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Abstract: Field-theoretic simulations (FTS) provide an efficient technique for investigating fluctu-
ation effects in block copolymer melts with numerous advantages over traditional particle-based
simulations. For systems involving two components (i.e., A and B), the field-based Hamiltonian,
H f [W−, W+], depends on a composition field, W−(r), that controls the segregation of the unlike
components and a pressure field, W+(r), that enforces incompressibility. This review introduces re-
searchers to a promising variant of FTS, in which W−(r) fluctuates while W+(r) tracks its mean-field
value. The method is described in detail for melts of AB diblock copolymer, covering its theoretical
foundation through to its numerical implementation. We then illustrate its application for neat AB
diblock copolymer melts, as well as ternary blends of AB diblock copolymer with its A- and B-type
parent homopolymers. The review concludes by discussing the future outlook. To help researchers
adopt the method, open-source code is provided that can be run on either central processing units
(CPUs) or graphics processing units (GPUs).

Keywords: block copolymer melts; field-theoretic simulations; molecular self-assembly; phase
diagrams; order-disorder transitions; gyroid phase; Fddd phase; bicontinuous microemulsion

1. Introduction

Block copolymers refer to polymeric molecules composed of two chemically-distinct
segments, generally denoted as A and B, that are grouped together into separate sections
or rather blocks [1,2]. The simplest and most common is the AB diblock copolymer, a
linear chain of N = NA + NB segments in which the first NA are of type A and the last NB
are of type B. Here, we follow the common practice of defining A and B segments such
that they occupy equal-sized volumes, ρ−1

0 . The segments will nevertheless have different
statistical lengths, aA and aB, such that the natural end-to-end length of the entire molecule
is R0 = aAN1/2

A + aBN1/2
B . For convenience, we define an average segment length a such

that R0 = aN1/2. The segments will also differ in their interactions, usually resulting in an
incompatibility characterized by a positive Flory–Huggins interaction parameter, χ. If the
product χN is sufficiently large, then the A and B components will microphase segregate
into a periodically ordered morphology with domain sizes of order R0.

The behavior of block copolymer melts is greatly simplified by the fact that it becomes
universal in the limit of high molecular weight [3,4]. As a result, diblock copolymer melts
are controlled by just four parameters: the segregation χN, the composition f ≡ NA/N, the
ratio of segment lengths aA/aB, and the invariant polymerization index N̄ ≡ a6ρ2

0N. None
of the other details of the system have any impact on the coarse-grained behavior. This
is true for experimental systems as well as theoretical models so long as they include the
essential physics. Consequently, they can all be mapped onto the standard Gaussian chain
model (GCM) [5], which is a minimal model that treats block copolymer systems as incom-
pressible melts of thin elastic threads that interact by pairwise contact forces. At present,

Polymers 2021, 13, 2437. https://doi.org/10.3390/polym13152437 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-2099-0892
https://orcid.org/0000-0002-6551-7866
https://doi.org/10.3390/polym13152437
https://doi.org/10.3390/polym13152437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13152437
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13152437?type=check_update&version=2


Polymers 2021, 13, 2437 2 of 22

the most accurate method of performing the mapping is the Morse calibration [4,6], which
has been well demonstrated for experiments [7] and particle-based simulations [8–12], as
well as field-theoretic simulations [13].

The mathematical form of the GCM is ideally suited to polymer field theory, whereby
the particle-based Hamiltonian is converted to a field-based Hamiltonian expressed in
terms of fields rather than particle coordinates [14–18]. For a two-component system,
there are two fields, WA(r) and WB(r), that act on A and B segments, respectively. How-
ever, in this case, it is generally more convenient to express the field-based Hamiltonian,
H f [W−, W+], in terms of a composition field W−(r) ≡ [WA(r)−WB(r)]/2 and a pressure
field W+(r) ≡ [WA(r) + WB(r)]/2. The equilibrium behavior is then obtained by perform-
ing statistical mechanics, where the partition function involves functional integrals over
the two fields.

The self-consistent field theory (SCFT) of Edwards [19] evaluates the functional
integrals using the saddle-point approximation, which equates to mean-field theory.
Helfand [20] was the first to apply SCFT to block copolymers in 1975. In this approxima-
tion, the free energy of a melt is given by F = H f [w−, w+], where w−(r) and w+(r) denote
the saddle-point of the Hamiltonian obtained by solving the self-consistent conditions
DH f /DW− = DH f /DW+ = 0. SCFT has been extraordinarily successful in predicting
the relative stability of well ordered phases, but not so successful near the order-disorder
transition (ODT). For instance, SCFT predicts that the weakly ordered phases converge
to a critical point [21], which occurs at f = 0.5 and χN = 10.495 for conformationally
symmetric diblock copolymers [22]. As a result, the ODT is bounded by the spherical
phase, whereas in experiments there is no critical point and instead all the ordered phases
generally extend to the ODT [23]. This qualitative shortcoming of SCFT occurs because
it neglects composition fluctuations, which are particularly important in the disordered
phase [18].

The first correction for fluctuation effects was by Fredrickson and Helfand in 1987 [24].
They showed that SCFT corresponds to infinite N̄ and that, for finite values characteristic of
experiments (i.e., 102 . N̄ . 104 [23]), the stability of the disordered phase is significantly
enhanced. This shifts the ODT to higher χN, wiping out the critical point and creating direct
transitions with the classical lamellar and cylindrical phases. Subsequent calculations [25]
have shown that it also creates direct transitions between the complex gyroid phase and the
disordered phase, in agreement with experiments [23]. On the other hand, calculations [26]
have predicted that the fluctuations destabilize the complex Fddd phase, which is contrary
to experiments [27,28]. This is not surprising given the significant approximations involved
in the Fredrickson–Helfand theory, which also cause the spherical phase to become unstable
at experimentally relevant values of N̄. To deal with these inaccuracies, there have been
efforts to develop a rigorous perturbation theory expressed as a diagrammatic expansion.
This has culminated in the renormalized one-loop calculation (ROL) [29], which now
provides an accurate treatment of the disordered phase. In particular, it provides our
best prediction for the disordered-state structure function, S(k) [30,31], which is used in
the Morse calibration to determine an effective χ parameter. Unfortunately though, the
extension of ROL to ordered phases is seriously difficult.

