] Read more.
Light-initiated polymerization processes are currently an important tool in various industrial fields. The advancement of technology has resulted in the use of photopolymerization in various biomedical applications, such as the production of 3D hydrogel structures, the encapsulation of cells, and in drug delivery systems. The use of photopolymerization processes requires an appropriate initiating system that, in biomedical applications, must meet additional criteria such as high water solubility, non-toxicity to cells, and compatibility with visible low-power light sources. This article is a literature review on those compounds that act as photoinitiators of photopolymerization processes in biomedical applications. The division of initiators according to the method of photoinitiation was described and the related mechanisms were discussed. Examples from each group of photoinitiators are presented, and their benefits, limitations, and applications are outlined. Full article
(This article belongs to the Special Issue Biomedical Polymer Materials II)
Show Figures

Graphical abstract

25 pages, 4090 KiB  
Review
Potential Natural Fiber Polymeric Nanobiocomposites: A Review
by K. M. Faridul Hasan, Péter György Horváth and Tibor Alpár
Polymers 2020, 12(5), 1072; https://doi.org/10.3390/polym12051072 - 7 May 2020
Cited by 168 | Viewed by 16299
Abstract
Composite materials reinforced with biofibers and nanomaterials are becoming considerably popular, especially for their light weight, strength, exceptional stiffness, flexural rigidity, damping property, longevity, corrosion, biodegradability, antibacterial, and fire-resistant properties. Beside the traditional thermoplastic and thermosetting polymers, nanoparticles are also receiving attention in [...] Read more.
Composite materials reinforced with biofibers and nanomaterials are becoming considerably popular, especially for their light weight, strength, exceptional stiffness, flexural rigidity, damping property, longevity, corrosion, biodegradability, antibacterial, and fire-resistant properties. Beside the traditional thermoplastic and thermosetting polymers, nanoparticles are also receiving attention in terms of their potential to improve the functionality and mechanical performances of biocomposites. These remarkable characteristics have made nanobiocomposite materials convenient to apply in aerospace, mechanical, construction, automotive, marine, medical, packaging, and furniture industries, through providing environmental sustainability. Nanoparticles (TiO2, carbon nanotube, rGO, ZnO, and SiO2) are easily compatible with other ingredients (matrix polymer and biofibers) and can thus form nanobiocomposites. Nanobiocomposites are exhibiting a higher market volume with the expansion of new technology and green approaches for utilizing biofibers. The performances of nanobiocomposites depend on the manufacturing processes, types of biofibers used, and the matrix polymer (resin). An overview of different natural fibers (vegetable/plants), nanomaterials, biocomposites, nanobiocomposites, and manufacturing methods are discussed in the context of potential application in this review. Full article
Show Figures

Graphical abstract

22 pages, 2274 KiB  
Review
Recent Advances in Tissue Adhesives for Clinical Medicine
by Liangpeng Ge and Shixuan Chen
Polymers 2020, 12(4), 939; https://doi.org/10.3390/polym12040939 - 18 Apr 2020
Cited by 97 | Viewed by 12951
Abstract
Tissue adhesives have attracted more attention to the applications of non-invasive wound closure. The purpose of this review article is to summarize the recent progress of developing tissue adhesives, which may inspire researchers to develop more outstanding tissue adhesives. It begins with a [...] Read more.
Tissue adhesives have attracted more attention to the applications of non-invasive wound closure. The purpose of this review article is to summarize the recent progress of developing tissue adhesives, which may inspire researchers to develop more outstanding tissue adhesives. It begins with a brief introduction to the emerging potential use of tissue adhesives in the clinic. Next, several critical mechanisms for adhesion are discussed, including van der Waals forces, capillary forces, hydrogen bonding, static electric forces, and chemical bonds. This article further details the measurement methods of adhesion and highlights the different types of adhesive, including natural or biological, synthetic and semisynthetic, and biomimetic adhesives. Finally, this review article concludes with remarks on the challenges and future directions for design, fabrication, and application of tissue adhesives in the clinic. This review article has promising potential to provide novel creative design principles for the generation of future tissue adhesives. Full article
(This article belongs to the Special Issue Advanced Polymeric Biomaterials for Tissue Engineering)
Show Figures

Figure 1

38 pages, 2947 KiB  
Review
Recent Advances in Bioplastics: Application and Biodegradation
by Tanja Narancic, Federico Cerrone, Niall Beagan and Kevin E. O’Connor
Polymers 2020, 12(4), 920; https://doi.org/10.3390/polym12040920 - 15 Apr 2020
Cited by 206 | Viewed by 28968
Abstract
The success of oil-based plastics and the continued growth of production and utilisation can be attributed to their cost, durability, strength to weight ratio, and eight contributions to the ease of everyday life. However, their mainly single use, durability and recalcitrant nature have [...] Read more.
The success of oil-based plastics and the continued growth of production and utilisation can be attributed to their cost, durability, strength to weight ratio, and eight contributions to the ease of everyday life. However, their mainly single use, durability and recalcitrant nature have led to a substantial increase of plastics as a fraction of municipal solid waste. The need to substitute single use products that are not easy to collect has inspired a lot of research towards finding sustainable replacements for oil-based plastics. In addition, specific physicochemical, biological, and degradation properties of biodegradable polymers have made them attractive materials for biomedical applications. This review summarises the advances in drug delivery systems, specifically design of nanoparticles based on the biodegradable polymers. We also discuss the research performed in the area of biophotonics and challenges and opportunities brought by the design and application of biodegradable polymers in tissue engineering. We then discuss state-of-the-art research in the design and application of biodegradable polymers in packaging and emphasise the advances in smart packaging development. Finally, we provide an overview of the biodegradation of these polymers and composites in managed and unmanaged environments. Full article
(This article belongs to the Special Issue Recent Advances in Bioplastics II)
Show Figures

Figure 1

38 pages, 2616 KiB  
Review
Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications—A Review
by Katarzyna Klimek and Grazyna Ginalska
Polymers 2020, 12(4), 844; https://doi.org/10.3390/polym12040844 - 6 Apr 2020
Cited by 132 | Viewed by 9772
Abstract
Polymer scaffolds constitute a very interesting strategy for tissue engineering. Even though they are generally non-toxic, in some cases, they may not provide suitable support for cell adhesion, proliferation, and differentiation, which decelerates tissue regeneration. To improve biological properties, scaffolds are frequently enriched [...] Read more.
Polymer scaffolds constitute a very interesting strategy for tissue engineering. Even though they are generally non-toxic, in some cases, they may not provide suitable support for cell adhesion, proliferation, and differentiation, which decelerates tissue regeneration. To improve biological properties, scaffolds are frequently enriched with bioactive molecules, inter alia extracellular matrix proteins, adhesive peptides, growth factors, hormones, and cytokines. Although there are many papers describing synthesis and properties of polymer scaffolds enriched with proteins or peptides, few reviews comprehensively summarize these bioactive molecules. Thus, this review presents the current knowledge about the most important proteins and peptides used for modification of polymer scaffolds for tissue engineering. This paper also describes the influence of addition of proteins and peptides on physicochemical, mechanical, and biological properties of polymer scaffolds. Moreover, this article sums up the major applications of some biodegradable natural and synthetic polymer scaffolds modified with proteins and peptides, which have been developed within the past five years. Full article
(This article belongs to the Special Issue Biodegradable Polymer Scaffolds for Tissue Engineering)
Show Figures