An alternative is to simulate the field-based Hamiltonian. Ganesan and Fredrickson
began exploring this possibility in 2001 [32]. One complication with the field-theoretic
approach is that the integration of W+(r) is along the imaginary axis, which leads to a
complex-valued H f [W−, W+] and thus a Boltzmann weight that is not positive definite.
As a consequence, standard simulation methods cannot be applied. Fredrickson and
co-workers have dealt with this by performing complex-Langevin simulations [33,34].
However, unlike for conventional Langevin simulations, the trajectories in phase space are
not guaranteed to be stable [14]. Indeed, complex-Langevin simulations have encountered
instabilities [35,36], which initially limited simulations [33] to values of N̄ well above the
experimentally accessible range. More recent simulations [34], however, have managed to
reduce the instability by relaxing the incompressibility constraint. Although this allowed
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simulations at a more realistic N̄ ≈ 104, the resulting phase diagram lacked both a direct
gyroid-to-disorder transition and a stable Fddd region.

Near the same time in 2001, Reiter et al. [37] proposed a variant of FTS that avoids
this issue by instead simulating H f [W−, w+], where W+(r) is replaced by the saddle point
w+(r). The advantage of this partial saddle-point approximation is that w+(r) is real
valued, permitting the use of conventional simulation techniques. The justification for the
approximation is that the fluctuations in W−(r) are far more important than those in W+(r),
and indeed all evidence so far indicates that the approximation is accurate. Shortly after its
introduction, Duchs et al. [38,39] used this variant of FTS to study ternary blends of diblock
copolymer with its two parent homopolymers, but then the method received no further
attention until 2013 when it was revived by Stasiak and Matsen [40]. The subsequent
development, however, has resulted in FTS algorithms capable of problems beyond the
reach of traditional particle-based simulations. As such, it is certain to become an important
tool in the theoretical study of block copolymer systems. Here, we provide a tutorial on
the method followed by demonstrations of its capabilities. To encourage its use, we also
provide open-source code for neat diblock copolymer melts that can be readily modified to
handle more complex systems.

2. Field-Theoretic Simulations

This section develops the FTS method starting from the underlying particle-based
model, where the Hamiltonian, Hp[{rα,i}], is a function of all the particle coordinates, {rα,i}.
The first step involves a transformation to the field-based model, where the Hamiltonian
H f [W−, W+] is specified in terms of the fields, W−(r) and W+(r). The evaluation of
H f [W−, W+] requires the statistical mechanics of noninteracting polymers in the fields,
which represents one of the two highly computational parts of the simulation. We explain
how this is done numerically using fast Fourier transforms. Next, the pressure field, W+(r),
is approximated by its saddle point, w+(r), which is the other highly computational part.
We describe how to locate w+(r) iteratively using Anderson mixing [41]. The composition
field, W−(r), is then evolved using conventional Langevin dynamics. The section concludes
by discussing the Morse calibration, which converts the bare χb parameter used in the
simulations to an effective χ parameter corresponding to the standard GCM.

2.1. Particle-Based Model

Most FTS have been based on continuous Gaussian chains. However, this requires
numerical integration along the chain contours, which then leads to numerical inaccuracies.
To avoid this, we will instead model the n polymers of the system by discrete bead-spring
chains each with N monomers [42]. The position of monomer i of molecule α will be
denoted by the vector rα,i. In this particle-based representation, the Hamiltonian

Hp[{rα,i}] = Ub[{rα,i}] + Uint[{rα,i}] (1)

is divided into bonded and nonbonded interactions each expressed in terms of the particle
coordinates. The bonded interactions take the simple form

Ub[{rα,i}]
kBT

=
3

2a2

n

∑
α=1

N−1

∑
i=1
|rα,i − rα,i+1|2 (2)

which treats them as harmonic springs. Here, the spring constant is expressed in terms of
the natural bond length, a. For simplicity, we assume conformational symmetry, but it is
straightforward to assign different statistical lengths, aA and aB, to the A-A and B-B bonds,
respectively. The nonbonded interactions are restricted to contact forces between the A and
B monomers. As such, their energy can be expressed as

Uint[{rα,i}]
kBT

= ρ0χb

∫
φ̂A(r)φ̂B(r)dr (3)
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where χb is the bare interaction parameter and

φ̂A(r) =
1
ρ0

n

∑
α=1

NA

∑
i=1

δ(r− rα,i) (4)

φ̂B(r) =
1
ρ0

n

∑
α=1

NB

∑
i=1

δ(r− rα,i+NA) (5)

are dimensionless concentrations of the A and B monomers, respectively. It will become
convenient to reexpress the A and B concentrations in terms of the composition, φ̂−(r), and
total concentration, φ̂+(r), defined by

φ̂±(r) ≡ φ̂A(r)± φ̂B(r) (6)

In terms of these new concentrations, the energy of the nonbonded interactions becomes

Uint[{rα,i}]
kBT

=
ρ0χb

4

∫
[φ̂2

+(r)− φ̂2
−(r)]dr (7)

As a result of incompressibility (i.e., φ̂+(r) = 1), the first term reduces to a constant,
ρ0Vχb/4, and therefore is typically dropped. However, we retain it because of its depen-
dence on χb, which will have implications regarding an ultraviolet divergence discussed
later [42].

To determine the equilibrium behavior of this model, we need to perform statistical
mechanics. This requires calculation of the partition function

Z ∝
∫

exp
(
−

Hp[{rα,i}]
kBT

)
δ[φ̂+ − 1]d{rα,i} (8)

Note that the simple particle-based Hamiltonian in Equation (1) lacks any energy penalty
for deviations from melt density, and therefore a Dirac delta functional has to be inserted
to enforce incompressibility. Although the form of the partition function remains relatively
simple, the integrations over the 3nN particle coordinates are nevertheless impossible to
perform, which is the motivation for switching from particle coordinates to fields.

2.2. Field-Based Model

The transformation[14–16,18] to a field-based representation employs a Hubbard–
Stratonovich identity for the Boltzmann weight

exp
(
−Uint[{rα,i}]

kBT

)
∝
∫

exp

(
−ρ0

∫ [
χb
4

+
W2
−

χb
+ W−φ̂−

]
dr

)
DW− (9)

involving a functional integral over a composition field, W−(r), and a Fourier representa-
tion of the Dirac delta functional

δ[φ̂+ − 1] ∝
∫

exp
(
−ρ0

∫
W+[φ̂+ − 1]dr

)
DW+ (10)

involving a functional integral over a pressure field, W+(r). Once the identities are inserted
into Equation (8), the 3nN integrations over the particle coordinates can be performed
analytically leaving just the two integrations over W±(r). The partition function can then
be recast as

Z ∝
∫

exp

(
−

H f [W−, W+]

kBT

)
DW−DW+ (11)
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where the field-based Hamiltonian takes the form

H f [W−, W+]

kBT
= −n ln Q[W−, W+] + ρ0

∫ (
χb
4

+
W2
−

χb
−W+

)
dr (12)

involving a relatively simple single-chain partition function

Q[W−, W+] ∝
∫

exp
(
−H1[{ri}]

kBT

)
d{ri} (13)

for an individual molecule in an equivalent system of noninteracting polymers acted upon
by only the fields. The Hamiltonian for Q[W−, W+] is given by

H1[{ri}]
kBT

=
Ub[{ri}]

kBT
+
∫
[W−φ̂− + W+φ̂+]dr (14)

where the bond energy and concentrations are for a single molecule (i.e., n = 1), which
allows us to drop the α index on the particle coordinates, ri.

2.3. System of Noninteracting Polymers

The single-chain partition function can be conveniently reexpressed as

Q =
1
V

∫ N−1

∏
i=1

g(|ri+1 − ri|)
N

∏
i=1

hi(ri)
N

∏
i=1

dri (15)

where the Boltzmann weight in the integrand of Equation (13) is written as a product of
separate factors for the N − 1 bonds and the N monomers. Here,

g(R) =
(

3
2πa2

)3/2
exp

(
−3R2

2a2

)
(16)

is the Boltzmann weight for an individual bond and

hi(r) = exp(−W+(r)− γiW−(r)) (17)

is the Boltzmann weight for the field acting on monomer i. To distinguish the two compo-
nents of the copolymer, we define γi = 1 for A monomers (i.e., i ≤ NA) and γi = −1 for B
monomers (i.e., i > NA).

To evaluate Equation (15), we define a partial partition function, qi(r), for the first
i monomers of the chain with its i’th monomer constrained to position r. It is obtained
recursively using

qi+1(r) = hi+1(r)
∫

g(R)qi(r− R)dR (18)

starting from q1(r) = h1(r) [16,43]. Similarly, we define an analogous partial partition
function, q†

i (r), for the last N + 1− i monomers, which is obtained by iterating

q†
i−1(r) = hi−1(r)

∫
g(R)q†

i (r− R)dR (19)

starting from q†
N(r) = hN(r). Once both partial partition functions have been calculated,

the single-chain partition function is given by

Q =
1
V

∫ qi(r)q†
i (r)

hi(r)
dr (20)
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The integral for Q can be evaluated using any value of 1 ≤ i ≤ N, but one typically sets
i = N. We will also require ensemble averages of the composition and total concentration
in the system of noninteracting polymers, which are given by

φ−(r) =
1

NQ

N

∑
i=1

γi
qi(r)q†

i (r)
hi(r)

(21)

φ+(r) =
1

NQ

N

∑
i=1

qi(r)q†
i (r)

hi(r)
(22)

respectively.

2.4. Numerical Method

The recursion relation in Equation (18) is calculated using the convolution theorem.
This is done by taking a Fourier transform of the propagator

qi(k) = F [qi(r)] ≡
∫

qi(r) exp(−ik · r)dr (23)

and multiplying by

g(k) = F [g(R)] = exp
(
− a2k2

6

)
(24)

The inverse Fourier transform of the product provides the integral∫
g(R)qi(r− R)dR = F−1[g(k)qi(k)] (25)

which is then multiplied by hi+1(r) to give qi+1(r). The second recursion relation in
Equation (19) is calculated in an analogous manner.

The above equations are generally solved in an orthorhombic Lx × Ly × Lz simulation
box of volume V = LxLyLz with periodic boundary conditions. The box is overlaid with
an mx ×my ×mz grid of uniform spacing (i.e., ∆α = Lα/mα for α = x, y, and z). As such,
each grid point corresponds to a volume of Vcell = ∆x∆y∆z. Spatially-dependent quantities
are then converted into arrays over the M = mxmymz vertices of the grid. Likewise,
we define an analogous grid in Fourier space that extends from −π/∆α to π/∆α with a
spacing of 2π/Lα in each direction α. The Fourier-space grid also contains M vertices, but
approximately half of them are redundant for real-valued functions, f (r), due to the fact
that f (−k) equals the complex conjugate of f (k).

2.5. Partial Saddle-Point Approximation

Although the two forms of the partition function in Equations (8) and (11) are math-
ematically equivalent, the Boltzmann weight in the field-based representation cannot be
interpreted in terms of probability thus precluding the use of conventional simulation
techniques. This is because the integration of the pressure field is performed along the
imaginary axis from W+(r) = −i∞ to +i∞, which makes the Boltzmann weight complex
valued. However, this problem can be overcome by evaluating the integral over W+(r)
using the saddle-point approximation. Given that the Boltzmann weight is an analytic
function of W+(r), the integration path can be deformed in the complex plane so as to pass
through the saddle point of the Hamiltonian along a trajectory of constant phase, which
concentrates the integration to the saddle-point region. Ignoring irrelevant prefactors, the
partition function reduces to

Z ∝
∫

exp

(
−

H f [W−, w+]

kBT

)
DW− (26)
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where w+(r) denotes the value of W+(r) at the saddle point. As such, w+(r) is determined
by solving DH f /DW+ = 0, which equates to the mean-field incompressibility condition

φ+(r) = 1 (27)

Not only does the partial saddle-point approximation reduce Z to a single functional inte-
gration, w+(r) is real valued and thus the statistical mechanics can then be performed using
standard techniques. The approximation does, however, require w+(r) to be reevaluated
every time W−(r) changes.

2.6. Anderson Mixing

The saddle point, w+(r), is updated iteratively using the Anderson-mixing
scheme [41,44–46]. To facilitate this, we label the saddle-point values by w(k)

+,j, where
j = 1, 2, . . . , M is the grid index and k = 1, 2, 3, . . . is the iteration index. The iterations be-
gin anew from k = 1 after each change in the composition field, W−(r), generally starting
with w(1)

+,j equal to the saddle-point solution corresponding to the preceding composi-
tion field.