Graphical abstract

59 pages, 21028 KiB  
Review
Application of the Finite Element Method in the Analysis of Composite Materials: A Review
by Sarah David Müzel, Eduardo Pires Bonhin, Nara Miranda Guimarães and Erick Siqueira Guidi
Polymers 2020, 12(4), 818; https://doi.org/10.3390/polym12040818 - 4 Apr 2020
Cited by 120 | Viewed by 20566
Abstract
The use of composite materials in several sectors, such as aeronautics and automotive, has been gaining distinction in recent years. However, due to their high costs, as well as unique characteristics, consequences of their heterogeneity, they present challenging gaps to be studied. As [...] Read more.
The use of composite materials in several sectors, such as aeronautics and automotive, has been gaining distinction in recent years. However, due to their high costs, as well as unique characteristics, consequences of their heterogeneity, they present challenging gaps to be studied. As a result, the finite element method has been used as a way to analyze composite materials subjected to the most distinctive situations. Therefore, this work aims to approach the modeling of composite materials, focusing on material properties, failure criteria, types of elements and main application sectors. From the modeling point of view, different levels of modeling—micro, meso and macro, are presented. Regarding properties, different mechanical characteristics, theories and constitutive relationships involved to model these materials are presented. The text also discusses the types of elements most commonly used to simulate composites, which are solids, peel, plate and cohesive, as well as the various failure criteria developed and used for the simulation of these materials. In addition, the present article lists the main industrial sectors in which composite material simulation is used, and their gains from it, including aeronautics, aerospace, automotive, naval, energy, civil, sports, manufacturing and even electronics. Full article
Show Figures

Graphical abstract

20 pages, 4647 KiB  
Review
A Mini-Review on Anion Exchange and Chelating Polymers for Applications in Hydrometallurgy, Environmental Protection, and Biomedicine
by Piotr Cyganowski and Anna Dzimitrowicz
Polymers 2020, 12(4), 784; https://doi.org/10.3390/polym12040784 - 2 Apr 2020
Cited by 15 | Viewed by 4020
Abstract
The rapidly increasing demand for technologies aiming to resolve challenges of separations and environmental protection causes a sharp increase in the demand for ion exchange (IX) and chelating polymers. These unique materials can offer target-selective adsorption properties vital for the removal or recovery [...] Read more.
The rapidly increasing demand for technologies aiming to resolve challenges of separations and environmental protection causes a sharp increase in the demand for ion exchange (IX) and chelating polymers. These unique materials can offer target-selective adsorption properties vital for the removal or recovery of harmful and precious materials, where trace concentrations thereof make other techniques insufficient. Hence, recent achievements in syntheses of IX and chelating resins designed and developed in our research group are discussed within this mini-review. The aim of the present work is to reveal that, due to the diversified and unique physiochemical characteristics of the proposed materials, they are not limited to traditional separation techniques and could be used in multifunctional areas of applications, including catalysis, heat management, and biomedicine. Full article
(This article belongs to the Special Issue Colloid and Interface)
Show Figures

Graphical abstract

26 pages, 7328 KiB  
Review
Thermal Welding by the Third Phase Between Polymers: A Review for Ultrasonic Weld Technology Developments
by Jianhui Qiu, Guohong Zhang, Eiichi Sakai, Wendi Liu and Limin Zang
Polymers 2020, 12(4), 759; https://doi.org/10.3390/polym12040759 - 31 Mar 2020
Cited by 27 | Viewed by 6487
Abstract
Ultrasonic welding (USW) is a promising method for the welds between dissimilar materials. Ultrasonic thermal welding by the third phase (TWTP) method was proposed in combination with the formation of a third phase, which was confirmed as an effective technology for polymer welding [...] Read more.
Ultrasonic welding (USW) is a promising method for the welds between dissimilar materials. Ultrasonic thermal welding by the third phase (TWTP) method was proposed in combination with the formation of a third phase, which was confirmed as an effective technology for polymer welding between the two dissimilar materials compared with the traditional USW. This review focused on the advances of applying the ultrasonic TWTP for thermoplastic materials. The research development on the ultrasonic TWTP of polycarbonate (PC) and polymethyl methacrylate (PMMA), polylactic acid (PLA) and polyformaldehyde (POM), and PLA and PMMA are summarized according to the preparation of the third phase, welded strength, morphologies of rupture surfaces, thermal stability, and others. The review aimed at providing guidance for using ultrasonic TWTP in polymers and a basic understanding of the welding mechanism, i.e., interdiffusion and molecular motion mechanisms between the phases. Full article
(This article belongs to the Special Issue Processing and Molding of Polymers)
Show Figures

Figure 1

Back to TopTop