The first step of the k’th iteration is to evaluate the deviation from incompressibility

d(k)j = φ
(k)
+,j − 1 (28)

at each grid point, j. The overall error is then quantified by

ε ≡
[

1
M

M

∑
j=1

(
d(k)j

)2
]1/2

(29)

If the error exceeds some given tolerance, then an improved estimate, w(k+1)
+,j , is obtained

from the preceding nr iterations. This is done by evaluating the symmetric matrix

Umn =
M

∑
j=1

(d(k)j − d(k−m)
j )(d(k)j − d(k−n)

j ) (30)

and vector

Vm =
M

∑
j=1

(d(k)j − d(k−m)
γ,j )d(k)j (31)

where m, n = 1, 2, . . . , nr. From these, we calculate coefficients

Cn =
nr

∑
m=1

(U−1)nmVm (32)

used to combine the fields and deviations from past histories as

W(k)
+,j = w(k)

+,j +
nr

∑
n=1

Cn(w
(k−n)
+,j − w(k)

+,j) (33)

D(k)
j = d(k)j +

nr

∑
n=1

Cn(d
(k−n)
j − d(k)j ) (34)

respectively. The next iteration of the field is then obtained by mixing the fields and
deviations together as follows

w(k+1)
+,j = W(k)

+,j + λD(k)
γ,j (35)
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where λ > 0 is referred to as the mixing parameter. In the absence of any histories (i.e.,
nr = 0), Anderson mixing reduces to what is generally referred to as simple mixing.

The convergence tends to be faster for larger λ, but it becomes unstable if λ is too large.
Increasing the number of histories improves the convergence as well as the stability, but
only up to a point. Therefore, based on previous experience [45], we increase the number
of histories up to a maximum of nh = 20 while ramping up the mixing parameter to a
maximum of N. This is done by setting nr = min(k− 1, nh) and λ = N(1.0− 0.9k). We
typically continue the iterations until ε ≤ 10−4.

2.7. Langevin Dynamics

A Markov sequence of configurations for the partition function in Equation (26) is
generated by evolving the composition field, W−(r; τ), using Langevin dynamics,

W−(r; τ + δτ) = W−(r; τ)−Λ`δτ +N (0, σ) (36)

where thermal noise is provided by random numbers, N (0, σ), generated from a normal
distribution of zero mean and σ2 = 2δτ/Vcellρ0 variance. To improve accuracy, we apply
the predictor-corrector algorithm [47,48]. A predicted field at τ + δτ is first obtained using
Equation (36) with

Λ1 = φ−(r; τ) +
2

χb
W−(r; τ) (37)

and then a corrected field is obtained with

Λ2 =
1
2

[
Λ1 + φ−(r; τ + δτ) +

2
χb

W−(r; τ + δτ)

]
(38)

evaluated using the predicted field and corresponding composition. Note that the predictor
and corrector steps use the same set of random numbers.

As usual, the Langevin dynamics are applied for a sufficient amount of time, τeq,
to equilibrate the system before observables are sampled. There is generally significant
correlation between successive time steps and so it is common to only sample periodically,
such as once every 10δτ. Naturally, one is interested in the physical quantities of the
particle-based model. It is therefore necessary to relate these quantities to those of the
field-based model. The average composition, for example, is given by [37]

〈
φ̂−(r)

〉
= − 2

χb
〈W−(r)〉 (39)

and the two-point correlation function is given by [37]

〈
φ̂−(r)φ̂−(r′)

〉
=

4
χ2

b

〈
W−(r)W−(r′)

〉
− 2N2δ(r− r′)

χbρ0
(40)

It can be advantageous to evaluate the average composition using
〈
φ̂−(r)

〉
= 〈φ−(r)〉,

because the composition in the system of noninteracting polymers fluctuates less than
the composition field. However, be aware that

〈
φ̂−(r)φ̂−(r′)

〉
6= 〈φ−(r)φ−(r′)〉. Another

quantity of interest is the structure function,

S(k)
ρ0N

=
n

(χbV)2 〈|W−(k)|
2〉 − 1

2χbN
(41)

which is proportional to the Fourier transform of the two-point correlation function in
Equation (40).
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2.8. Effective Interaction Parameter

Because we switched from continuous to discrete chains, our results need to be
mapped back onto the standard GCM. Furthermore, there is an ultraviolet (UV) divergence
that occurs as ∆α → 0, which generally requires renormalization of χ and a [29,49]. In
this case, however, the divergence in the segment length is avoided by our use of the
partial saddle-point approximation. As it turns out, the change in the model and the UV
divergence can be dealt with simultaneously by employing the Morse calibration [4,6].

For large N, the interactions are generally weak and therefore the dependence of the
effective χ on the bare χb can be approximated by the linear relationship [6]

χ ≈ z∞χb (42)

where the proportionality factor, z∞, is given by the relative number of intermolecular
contacts in the limit of χb → 0 and N → ∞. This factor is conveniently expressed as

z∞ = 1− 1
Vcellρ0

∞

∑
i=−∞

Pi (43)

where Vcellρ0 is the total number of contacts experienced by a given monomer and Pi is the
probability that two monomers of an infinite chain, separated by i bonds along the contour,
occupy the same cell of the grid. For orthorhombic simulation boxes [42],

Pi = ∏
α

∆α

a

√
3

2π|i| erf

(
πa
∆α

√
|i|
6

)
(44)

Note that P0 = 1. In the case of cubic grids with a resolution less than the bond length (i.e.,
∆ & a), Equation (43) reduces to

z∞ ≈ 1− 2.3327R0√
N̄∆

(45)

which is the proportionality factor first used by Stasiak and Matsen [40].
Figure 1 illustrates the quality of the linear calibration by comparing the structure

function, S(k), at different grid resolutions for N̄ = 104. Plot (a) demonstrates what
happens if the UV divergence is ignored. When χbN is held constant, the segregation
decreases as ∆ = L/m→ 0, which is evident by a reduction in the peak height of S(k). Plot
(b) corrects for this by comparing S(q) at a fixed z∞χbN, which results in good agreement
over the full range of resolutions. Furthermore, the resulting peak height is similar to that of
the ROL prediction, which implies that the linear approximation, χ ≈ z∞χb, is reasonably
accurate for N̄ = 104. However, the peak is slightly higher than the ROL prediction, which
means that the true value of χ is somewhat larger.

For smaller N̄, it becomes necessary to go beyond the linear approximation of χ.
In the Morse calibration, the nonlinear correction is calculated by fitting the peak of the
structure function, S(k∗), from FTS to ROL predictions for symmetric diblocks. Beardsley
and Matsen [13,48] demonstrated the calibration for ∆ = a and ρ0 = 8/a3, assuming the
empirical relationship [4]

χ =
z∞χb + c1χ2

b
1 + c2χb

(46)

between the bare χb of the FTS and the effective χ of the ROL theory. The resulting
calibration, z∞ = 0.7084, c1 = 1.246, and c2 = 1.367, is plotted in the inset of Figure 2.
The main plot of Figure 2 illustrates that the quality of the fit is generally good. There is,
however, some significant deviation at weak segregations, where the FTS results coincide
with the mean-field or rather random-phase approximation (RPA) [22] as opposed to the
more accurate ROL theory. This is a consequence of the partial saddle-point approximation,
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and so it could potentially be remedied by performing FTS with fluctuations in both fields.
Nevertheless, the inaccuracy remains acceptable for N̄ & 103.

0 5 10 15 20
0.0

0.1

0.2

0.3

m = 12
m = 16
m = 24
m = 32

0 5 10 15 20
0.0

0.1

0.2

0.3

(b)  N = 9

Figure 1. Structure function, S(k), for symmetric diblocks of N̄ = 104 obtained in a cubic simulation
box of size L = 3R0 with different numbers of grid points, m = L/∆. Plot (a) shows results for
χb N = 9 without any calibration, while plot (b) shows results for χN = 9 using the linear calibration,
χ = z∞χb. The arrow marks the peak height predicted by ROL theory. Reproduced from Ref. [42].
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0.0 0.4 0.8 1.2
0.0

0.3

0.6

0.9
Equation (46)

Figure 2. Inverse peak height of the structure function, S−1(k∗), plotted in terms of effective χ

for different invariant polymerization indices, N̄. Symbols denote FTS results, solid curves show
the ROL predictions, and the dashed line is the RPA prediction. The linear and nonlinear χ in
Equations (42) and (46) are plotted in the inset with dashed and solid lines, respectively. Reproduced
from Ref. [48].

3. Applications

The initial applications of FTS have largely focused on two test cases. The first one is
neat diblock copolymer melts, which is a natural choice given its relative simplicity and
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the fact that it is the most thoroughly understood [13,33,34,40,42,48,50]. As mentioned, the
greatest impact of fluctuations is on the disordered phase, and thus particular attention is
paid to the order-disorder transition (ODT). The second one is ternary blends of diblock
copolymer with its two parent homopolymers [38,39,51–53]. Naturally, this system has
a far larger parameter space, and so studies have concentrated on symmetric blends
where the diblock has a composition of f = 0.5, the two homopolymers have equal
polymerizations Nh, and the homopolymers have either equal concentrations or equal
chemical potentials. For experimental convenience [54–64], the diblock polymerization
is generally set to Nc = Nh/α with α = 0.2, such that the ODT occurs at χNh ≈ 2 over
the full range of diblock volume fractions, φ̄c. In this system, particular attention is paid
to a bicontinuous microemulsion (BµE), where the two homopolymers segregate into
interweaving microdomains separated by a monolayer of diblock copolymer. The BµE is
regarded as a pivotal test of the FTS, as it is a fluctuation-induced phase that is entirely
absent from the SCFT phase diagram [38,39,52,65].

3.1. Diblock Copolymer Melts

The classical example of a fluctuation effect is the shift in the ODT of symmetric
diblock copolymers from the SCFT prediction, (χN)ODT = 10.495. The earliest treatment
by Fredrickson and Helfand [24] predicted a shift of 41.0N̄−1/3, where N̄ ≡ a6ρ2

0N is the
invariant polymerization index. Particle-based simulations of different models [8–11] have
since provided the more accurate prediction

(χN)ODT = 10.495 + 41.0N̄−1/3 + 123.0N̄−0.56 (47)

The ODT is generally found by matching the free energies of the ordered and dis-
ordered phases. Although FTS do not provide direct access to the free energy, ensemble
averaging a derivative of the Hamiltonian provides the corresponding derivative of the
free energy. These can then be integrated to obtain changes in free energy, so long as a
phase transition does not occur along the integration path. Lennon et al. [33] were the first
to apply thermodynamic integration to FTS. They integrated a composite Hamiltonian,
H = λH f + (1− λ)Hec, from λ = 0 to 1 in order to bridge between the known free energy
of an Einstein crystal and the free energy of the polymeric system for a specified value
of χ. One integration was performed to evaluate the free energy of the disordered phase
below the transition and another to evaluate the free energy of the ordered phase above
the transition. The ODT was then located by integrating with respect to the χ parameter.

Beardsley and Matsen [48] located the ODT of symmetric diblocks using a slight
variation of the technique where the ensemble average and integration are performed
simultaneously [66]. Figure 3 shows the resulting free energy difference between the
lamellar and disordered phases, FL − Fdis, for diblocks of N = 28 and ρ0a3 = 8 in a cubic
simulation box of size L = 24a. The free energy comparison is performed for lamellar
periods of D = 8a and D = 24a/

√
8 ≈ 8.5a, which are the periods that spontaneously

form when the disordered phase is quenched into the ordered region. In this case, the
thermodynamic integration implies that the shorter period is favored, given that it results
in a lower ODT of (χN)ODT = 16.25.
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(x10-3)

Figure 3. Free energy difference between lamellar and disordered phases, FL − Fdis, from thermody-
namic integration for molecules of polymerization N = 28 for two different lamellar periods. The
kinks at small and large χN result when the metastable phase switches to the stable phase. Adapted
from Ref. [48].

Figure 4 compares the ODTs of different sized diblocks to Equation (47). The open
and closed symbols denote their positions based on the linear and nonlinear interaction
parameters in Equations (42) and (46), respectively. The linear χ results in considerable
inaccuracy for N̄ . 104, but this is largely corrected for by the nonlinear χ. Still, there is a
slight deviation for the shorter polymers, which could be due to inaccuracy in the partial
saddle-point approximation. It could also be due to a breakdown in universality, which
will ultimately occur if N becomes too small.

102 103 104
0

5

10

15

Equation (47)

Figure 4. Fluctuation correction to the ODT of symmetric diblock copolymers. The open and closed
symbols are based on the linear, χ = z∞χb, and nonlinear, Equation (46), interaction parameters,
respectively. The curve compares the universal prediction from Equation (47) [8]. Adapted from
Ref. [48].

A more recent study [42] mapped the ODTs over a range of compositions, f , for diblock
copolymers of a fixed N = 90. In that study, the FTS were performed at a sufficiently
large N̄ = 104 to justify the use of the linear χ. However, at this relatively large N̄,
the thermodynamic integration became problematic for the nonlamellar phases. The
relative ease of forming defects created noisy free energy curves and the resulting lack of
metastability prevented a clear crossing of the curves. Nevertheless, because of the lack of
metastability, the ODT could instead be located by monitoring the disappearance of Bragg
peaks in the structure function of the ordered phase, S(k), as χN was slowly decreased.

Figure 5 illustrates the procedure for diblocks of NA = 36 and NB = 54. A single unit
cell of the gyroid phase [67–69] was first obtained in a series of different-sized simulation
boxes by quenching the disordered phase. The resulting morphology was then periodically
repeated creating eight unit cells, and S(k) was evaluated revealing Bragg peaks consistent
with the Ia3d symmetry of the gyroid phase. The box corresponding to the strongest peaks
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was assumed to be commensurate with the preferred period, and the segregation of that
box was then reduced in small steps of 0.1 until the peaks disappeared at χN = 13.7. The
simulations at χN = 13.8 were then repeated for a prolonged interval to ensure that the
gyroid phase was indeed stable at the higher segregation. The fact that it was implies an
ODT of (χN)ODT = 13.75± 0.05. Notably, these are the first results to show that even
weak fluctuations at N̄ = 104 are sufficient to produce a direct gyroid-disorder transition,
which is consistent with experiments on PE-PEP diblock copolymers [23]. Although the
experiments actually observed a transition to perforated lamellae [70], this is understood
to be an intermediate state that eventually converts to gyroid [71–73].

3 6 9 12 15
10-2

10-1

100

101

102

103

104

105

106

14.0

13.8

13.7

Figure 5. Structure function, S(k), at a sequence of χN values, calculated for diblocks with NA = 36
and NB = 54. For clarity, the curves for the ordered states exhibiting peaks are shifted up by an
integer number of decades. The morphology (see inset) and peak positions (triangles) confirm that
the ordered state is gyroid. Reproduced from Ref. [42].

Figure 6 repeats the procedure for NA = 38 and NB = 52, where disordered melts
still show a clear preference for network structures. However, given the more symmetric
composition, the Fddd phase [74] becomes a potential candidate. Indeed, while the gyroid
phase disordered at χN = 13.7, the Fddd phase remained stable down to χN = 13.4
as shown in Figure 6. Furthermore, we have subsequently confirmed that when the
segregation of the disordered melt at χN = 13.4 is increased back to χN = 13.5, the first
three peaks in S(k) reappear. Although the defects are too long lived for the higher order
peaks to return, it is clear that the Fddd phase is stable at χN = 13.5, which then implies
an ODT of (χN)ODT = 13.45± 0.05. Previous calculations [26] and simulations [34] have
suggested that fluctuations destroy the Fddd phase, contrary to its observation in PS-PI
diblock copolymers melts [27,28]. These new FTS results are the first to corroborate the
experiments.

Figure 7 compares the above ODTs and others to the SCFT phase diagram. Consistent
with experiments [23], the ODT is shifted upwards relative to the SCFT prediction produc-
ing direct transitions between the disordered phase and the ordered lamellar, Fddd, gyroid,
cylindrical and spherical phases. The preferred symmetries of the ordered phases were
obvious for most of the compositions. The only exception was at NA = 34 and NB = 56
(denoted by a cross in Figure 7), where the cylindrical and gyroid phases both remained sta-
ble down to χN = 14.2. Nevertheless, this is consistent with the fact that this composition
coincides closely with the cylindrical-gyroid boundary in the SCFT phase diagram.
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Figure 6. Analogous plot to that of Figure 5, but for diblocks with NA = 38 and NB = 52. The mor-
phology (see inset) and peak positions (triangles) confirm that the ordered state is Fddd. Reproduced
from Ref. [42].

0.25 0.30 0.35 0.40 0.45 0.50
8

12

16

20

Figure 7. Order-disorder transitions for diblock copolymer melts at N̄ = 104. The different symme-
tries of the ordered phases are denoted by circles (lamellar), stars (Fddd), diamonds (gyroid), squares
(cylindrical), and hexagons (spherical). The cross marks an ODT for which the relative stability of
the cylindrical and gyroid phases was indistinguishable. For comparison purposes, the SCFT phase
diagram [21] is overlaid with dashed curves. Adapted from Ref. [42].

Interestingly, the fluctuation-induced shift of the ODT in Figure 7 is reasonably uni-
form across the range of compositions. This, in fact, agrees with particle-based simulations,
which observe shifts of 2.61 and 2.65 at f = 0.25 and 0.5, respectively, [8,12]. However, the
shift predicted by FTS is somewhat smaller by about 0.4. Based on the results in Figure 4,
this is readily attributed to the inaccuracy of the linear χ = z∞χb.

3.2. Ternary Diblock–Homopolymer Blends

The addition of extra molecular species, A- and B-type homopolymers in this case,
leads to the possibility of macrophase separation. To deal with this, it is convenient to
work in the grand-canonical ensemble, where the concentrations of the different species are
controlled by chemical potentials. This generally poses a problem for particle-based simu-
lations because of the difficulty of inserting large macromolecules into a dense melt [75,76].
However, there is no such problem in FTS, and in fact only minor modifications are required
to switch between different systems and ensembles [51]. The first term in the Hamiltonian
of Equation (12) just needs to be substituted by the free energy of noninteracting molecules
corresponding to the system of interest in the ensemble of interest. Similarly, the expres-
sions for φ−(r) and φ+(r) in Equations (21) and (22) are replaced by the composition and
total concentration for the same noninteracting system.
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Figure 8 shows results from a grand-canonical simulation performed in a cubic simula-
tion box of size L = 72Rh [53]. In particular, it shows the average copolymer concentration,
〈φ̄c〉, as a function of the copolymer chemical potential, µc, for a blend with N̄h = 104,
N̄c = 5× 104, and χNh = 2.31. Here, the linear χ = z∞χb is used and lengths are expressed
in terms of the unperturbed end-to-end length of a homopolymer molecule, Rh = aN1/2

h .
Interestingly, the plot exhibits a sudden jump in copolymer concentration near µc ≈ 0.1kBT.
Inspection of the configurations (see insets) reveals that this is due to a transition from a
homopolymer rich phase at low µc to a bicontinuous microemulsion (BµE) at high µc. As a
result of the symmetry, the A-homopolymer and B-homopolymer rich phases are identical
in free energy. Thus, the low-µc region corresponds to two-phase coexistence (A+B) and the
transition corresponds to three-phase coexistence (A+B+BµE). Based on the jump in 〈φ̄c〉,
the binodals of the three-phase region are approximately φ̄c ≈ 0.072 and 0.082. However,
there is some inaccuracy in these values due to the uncertainty regarding the chemical
potential of coexistence.

0.04 0.08 0.12 0.16
0.06

0.07

0.08

0.09

0.10

Figure 8. Average copolymer content in the ternary blends as a function of chemical potential for
χNh = 2.31, obtained from grand-canonical FTS using cubic simulation boxes of size 72Rh. Adapted
from Ref. [53].

With a sufficiently large simulation box, it is possible to simulate the three-phase
coexistence in the canonical ensemble. Spencer and Matsen [53] did so by splicing together
configurations of the three phases from the grand-canonical simulation (e.g., the insets of
Figure 8), creating an orthorhombic simulation box of size 216Rh× 72Rh× 72Rh. The image
at the top of Figure 9 shows an equilibrated configuration with well-defined interfaces
separating the three coexisting phases. Note that the simulation box used reflecting
boundaries on all sides, and thus there is an A/B interface at x ≈ 0 as well as two
homopolymer/microemulsion interfaces at x ≈ 72Rh and 144Rh. Figure 9a,b plot the
composition and copolymer concentration averaged over the y-z plane as a function of the
long dimension x. The dashed curves show fits using the standard hyperbolic profile for
the interfaces [77]. The interfacial widths can be extracted directly from the fits and the
interfacial tensions can be obtained from ensemble averages of appropriate derivatives of
the Hamiltonian [51,53,78]. The fits also provide accurate binodals, φ̄c ≈ 0.0734 and 0.0823,
due to the fact that the system is able to equilibrate the concentrations by adjusting the
volumes of the coexisting phases.

The boundaries of the A+B+BµE region at χNh = 2.31 are included in the FTS phase
diagram shown in Figure 10 [52,53]. As the diagram illustrates, the A+B+BµE coexistence
switches to A+B+L coexistence for χNh & 2.38 and it narrows in the opposite direction
resulting in a tricritical point at χNh ≈ 2.22. Beyond that is a critical line separating
A+B coexistence from disordered melts, referred to as the Scott line [79]. The Scott line
was calculated using a finite-size scaling analysis [51,80,81], and the L/dis boundary was
calculated in much the same way as it was for neat diblock copolymer melts. Note that
the lamellar and disordered phases must, in principle, be separated by L+dis coexistence;
however, the width of this coexistence was too narrow to resolve.
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The SCFT phase diagram for this system [38], corresponding to N̄h → ∞, is shown in
Figure 10 with dashed curves. In this limit, the L/dis boundary and Scott line meet at a
Lifshitz point, above which there is A+B+L coexistence. The effect of fluctuations is quite
simple. As expected, fluctuations shift both the L/dis boundary and the Scott line to higher
χNh. However, the shift of the L/dis boundary is larger, and consequently it intersects the
three-phase coexisting region splitting it into A+B+BµE below the point of intersection and
A+B+L above.

0 54 108 162 216
-0.50

-0.25

0.00

0.25

0.50

0 54 108 162 216
0.070

0.075

0.080

0.085

Figure 9. (a) Composition and (b) copolymer concentration profiles for three-phase coexistence at
χNh = 2.31. The dashed curves are fits to hyperbolic tangent profiles. Adapted from Ref. [53].

Experiments [54–64] have proposed a somewhat different phase diagram, where the
A+B and L regions are separated by a channel of BµE rather than three-phase coexistence.
It is difficult to fathom how this proposed phase diagram could possibly converge to the
SCFT diagram, which it must, in principle, do as N̄h → ∞. It is entirely possible that the
experiments overlooked the three-phase coexistence due to insufficient annealing. Indeed,
a recent experiment by Xie et al. [82] has, in fact, observed macrophase separation. Thus,
we believe that the topology of the FTS phase diagram in Figure 10 represents the true
equilibrium behavior.
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Figure 10. Phase diagram for symmetric ternary blends plotted in terms of segregation strength, χNh,
and copolymer content, φ̄c. The labels A, B, L and BµE denote A-homopolymer rich, B-homopolymer
rich, lamellar, and bicontinuous microemulsion, respectively. The cross marks the position of a
tricritical point, and the dashed curves compare the SCFT phase diagram [38]. Adapted from
Ref. [52,53].

4. Discussion and Future Outlook

Even with relatively few applications, FTS have demonstrated remarkable potential.
For instance, the simulations of three-phase coexistence in Figure 9 involve approximately
108 molecules, which is orders of magnitude beyond what is possible in particle-based
simulations [75]. This capability has been facilitated by a number of significant advances.
For instance, the transition from CPUs to GPUs has allowed the system size to be scaled up
considerably [83,84]. A similar improvement was also achieved by switching from Monte
Carlo dynamics used in the early studies [13,38–40,50,51,80] to the Langevin dynamics in
Equation (36) [48].

There will undoubtedly be further opportunities to improve the FTS method de-
scribed here. One possibility is replacing the predictor-corrector algorithm with a better
scheme [47]. There is also scope for tuning the Anderson-mixing algorithm, such as how
the mixing parameter, λ, is adjusted. Alternatively, there may be a better numerical method
for iterating w+(r) [85]. Naturally, the speed of the simulations would be enhanced by
reducing the polymerization, N, although one must be careful not to go too far or otherwise
universality will be lost. Likewise, it might be possible to increase the grid spacing, ∆α, but
it should nevertheless remain fine enough to resolve the relevant coarse-grained details
such as the width of the internal A/B interfaces.

One of the main strengths of the field-theoretic approach is its incredible versatility. In
particular, it is capable of handling complicated polymeric architectures with a minimal
increase in computational effort relative to that of the simple diblock [86,87], which is
most certainly not the case for traditional particle-based simulations. Furthermore, it
can be adapted to a variety of ensembles [51,88,89], which is very useful when dealing
with blends. For the case of AB-type systems, the only change involves the statistical
mechanics for the noninteracting polymers. This just requires simple modifications to the
first term in the field-theoretic Hamiltonian, Equation (12), and the expressions for φ±(r),
Equations (21) and (22). The extension to three or more chemically-distinct components
(e.g., ABC-type systems) is also possible, although the modifications are less trivial [47].

It is important to remember that the version of FTS described here uses a partial saddle-
point approximation, which equates to a mean-field enforcement of incompressibility. Past
studies [38,90] have shown that the approximation is accurate, but it becomes less so as N̄
is reduced. The clearest evidence for this is the inability to capture the departure of S(k∗)
from the RPA prediction at small χN, as seen in Figure 2. Although complex-Langevin
simulations could, in principle, capture this effect, it is uncertain whether, in practice, they
can; the compressibility required to access the smaller values of N̄ in Figure 2 may actually
destroy the universality. In any case, the effect remains relatively minor for N̄ & 103, and
thus the partial saddle-point approximation appears justified. For systems with more than
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two components, there will be additional fields that may also be imaginary, depending on
the relative size of the different interaction parameters [47]. It is likely that they can also be
treated accurately with the partial saddle-point approximation, although this remains to
be seen.

Naturally, there will be some systems for which it is important to treat incompressibil-
ity rigorously, and thus the partial saddle-point approximation would be inappropriate
or at least significantly inaccurate. An example is bottlebrush architectures involving
backbones with densely-grafted side-chains. In these systems, steric interactions cause the
side-chains to form a brush exerting a tension on the backbone, which reduces its flexibility.
This steric stiffening of the backbone is completely neglected by mean-field treatments of
incompressibility, but the effect does appear to be captured by complex-Langevin FTS [91].
Another example is block copolymer nanocomposites. Without a proper treatment, the
nanoparticles can overlap and polymers can penetrate their interiors [92,93]. Although
complex-Langevin FTS have been applied to these nanocomposites [35,88,94], they may
not adequately account for the more significant steric interactions of bulky nanoparticles.
Such steric interactions should remain in the limit of infinite N̄, but this cannot possibly be
the case in complex-Langevin FTS as they reduce to SCFT in that limit. On the other hand,
complex-Langevin FTS do appear capable of handling the steric interactions in polymer
solutions involving small solvent molecules [95].

Despite considerable progress, there remain some significant issues to resolve. An
important one is determining the exact nature of the UV divergence, or in other words
exactly how various quantities depend on the grid resolution. The calibration of the
interaction parameter, χ, ensures that melts behave equivalently on different sized grids.
Nevertheless, the free energy, for example, still retains a dependence on the grid resolution.
This can be calculated analytically for homopolymer melts. In this special case, the field-
based Hamiltonian reduces to

H f [W−, w+]

kBT
=

ρ0

χb

∫ (
W−(r)±

χb
2

)2
dr

=
ρ0V
χb M

M

∑
j=1

(
W−,j ±

χb
2

)2
(48)

where the plus and minus signs correspond to NA = N and NA = 0, respectively. In
both cases, the Hamiltonian is just a system of M independent harmonic oscillators, and
therefore its free energy is 1

2 MkBT ln(χb M/ρ0V) to within an irrelevant constant. The issue
is that the free energy diverges as M increases or equivalently as ∆α → 0. Interestingly,
we find that the UV divergence for diblock copolymer melts appears to be independent of
composition (i.e., NA) to within the numerical inaccuracy of our thermodynamic integration.
This suggests that the UV divergence remains identical to that of simple homopolymer
melts, but this still needs to be confirmed.

The ODT boundaries in Figures 4, 7, and 10 were all determined by comparing ordered
and disordered phases in identical simulation boxes, in which case the exact form of the UV
divergence becomes irrelevant. This also remains true for comparisons between different
sized simulation boxes provided their grid resolutions, ∆α, are the same. However, this
still represents a serious constraint, in large part because the efficiency of the Fourier
transforms relies on mα factorizing into small prime numbers [46]. We note that Delaney
and Fredrickson [34] have avoided the UV divergence altogether by smearing the molecular
interactions, which could likewise be implemented in FTS with the partial saddle-point
approximation. In order to obtain universal results, the range of the interactions should
be small relative to the width of the internal A/B interfaces. In addition though, the grid
resolution needs to smaller than the range of the interactions, probably by a factor of
at least four in order to adequately resolve the interaction profile. This implies that the
64× 64× 64 grid used to simulate the gyroid phase in Figure 5 would have to be switched
to a 256× 256× 256 grid, which is currently unfeasible even on GPUs.
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Another related issue is how to adjust the size of the simulation box to be commensu-
rate with the equilibrium period of an ordered phase. For the lamellar and cylinder phases,
the period can determined by minimizing the free energy with respect to the aspect ratio
of the simulation box subject to a constant volume constraint [50,66]. Unfortunately, this
strategy cannot be extended to triply-periodic phases. For the gyroid and Fddd phases in
Figures 5 and 6, respectively, the box size was adjusted to maximize the Bragg peaks, but
this procedure is computationally expensive. The difficulty with using free energy is that
changing the volume of the box affects the UV divergence. However, solving the previous
problem of how to compare phases in boxes of different grid resolution would provide the
means of solving this problem as well.

Now that field-theoretic simulations can handle large numbers of polymers with com-
plicated architectures and multiple species [51,86–89], we expect them to gain widespread
use. Hopefully, the open-source code provided in the Supplementary Materials will help
facilitate this. The increased activity will undoubtedly spawn further developments that
will expand its range of applications. As such, FTS is certain to become an invaluable
complement to SCFT, which itself is one of the most successful theories in soft condensed
matter physics [18].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13152437/s1, Open-source code for field-theoretic simulations of diblock copolymer
melts (read SM.pdf for a description of the files).
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